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Two Troubled Hadrons in a 
Box
Addressing left-hand cut issues in the Lüscher 
scattering formalism



0. Brief motivation and overview

• studying scattering using Lattice QCD requires indirect 
methods, such as the Lüscher method for 2-to-2 scattering

• recent lattice calculations of baryon-baryon and meson-
meson scattering have encountered issues when applying 
standard formalism

• processes considered have left-hand cuts in the angular 
momentum projected scattering amplitudes

• cuts due to single exchanges of lighter mesons

• application of standard formalism at energies on the cut leads 
to inconsistencies: we predict a real amplitude predicted but 
amplitude should be complex!
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We revisit the derivation of the standard formalism and propose a solution in the form of a modified quantisation condition



0. Lattice QCD

• computational method allowing non-perturbative 
calculations of QCD

• QCD path integral implemented in finite and 
discretised Euclidean spacetime — the lattice 

• field configurations sampled using Monte Carlo 
methods, weighed by the Euclidean action

• observables obtained by averaging over field 
configurations

• infinite-volume and continuum extrapolations often 
necessary for meaningful predictions
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partition function

fermion fields gauge fields

Euclidean action



• direct study not possible on the lattice 
  (effects of finite-volume, Euclidean signature,…)

• need indirect methods:

finite-volume methods

(spectral functions…)

Finite-volume methods: exploit the volume-dependence to extract scattering information

Leading method is Lüscher formalism for 2-to-2 scattering (and its numerous extensions)
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finite-volume spectrum 
of two-hadron system

amplitude for
hadron-hadron scattering

[Lüscher 1986] and 
many others

0. What about scattering?



1. A detour into infinite-volume scattering

• degrees of freedom of QCD at low energies: 
QCD-stable hadrons|𝜋⟩,|𝐾⟩,|𝑁⟩, …

• study a toy model EFT of scalar “nucleons” and 
“pions”, of masses 𝑀! and 𝑀" respectively, 
with 𝑀" < 𝑀!

• no assumptions on the form of the interactions, 
but baryon number is conserved

• for now, assume 𝑁 and 𝜋 are not coupled
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1. A detour into infinite-volume scattering

• degrees of freedom of QCD at low energies: 
QCD-stable hadrons|𝜋⟩,|𝐾⟩,|𝑁⟩, …

• study a toy model EFT of scalar “nucleons” and 
“pions”, of masses 𝑀! and 𝑀" respectively, 
with 𝑀" < 𝑀!

• no assumptions on the form of the interactions, 
but baryon number is conserved

• for now, assume 𝑁 and 𝜋 are not coupled

The scattering amplitude for 𝑁𝑁 elastic scattering given by the infinite sum:

all amputated 𝑁𝑁 → 𝑁𝑁 diagrams
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Dressed propagator
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all amputated 𝑁𝑁 → 𝑁𝑁 diagrams which 
are 2-particle irreducible in the 𝑠-channel

Bethe-Salpeter
kernel

We can write the amplitude as:

Can also project to definite angular momentum using a partial-wave expansion:

CM scattering angle Legendre polynomial partial-wave amplitudes

1. A detour into infinite-volume scattering



We will want to study the scattering amplitude when projected to specific angular momenta:

Using the optical theorem in elastic regime (2𝑀!)# < 𝑠 = 𝐸𝖼𝗆# < (4𝑀!)# :

1. Structure of the scattering amplitude

phase space factor:

CM scattering angle Legendre polynomial partial-wave amplitudes

square root cut
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Using the optical theorem in elastic regime:

…which we can solve by introducing the K-matrix:

   (real, contains no branch cuts)

1. Structure of the scattering amplitude
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phase space factor

matrices in angular 
momentum index space 

ℓ𝑚, ℓ&𝑚&

K-matrix phase space factoramplitude matrix



2. Going to a finite volume

discretised momenta

𝐸 𝐸!(𝐿)
𝐸"(𝐿)

𝐸#(𝐿)
discretised spectrum

summed spatial
loop momenta

periodic cubic spatial volume of side 𝐿

finite but large time extent 𝑇

𝐿 large enough to neglect 𝒪 𝑒'(!)  
effects

neglect discretisation effects



2. Going to a finite volume
periodic cubic spatial volume of side 𝐿

finite but large time extent 𝑇

𝐿 large enough to neglect 𝒪 𝑒'(!)  
effects

neglect discretisation effects
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Our main tools are finite-volume correlators 𝐶)(𝑃):

• operators with appropriate quantum numbers

• poles at FV energies of the system

discretised momenta

𝐸 𝐸!(𝐿)
𝐸"(𝐿)

𝐸#(𝐿)
discretised spectrum

summed spatial
loop momenta



2. Tracking the volume dependence
How do we deal with FV loops?                    study the difference between FV and IV loops 
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2. Tracking the volume dependence
How do we deal with FV loops?                    study the difference between FV and IV loops 

exponentially suppressed volume 
corrections 𝒪(𝑒$%!&) for other 

loops
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on-shell 𝑁𝑁 intermediate states:
power-like suppression 𝒪(𝐿$')

replace end-caps and kernels with corresponding infinite-volume objects — neglect 𝒪(𝑒!"!#) effects



2. Tracking the volume dependence
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IV term



2. Tracking the volume dependence
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IV term

“F-cut” term: - tracks 𝒪(𝐿$') effects
     - places neighbours on shell



Apply separation to all 2-particle loops, re-organise:

2. Tracking the volume dependence
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IV correlator

K-matrix — same as infinite-volume object (up to neglected 𝒪 𝑒'(!)  effects)



2. Lüscher quantisation condition
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poles at the FV energies

K-matrix 
— encodes IV physics

F matrix 
of known functions

— encodes the FV effects



2. Lüscher quantisation condition
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poles at the FV energies

at the FV energies

Lüscher quantisation condition 
[Lüscher 1986] and many extensions

• original derivation for identical particle scattering, 
zero total momentum

• extended to non-identical particles, different 
masses, arbitrary spins, etc. by later work

• derivation outlined here follows [Kim, Sachrajda, 
Sharpe 2005]



2. Lüscher quantisation condition
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at the FV energies

Why is it helpful?

𝐸 𝐸#(𝐿)
𝐸*(𝐿)

𝐸+(𝐿)
finite-volume 

spectrum
K-matrix amplitude

Lüscher condition unitarity

• finite-volume spectrum determined using lattice QCD

• Lüscher condition applied to get K-matrix

• apply the elastic unitarity relation to obtain amplitude

Workflow:



2. An example
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Example of P-wave in 𝜋𝜋 scattering with 

𝐼 = 1 (adapted from [Dudek et al., 2013]) 



3. Running into trouble

• recent lattice calculations of baryon-baryon and meson-meson scattering have encountered some issues

• finite-volume energies extracted on top of left-hand cuts

• applying Lüscher formalism leads to inconsistencies

What are left-hand cuts?
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these processes involve exchanges of lighter mesons



3. A detour into infinite-volume scattering II

• study a toy model EFT of scalar “nucleons” and 
“pions”, of masses 𝑀! and 𝑀" respectively, 
with 𝑀" < 𝑀!

• no assumptions on the form of the interactions, 
but baryon number is conserved

• 𝑁 and 𝜋 now coupled

The scattering amplitude for 𝑁𝑁 elastic scattering given by the infinite sum:
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all amputated 𝑁𝑁 → 𝑁𝑁 diagrams



3. Structure of the amplitude with no pions
What is the analytic structure of the amplitude in the 𝑠 plane for fixed CM scattering angle with no coupling between 𝑁 and 𝜋?

• right-hand two-particle cut in elastic regime

Same picture for the partial-wave amplitudes!
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fixed

or



3. Structure of the amplitude with pions
What is the analytic structure of the amplitude in the 𝑠 plane for fixed CM scattering angle when including pions?

• right-hand two-particle cut in elastic regime

• three-particle cut above 𝑁𝑁𝜋 threshold

• sub-threshold poles due to single 𝜋 exchanges

• lower cuts due to multiple 𝜋 exchanges
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fixed
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What is the analytic structure of the partial-wave amplitudes in the 𝑠 plane?

• right-hand two-particle cut in elastic regime

• three-particle cut above 𝑁𝑁𝜋 threshold

• sub-threshold poles become left-hand cut

• lower cuts due to multiple 𝜋 exchanges

3. Structure of the amplitude with pions



3. Origin of the left-hand cut: a closer look

• the nearest cut arises due to the 𝜋 exchanges:

• projecting to definite AM and with on-shell arguments, e.g. to ℓ = 0:
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3. Running into trouble

• recent lattice calculations of baryon-baryon and meson-meson scattering have encountered some issues

• finite-volume energies extracted on top of left-hand cuts

• applying Lüscher formalism leads to inconsistencies

What are left-hand cuts? What happens there?
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Lüscher condition • 𝐹(𝑃, 𝐿) is real, therefore solutions for 𝒦(𝑠) are real

• however, 𝒦(𝑠) should be complex on the cut!



3. Running into trouble

ΛΛ finite-volume spectra,
adapted from [Green, Hanlon, Junnarkar, Wittig 2021]

non-interacting levels 
interacting levels 

Spectra for 𝐷𝐷∗ system,
adapted from [Padmanath, 

Prelovsek 2022]
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Bethe-Salpeter kernel now includes extra diagrams:

         we must re-analyse subsequent steps!

4. Where did we go wrong?

Why does the left-hand cut cut change things?

Apart from minor adjustments, our derivation set-up from before seems fine:

Our main tools are finite-volume correlators 𝐶)(𝑃):

• operators with appropriate quantum numbers

• poles at FV energies of the system
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IV term

Tracking the volume dependence
4. Where did we go wrong? Recall…
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“F-cut” term: - tracks 𝒪(𝐿"#) effects
 - places neighbours on shell

maybe problematic?



4. Where did we go wrong?

32

IV term

kernels include 
𝜋 exchanges

Apply to loop with two BS kernels:



4. Where did we go wrong?
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IV term

kernels include 
𝜋 exchanges

F operation places neighbouring 
subdiagrams on-shell:

Apply to loop with two BS kernels:



• on-shell placement relies on on-shell off-shell 
difference being exponentially suppressed with the 
volume and therefore negligible 

4. Where did we go wrong?
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• on-shell placement relies on on-shell off-shell 
difference being exponentially suppressed with the 
volume and therefore negligible 

• all fine above elastic threshold and nearest left-hand cut

• this breaks when we hit the cut (and just above): 
potentially large volume effects neglected if 
dropped

4. Where did we go wrong?
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𝜋 exchange projected to ℓ =
0 and with on-shell kinematics



• on-shell placement relies on on-shell off-shell 
difference being exponentially suppressed with the 
volume and therefore negligible 

• all fine above elastic threshold and nearest left-hand cut

• this breaks when we hit the cut (and just above): 
potentially large volume effects neglected if 
dropped

4. Where did we go wrong?
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does not contain left-hand cut 
not singular at branch point

singular at branch point

𝜋 exchange projected to ℓ =
0 and with on-shell kinematics

lhc



4. On-shellness as the issue
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on-shell kinematicspartially on-shell kinematics

safe on the cut
(no energy dependence)

• loop momentum 𝑘 is individually on 
mass shell 𝑘 → (𝜔!(𝒌), 𝒌)

• 𝑃 − 𝑘 is not on shell

• momenta 𝑘 and 𝑃 − 𝑘 both on shell

• 𝑁𝑁 intermediate state on shell



5. Proposed formalism
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remainder IV term

• on-shellness of 𝜋 exchanges seems to 
create the issues

• AM projection seems to be safe
• modify loop splitting procedure

change cutting to 
keep neighbours 
partially off shell

sum over repeated indices

sum over spatial loop momentum 
sum over repeated 𝒌⋆ index



5. Proposed formalism

39

remainder IV term

• on-shellness of 𝜋 exchanges seems to 
create the issues

• AM projection seems to be safe
• modify loop splitting procedure

change cutting to 
keep neighbours 
partially off shell

sum over repeated indices

sum over spatial loop momentum 
sum over repeated 𝒌⋆ index

elements of S given by

compare with 



5. Proposed formalism
• on-shellness of 𝜋 exchanges seems to 

create the issues
• AM projection seems to be safe
• modify loop splitting procedure
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remainder IV term

on-shell 
kinematics:

Main ingredients:

index space extended from ℓ𝑚 to CM loop 
momentum ⊗ angular momentum indices 
𝒌𝖼𝗆ℓ𝑚 to keep neighbours off-shell

define a modified kernel 𝐵

𝜋 exchanges kept off shell

𝐵 safe down to second left-hand cut when 
on shell

change cutting to 
keep neighbours 
partially off shell



5. Adapted quantisation condition
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S matrix 
of known functions

— encodes the FV effects

T matrix 
of known off-shell 

logarithms

𝒦
𝗈𝗌
(𝑃) matrix 

modified “K-matrix”

𝜉, 𝜉/ trivial vector 𝑔   𝑁𝑁𝜋 effective coupling

QC can be used to constrain 𝒦
𝗈𝗌
(𝑃) from the FV spectrum



5. Adapted quantisation condition
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T matrix 
of known off-shell 

logarithms

QC can be used to constrain 𝒦
𝗈𝗌
(𝑃) from the FV spectrum

e.g. S-wave result



5. Adapted quantisation condition
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QC can be used to constrain 𝒦
𝗈𝗌
(𝑃) from the FV spectrum

• inclusion of spin relatively straightforward: index space expanded to include spin state labels

• modified quantisation condition inspired by three-particle formalism work (Blanton, Briceño, Döring, Draper, Mai, Meißner, 
Müller, Hammer, Hansen, Pang, Romero-López, Rusetsky, Sharpe…)



5. Adapted quantisation condition
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QC can be used to constrain 𝒦
𝗈𝗌
(𝑃) from the FV spectrum

• inclusion of spin relatively straightforward: index space expanded to include spin state labels

• modified quantisation condition inspired by three-particle formalism work (Blanton, Briceño, Döring, Draper, Mai, Meißner, 
Müller, Hammer, Hansen, Pang, Romero-López, Rusetsky, Sharpe…)

• potentially more practical alternative re-writings of QC under investigation:

just in ℓ𝑚, ℓ&𝑚& index space
extra momentum index 
hiding inside F matrix



5. Extracting the amplitude
An extra step is needed to connect K-bar to the amplitude:
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𝐸 𝐸!(𝐿)
𝐸"(𝐿)

𝐸#(𝐿)
finite-volume 

spectrum
K-bar matrixquantization 

condition amplitudeintegral 
equations



5. Extracting the amplitude
An extra step is needed to connect K-bar to the amplitude:

We need to solve integral equations of the type
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𝐸 𝐸!(𝐿)
𝐸"(𝐿)

𝐸#(𝐿)
finite-volume 

spectrum
K-bar matrixquantization 

condition amplitudeintegral 
equations

solve for auxiliary 
amplitude 

symmetrize to get amplitude 



6. Summary

• left-hand cut issues arise from combination of infinite-volume 
effect + angular momentum projection + on-shell projection

• we have presented a method that extends the Lüscher formalism 
to the left-hand cut, accounting for both t- and u-channels and 
also spin

• full workflow including the solving of integral equations allows 
extraction of the amplitude

• modified procedure has been shown to be equivalent to standard 
Lüscher method when the latter is applicable

• paper is already up on the arXiv!  [ABR and Hansen 2023]
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6. Outlook
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• extensions of formalism (e.g. non-identical particles, different 
masses, lower energy range) currently being investigated (towards 
applications such as 𝐷𝐷∗ scattering)

• comparison with proposed EFT-based alternative approaches 
[Meng, Baru, Epelbaum, Filin, Gasparyan 2023]

• implementation in the form of a Python library

• taking advantage of progress in solving integral equations in the 
three-particle RFT formalism to implement algorithms to extract 
the amplitude from K-bar matrix

• clarifying and exploring connections and consistency with three-
particle formalism (e.g. this method as a limiting case?) — see 
recent work by [Hansen, Romero-López, Sharpe 2024]

• exploring potential connections to dispersive methods



Thank you for your attention!

                       

                                                     … any questions?
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Back-up slides…



We can write the amplitude as:

In the elastic regime, only two-particle (𝑁𝑁) states can go on shell:

dressed propagator
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all amputated 𝑁𝑁 → 𝑁𝑁 diagrams which 
are 2-particle irreducible in the 𝑠-channel

Bethe-Salpeter
kernel

Structure of the scattering amplitude

no intermediate 
𝑁𝑁 states
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Split two-particle loops into real and imaginary parts:

apply this separation to all two-particle loops

imaginary part of the loop: delta functions 
put neighbouring kernels on shell

Structure of the scattering amplitude
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Reorganise amplitude sum into series:

using K-matrix:

Structure of the scattering amplitude



Recovering the standard formalism
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setting 𝑔 = 0

simple algebraic relation to Lüscher F
𝐼(𝑃) matrix of known geometric 
functions

simplification of the integral 
equations in 𝑔 = 0 case

⁄𝐸 𝑀!

we recover the standard 
condition


