Two Troubled Hadrons in a Box

Addressing left-hand cut issues in the Lüscher scattering formalism

André Baião Raposo based on work with Max T. Hansen

0. Brief motivation and overview

- studying scattering using Lattice QCD requires indirect methods, such as the *Lüscher method* for 2-to-2 scattering
- recent lattice calculations of baryon-baryon and mesonmeson scattering have encountered issues when applying standard formalism
- processes considered have *left-hand cuts* in the angular momentum projected scattering amplitudes
- cuts due to *single exchanges of lighter mesons*
- application of standard formalism at energies on the cut leads to inconsistencies: we predict a real amplitude predicted but amplitude should be complex!

We revisit the derivation of the standard formalism and propose a solution in the form of a *modified quantisation condition*

O. Lattice QCD

- computational method allowing non-perturbative calculations of QCD
- QCD path integral implemented in finite and discretised Euclidean spacetime the *lattice*
- field configurations sampled using Monte Carlo methods, weighed by the Euclidean action
- observables obtained by averaging over field configurations
- infinite-volume and continuum extrapolations often necessary for meaningful predictions

O. What about scattering?

- direct study not possible on the lattice (effects of finite-volume, Euclidean signature,...)
- need indirect methods:
 - finite-volume methods
 - (spectral functions...)

Finite-volume methods: exploit the volume-dependence to extract scattering information

Leading method is *Lüscher formalism* for 2-to-2 scattering (and its numerous extensions)

[Lüscher 1986] and many others

1. A detour into infinite-volume scattering

- degrees of freedom of QCD at low energies: QCD-stable hadrons $|\pi\rangle$, $|K\rangle$, $|N\rangle$, ...
- study a toy model EFT of scalar "nucleons" and "pions", of masses M_N and M_π respectively, with $M_{\pi} < M_N$
- no assumptions on the form of the interactions, but baryon number is conserved
- for now, assume N and π are not coupled

1. A detour into infinite-volume scattering

- degrees of freedom of QCD at low energies: QCD-stable hadrons $|\pi\rangle$, $|K\rangle$, $|N\rangle$, ...
- study a toy model EFT of scalar "nucleons" and "pions", of masses M_N and M_π respectively, with $M_{\pi} < M_N$
- no assumptions on the form of the interactions, but baryon number is conserved
- for now, assume N and π are not coupled

The **scattering amplitude** for NN elastic scattering given by the infinite sum:

$$\mathbf{M} = \mathbf{M} + \mathbf{M} +$$

all amputated $NN \rightarrow NN$ diagrams

We can write the **amplitude** as:

$$\mathbf{M} = \mathbf{B} + \mathbf{B}$$

Can also project to definite angular momentum using a partial-wave expansion:

$$\mathcal{M}(s, heta_{\mathsf{cm}}) = \sum_{\ell=0}^\infty$$
CM scattering angle

all amputated $NN \rightarrow NN$ diagrams which are 2-particle irreducible in the *s*-channel

 $\int (2\ell+1) P_{\ell}(\cos\theta_{\mathsf{cm}}) \mathcal{M}_{\ell}(s)$ Legendre polynomial partial-wave amplitudes

 $+ \cdots$

1. Structure of the scattering amplitude

We will want to study the scattering amplitude when projected to specific angular momenta:

$$\mathcal{M}(s, heta_{\mathsf{cm}}) = \sum_{\ell=0}^\infty (2\ell + \ell)$$
CM scattering angle Leger

Using the **optical theorem** in elastic regime $(2M_N)^2 < s = E_{cm}^2 < (4M_N)^2$:

$$\operatorname{Im} \mathcal{M}_{\ell}(s) = \rho(s) |\mathcal{M}_{\ell}(s)|^2$$

1) $P_{\ell}(\cos\theta_{\mathsf{cm}}) \mathcal{M}_{\ell}(s)$

ndre polynomial partial-wave amplitudes

phase space factor: $ho(s)=rac{1}{32\pi}\sqrt{1}$

square root cut

1. Structure of the scattering amplitude

We will want to study the scattering amplitude when projected to specific angular momenta:

$$\mathcal{M}(s, heta_{\mathsf{cm}}) = \sum_{\ell=0}^\infty (2\ell + \ell)$$
CM scattering angle Leger

Using the **optical theorem** in elastic regime $(2M_N)^2 < s = E_{cm}^2 < (4M_N)^2$:

$$\operatorname{Im} \mathcal{M}_{\ell}(s) = \rho(s) |\mathcal{M}_{\ell}(s)|^2$$

subthreshold regime

 $s = (2M_N)^2$

$$\rho(s) = \frac{1}{32\pi} \sqrt{1 - \frac{4M_N^2}{s}}$$

phase space factor

2. Going to a finite volume

- $_{\circ}$ periodic cubic spatial volume of side L
- $_{\circ}$ finite but large time extent T
- L large enough to neglect $\mathcal{O}(e^{-M_{\pi}L})$ effects
- neglect discretisation effects

2. Going to a finite volume

- 0
- effects
- neglect discretisation effects

- poles at FV energies of the system

2. Tracking the volume dependence

 $\frac{1}{L^3} \sum_{\boldsymbol{k}} \qquad \qquad \int_{\boldsymbol{k}}$

) +
$$\left[\begin{array}{c} L \\ L \\ \hline \\ \frac{1}{L^3} \sum_{k} - \int_{k} \end{array} \right]$$

2. Tracking the volume dependence

replace end-caps and kernels with corresponding infinite-volume objects – neglect $O(e^{-M_{\pi}L})$ effects

"F-cut" term: - tracks $\mathcal{O}(L^{-n})$ effects - places neighbours on shell

2. Lüscher quantisation condition

 $C_L(P) = C_{\infty}^{\mathsf{pv}}(P) + (A) = (A^{\dagger}) + (A) = (A) = (A^{\dagger}) + (A) = (A) = (A^{\dagger}) + (A) = (A$

 $= C^{\mathsf{pv}}_{\infty}(P) + A(P) \, iF(P,L) \, A^{\dagger}(P) + A(P) \, iF(P,L) \, i\mathcal{K}(s) \, iF(P,L) \, A^{\dagger}(P) + \cdots$

 ℓm

2. Lüscher quantisation condition

$$C_L(P) = C_{\infty}^{\mathsf{pv}}(P) + (A + A + A + A + F)$$

 $= C^{\mathsf{pv}}_{\infty}(P) + A(P) \, iF(P,L) \, A^{\dagger}(P) + A(P) \, iF(P,L) \, i\mathcal{K}(s) \, iF(P,L) \, A^{\dagger}(P) + \cdots$

$$= C^{\mathsf{pv}}_{\infty}(P) + A(P) \frac{i}{F(P,L)^{-1} + \mathcal{K}(s)} A^{\dagger}(P)$$

$$\det \left[F(P,L)^{-1} + \mathcal{K}(s)
ight] = 0$$
 at the FV energy of the FV energy of the FV energy of the FV energy of the transformed structure of transfo

Lüscher quantisation condition [Lüscher 1986] and many extensions

poles at the FV energies

- original derivation for identical particle scattering, zero total momentum
- extended to non-identical particles, different • masses, arbitrary spins, etc. by later work
- derivation outlined here follows [Kim, Sachrajda, • Sharpe 2005]

• • •

2. Lüscher quantisation condition

$$\det \left[F(P,L)^{-1} + \right]$$

Why is it helpful?

- finite-volume spectrum determined using lattice QCD \bullet
- Lüscher condition applied to get K-matrix
- apply the elastic unitarity relation to obtain amplitude \bullet

2. An example

3. Running into trouble

- recent lattice calculations of baryon-baryon and meson-meson scattering have encountered some issues
- finite-volume energies extracted on top of left-hand cuts
- applying Lüscher formalism leads to inconsistencies

What are *left-hand cuts*?

these processes involve exchanges of lighter mesons

3. A detour into infinite-volume scattering II

- study a toy model EFT of scalar "nucleons" and "pions", of masses M_N and M_π respectively, with $M_{\pi} < M_N$
- no assumptions on the form of the interactions, but baryon number is conserved
- N and π now coupled

The *scattering amplitude* for *NN* elastic scattering given by the infinite sum:

all amputated $NN \rightarrow NN$ diagrams

3. Structure of the amplitude with no pions

What is the analytic structure of the amplitude in the s plane for fixed CM scattering angle with no coupling between N and π ?

• right-hand two-particle cut in elastic regime

Same picture for the partial-wave amplitudes!

subthreshold regime

or

3. Structure of the amplitude with pions

What is the analytic structure of the amplitude in the *s* plane for fixed CM scattering angle when including pions?

- right-hand two-particle cut in elastic regime
- three-particle cut above $NN\pi$ threshold
- sub-threshold poles due to single π exchanges •
- lower cuts due to multiple π exchanges

3. Structure of the amplitude with pions

What is the analytic structure of the partial-wave amplitudes in the *s* plane?

- right-hand two-particle cut in elastic regime
- three-particle cut above $NN\pi$ threshold
- sub-threshold poles become left-hand cut
- lower cuts due to multiple π exchanges \bullet

3. Origin of the left-hand cut: a closer look

the nearest cut arises due to the π exchanges:

projecting to definite AM and with on-shell arguments, e.g. to $\ell=0$:

3. Running into trouble

- recent lattice calculations of baryon-baryon and meson-meson scattering have encountered some issues
- finite-volume energies extracted on top of left-hand cuts
- applying Lüscher formalism leads to inconsistencies

What are *left-hand cuts*? What happens there?

3. Running into trouble

 $\Lambda\Lambda$ finite-volume spectra, adapted from [Green, Hanlon, Junnarkar, Wittig 2021]

Role of left-hand cut contributions on pole extractions from lattice data: Case study for $T_{cc}(3875)^+$

Meng-Lin Du⁰,¹ Arseniy Filin⁰,² Vadim Baru⁰,² Xiang-Kun Dong⁰,^{3,4} Evgeny Epelbaum⁰,² Feng-Kun Guo^{1,3,4,5} Christoph Hanhart⁶,⁶ Alexey Nefediev⁶,^{7,8} Juan Nieves⁶,⁹ and Qian Wang^{10,11,12}

We discuss recent lattice data for the $T_{cc}(3875)^+$ state to stress, for the first time, a potentially strong impact of left-hand cuts from the one-pion exchange on the pole extraction for near-threshold exotic states. In particular, if the left-hand cut is located close to the two-particle threshold, which happens naturally in the DD^* system for the pion mass exceeding its physical value, the effectiverange expansion is valid only in a very limited energy range up to the cut and as such is of little use to reliably extract the poles. Then, an accurate extraction of the pole locations requires the

Why does the left-hand cut cut change things?

Apart from minor adjustments, our derivation set-up from before seems fine:

Our main tools are *finite-volume correlators* $C_L(P)$:

• operators with appropriate quantum numbers
• poles at FV energies of the system
$$C_L(P) = \int d^4x \ e^{-iP \cdot x} \langle \mathcal{A}(x) \mathcal{A}^{\dagger}(0) \rangle_L$$

$$= \underbrace{\mathcal{A} + \mathcal{A} + \mathcal{$$

Bethe

we must re-analyse subsequent steps!

• •

4. Where did we go wrong? Recall...

Tracking the volume dependence

"F-cut" term: - tracks $\mathcal{O}(L^{-n})$ effects - places neighbours on shell

$$F = \mathcal{L}_{\ell m}^{os}(s) iF_{\ell m,\ell'm'}(P,L) R_{\ell'm'}^{os}(\hat{k}^{\star}) Y_{\ell'm'}^{\star}(\hat{k}^{\star}) \left(\frac{|k^{\star}|}{k_{os}^{\star}}\right)^{\ell+1}$$

$$F = \mathcal{L}_{\ell m}^{os}(s) iF_{\ell m,\ell'm'}(P,L) R_{\ell'm'}^{os}(s)$$

4. Where did we go wrong?

 on-shell placement relies on on-shell off-shell difference being exponentially suppressed with the volume and therefore negligible

$$\propto \left[\frac{1}{L^3}\sum_{\boldsymbol{k}} -\int_{\boldsymbol{k}}\right] \frac{\mathcal{L}(\boldsymbol{k}_{\mathsf{cm}}^2)\mathcal{R}(\boldsymbol{k}_{\mathsf{cm}}^2) - \mathcal{L}(p_{\mathsf{cm}}^2)\mathcal{R}(p_{\mathsf{cm}}^2)}{\omega_N(\boldsymbol{k})[\boldsymbol{k}_{\mathsf{cm}}^2 - p_{\mathsf{cm}}^2]} \sim e^{-M_{\pi}L}$$

4. Where did we go wrong?

 on-shell placement relies on on-shell off-shell difference being exponentially suppressed with the volume and therefore negligible

$$\propto \left[\frac{1}{L^3}\sum_{\boldsymbol{k}} -\int_{\boldsymbol{k}}\right] \frac{\mathcal{L}(\boldsymbol{k}_{\mathsf{cm}}^2)\mathcal{R}(\boldsymbol{k}_{\mathsf{cm}}^2) - \mathcal{L}(p_{\mathsf{cm}}^2)\mathcal{R}(p_{\mathsf{cm}}^2)}{\omega_N(\boldsymbol{k})[\boldsymbol{k}_{\mathsf{cm}}^2 - p_{\mathsf{cm}}^2]} \sim e^{-M_{\pi}L}$$

- all fine above elastic threshold and nearest left-hand cut
- this breaks when we hit the cut (and just above):
 potentially large volume effects neglected if dropped

4. Where did we go wrong?

does not contain left-hand cut not singular at branch point on-shell placement relies on on-shell off-shell difference being exponentially suppressed with the volume and therefore negligible

$$\propto \left[\frac{1}{L^3}\sum_{\boldsymbol{k}} -\int_{\boldsymbol{k}}\right] \frac{\mathcal{L}(\boldsymbol{k}_{\rm cm}^2)\mathcal{R}(\boldsymbol{k}_{\rm cm}^2) - \mathcal{L}(p_{\rm cm}^2)\mathcal{R}(p_{\rm cm}^2)}{\omega_N(\boldsymbol{k})[\boldsymbol{k}_{\rm cm}^2 - p_{\rm cm}^2]} \sim e^{-M_{\pi}L}$$

- all fine above elastic threshold and nearest left-hand cut
- this breaks when we hit the cut (and just above): *potentially large volume effects neglected if dropped*

4. On-shellness as the issue

- loop momentum k is individually on mass shell $k \rightarrow (\omega_N(\mathbf{k}), \mathbf{k})$
- P k is not on shell

• *NN* intermediate state on shell

5. Proposed formalism

- on-shellness of π exchanges seems to create the issues

- AM projection seems to be safe
- modify loop splitting procedure

$$(P,L)\,\widetilde{\mathcal{R}}^*_{\boldsymbol{k}'^{\star}\ell'm'}(P)$$

sum over repeated indices

sum over spatial loop momentum sum over repeated k^{\star} index

5. Proposed formalism

- on-shellness of π exchanges seems to create the issues

- AM projection seems to be safe
- modify loop splitting procedure

compare with $F_{\ell m,\ell'm'}(P,L) = \left[\frac{1}{L^3}\sum_{k} -p.v.\right]$

$$(P,L) \widetilde{\mathcal{R}}^*_{\mathbf{k}'^*\ell'm'}(P)$$

sum over spatial loop momentum sum over repeated k^{\star} index

sum over repeated indices

$$\frac{Y_{\ell m}(\hat{\boldsymbol{k}}^{\star})Y_{\ell'm'}^{*}(\hat{\boldsymbol{k}}^{\star})\delta_{\boldsymbol{k}^{\star}\boldsymbol{k}^{\prime\star}}|\boldsymbol{k}^{\star}|^{\ell+\ell'}H(\boldsymbol{k}^{\star})}{4\omega_{N}(\boldsymbol{k})\left[(k_{\text{os}}^{\star})^{2}-(\boldsymbol{k}^{\star})^{2}\right]}$$

$$\int_{\boldsymbol{k}} \left[\frac{1}{2} \frac{4\pi Y_{\ell m}(\hat{\boldsymbol{k}}^{\star}) Y_{\ell' m'}^{*}(\hat{\boldsymbol{k}}^{\star})}{4\omega_{N}(\boldsymbol{k}) \left[(k_{\text{os}}^{\star})^{2} - (\boldsymbol{k}^{\star})^{2} \right]} \left(\frac{|\boldsymbol{k}^{\star}|}{k_{\text{os}}^{\star}} \right)^{\ell + \ell'} \right]$$

5. Proposed formalism

- on-shellness of π exchanges seems to create the issues

- AM projection seems to be safe
- modify loop splitting procedure

Main ingredients:

- index space extended from ℓm to CM loop momentum \otimes angular momentum indices $k_{\rm cm}\ell m$ to keep neighbours off-shell
- $_{\circ}~$ define a modified kernel \overline{B}
- $_\circ~\pi$ exchanges kept off shell
- $_{\circ}~B$ safe down to second left-hand cut when on shell

$$= \frac{1}{4|\boldsymbol{k}_{\mathsf{cm}}||\boldsymbol{k}_{\mathsf{cm}}'|} \log \left(\frac{2\omega_N(\boldsymbol{k}_{\mathsf{cm}})\omega_N(\boldsymbol{k}_{\mathsf{cm}}') + 2|\boldsymbol{k}_{\mathsf{cm}}||\boldsymbol{k}_{\mathsf{cm}}'| - 2M_N^2 + M_\pi^2 - i\epsilon}{2\omega_N(\boldsymbol{k}_{\mathsf{cm}})\omega_N(\boldsymbol{k}_{\mathsf{cm}}') - 2|\boldsymbol{k}_{\mathsf{cm}}||\boldsymbol{k}_{\mathsf{cm}}'| - 2M_N^2 + M_\pi^2 - i\epsilon} \right)$$
$$\omega_N(\boldsymbol{k}) = \sqrt{\boldsymbol{k}^2 + M_N^2}$$

- inclusion of spin relatively straightforward: index space expanded to include spin state labels
- \bullet Müller, Hammer, Hansen, Pang, Romero-López, Rusetsky, Sharpe...)

modified quantisation condition inspired by three-particle formalism work (Blanton, Briceño, Döring, Draper, Mai, Meißner,

5. Adapted quantisation condition

$$C_L(P) = (A) L A^{\dagger} + (A) L B$$
$$det \left[S(P, L)^{-1} + \xi^{\dagger} \overline{\mathcal{K}}^{os}(P) \xi + 2g^2 7 \right]$$

- inclusion of spin relatively straightforward: index space expanded to include spin state labels
- \bullet Müller, Hammer, Hansen, Pang, Romero-López, Rusetsky, Sharpe...)
- potentially more practical alternative re-writings of QC under investigation:

$$\det_{\ell m} \left[\overline{\mathcal{K}}^{\mathsf{os}}(P_j)^{-1} + F^{\mathcal{T}}(P_j, L) \right] = 0$$

just in ℓm , $\ell' m'$ index space

modified quantisation condition inspired by three-particle formalism work (Blanton, Briceño, Döring, Draper, Mai, Meißner,

$$F^{\mathcal{T}}(P,L) = \xi S(P,L) \frac{1}{1 + 2g^2 \mathcal{T}(P) S(P,L)} \xi^{\dagger}$$

extra momentum index hiding inside F matrix

5. Extracting the amplitude

An extra step is needed to connect K-bar to the amplitude:

5. Extracting the amplitude

An extra step is needed to connect K-bar to the amplitude:

We need to solve integral equations of the type

- left-hand cut issues arise from combination of infinite-volume \bullet effect + angular momentum projection + on-shell projection
- we have presented a method that extends the Lüscher formalism to the left-hand cut, accounting for both t- and u-channels and also spin
- full workflow including the solving of integral equations allows \bullet extraction of the amplitude
- modified procedure has been shown to be equivalent to standard Lüscher method when the latter is applicable
- paper is already up on the arXiv! [ABR and Hansen 2023] \bullet

6. Outlook

- extensions of formalism (e.g. non-identical particles, different masses, lower energy range) currently being investigated (towards applications such as DD^* scattering)
- comparison with proposed EFT-based alternative approaches [Meng, Baru, Epelbaum, Filin, Gasparyan 2023]
- implementation in the form of a Python library
- taking advantage of progress in solving integral equations in the three-particle RFT formalism to implement algorithms to extract the amplitude from K-bar matrix
- clarifying and exploring connections and consistency with three-particle formalism (e.g. this method as a limiting case?) – see recent work by [Hansen, Romero-López, Sharpe 2024]
- exploring potential connections to dispersive methods

Thank you for your attention!

... any questions?

Structure of the scattering amplitude

dressed propagator

We can write the *amplitude* as:

$$\mathbf{M} = \mathbf{B} + \mathbf{B}$$

In the elastic regime, **only two-particle (**NN**) states can go on shell**:

all amputated $NN \rightarrow NN$ diagrams which are 2-particle irreducible in the *s*-channel

$$\widetilde{M} = \widetilde{B} + \widetilde{B}$$

apply this separation to all two-particle loops

Structure of the scattering amplitude

$$\widetilde{M} = \widetilde{B} + \widetilde{B}$$

Reorganise amplitude sum into series:

$$\mathcal{I}(s) = \frac{1}{\mathcal{K}(s)^{-1} - i\rho(s)}$$

Recovering the standard formalism

setting g = 0

$$\det_{\mathbf{k}_{\rm cm}\ell m} [S(P,L)^{-1} + \xi^{\dagger} \overline{\mathcal{K}}^{\rm os}(P) \xi]$$

$$\xi S(P,L)\xi^{\dagger} = F(P,L) + I(P)$$

 $\overline{\mathcal{K}}^{\mathsf{os}}(P)^{-1} = \mathcal{K}(P)^{-1} - I(P)$

simple algebraic relation to Lüscher F I(P) matrix of known geometric functions

simplification of the in equations in
$$g = 0$$
 ca

$$\det_{\ell m} [F(P,L) + \mathcal{K}(P)^{-1}] = 0$$

we recover the standard condition

