Baryon structure in terms of diquarks

Gustavo Paredes Torres
PhD advisor Adnan Bashir
Morelia Michoacan Mexico

Thanks to Alberto Accardi, César Fernández and the organizers.
June 17, 2024
Since 1970s, we know that the nucleon is a bound state of three valence quarks along with a sea of gluons and quark-antiquark pairs.
• Since 1970s, we know that the nucleon is a bound state of three valence quarks along with a sea of gluons and quark-antiquark pairs.

• An implication of this understanding is that when energy is dumped into the nucleon ground states, they are excited and can only lose their energy by emitting color singlet states.
• Since 1970s, we know that the nucleon is a bound state of three valence quarks along with a sea of gluons and quark-antiquark pairs.

• An implication of this understanding is that when energy is dumped into the nucleon ground states, they are excited and can only lose their energy by emitting color singlet states.

• The spectrum of these excited states.

<table>
<thead>
<tr>
<th>I</th>
<th>S</th>
<th>J^P</th>
<th>3^+</th>
<th>5^+</th>
<th>1^-</th>
<th>3^-</th>
<th>5^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N(940)$</td>
<td>$N(1720)$</td>
<td>$N(1680)$</td>
<td>$N(1535)$</td>
<td>$N(1520)$</td>
<td>$N(1675)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N(1440)$</td>
<td>$N(1710)$</td>
<td>$N(1800)$</td>
<td>$N(1650)$</td>
<td>$N(1700)$</td>
<td>$N(1875)$</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$\Delta(1910)$</td>
<td>$\Delta(1232)$</td>
<td>$\Delta(1905)$</td>
<td>$\Delta(1620)$</td>
<td>$\Delta(1700)$</td>
<td>$\Delta(1930)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta(1600)$</td>
<td>$\Delta(1920)$</td>
<td>$\Delta(1900)$</td>
<td>$\Delta(1900)$</td>
<td>$\Delta(1940)$</td>
<td>$\Delta(1940)$</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>$\Lambda(1115)$</td>
<td>$\Lambda(1890)$</td>
<td>$\Lambda(1820)$</td>
<td>$\Lambda(1405)$</td>
<td>$\Lambda(1520)$</td>
<td>$\Lambda(1830)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Lambda(1600)$</td>
<td>$\Lambda(1800)$</td>
<td>$\Lambda(1670)$</td>
<td>$\Lambda(1670)$</td>
<td>$\Lambda(1690)$</td>
<td>$\Lambda(1690)$</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>$\Sigma(1190)$</td>
<td>$\Sigma(1385)$</td>
<td>$\Sigma(1915)$</td>
<td>$\Sigma(1750)$</td>
<td>$\Sigma(1670)$</td>
<td>$\Sigma(1775)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Sigma(1660)$</td>
<td>$\Sigma(1880)$</td>
<td>$\Sigma(1750)$</td>
<td>$\Sigma(1750)$</td>
<td>$\Sigma(1940)$</td>
<td>$\Sigma(1940)$</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>-2</td>
<td>$\Xi(1320)$</td>
<td>$\Xi(1530)$</td>
<td>$\Xi(1530)$</td>
<td>$\Xi(1820)$</td>
<td>$\Xi(1820)$</td>
<td>$\Xi(1820)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>$\Omega(1672)$</td>
<td>$\Omega(1672)$</td>
<td>$\Omega(1672)$</td>
<td>$\Omega(1672)$</td>
<td>$\Omega(1672)$</td>
<td>$\Omega(1672)$</td>
</tr>
</tbody>
</table>
• The Faddeev amplitude Ψ for Baryons in a Bethe-Salpeter approach:

\[
\begin{align*}
 k_d &= -k + P \\
 k_q &= k \\
 l_q &= l \\
 l_d &= -l + P
\end{align*}
\]

[Barabanov:2020jvn]

[Eichmann:2011vu]
The Faddeev amplitude Ψ for Baryons in a Bethe-Salpeter approach:

$$k_d = -k + P$$

$$k = k$$

$$k_q = k$$

$$l_q = l$$

$$l = -l + P$$

$$[\text{Barabanov:2020jvn}]$$

$$S^{-1}(p, \mu) = \frac{i\gamma \cdot p + M(p^2, \mu^2)}{Z(p^2, \mu^2)}$$

$[\text{Eichmann:2011vu}]$
• The Faddeev amplitude Ψ for Baryons in a Bethe-Salpeter approach:

$$\psi^a = \psi^b$$

$[Eichmann:2011vu]$

$[Barabanov:2020jvn]$

$$S^{-1}(p, \mu) = \frac{i\gamma \cdot p + M(p^2, \mu^2)}{Z(p^2, \mu^2)}$$

$$\Delta_{\mu\nu}^{\Omega}(K) = \left[\delta_{\mu\nu} + \frac{K_{\mu}K_{\nu}}{m_{1^+}^2}\right] \frac{1}{K^2 + m_{1^+}^2},$$

$$\Delta^{0^+}(K) = \frac{1}{K^2 + m_{0^+}^2},$$
The Faddeev amplitude Ψ for Baryons in a Bethe-Salpeter approach:

$$
\psi^P(k_i,\alpha_i,\sigma_i) = \left[\Gamma^0(K)\right]^{\alpha_1\alpha_2} \Delta^0(K) \left[S^P_{\rho}(k;Q)u_\rho(Q) \right]^{\sigma_3}
+ [\tau^i \Gamma^+_\mu] \Delta^1_{\mu\nu} \left[A^i_{\nu\rho}(k;Q)u_\rho(Q) \right]
+ [\Gamma^0 \Delta^0] \left[F^P_{\mu}(k;Q)u_\rho(Q) \right]
+ [\Gamma^1_{\mu}] \Delta^1_{\mu\nu} \left[\nu^P_{\nu\rho}(k;Q)u_\rho(Q) \right],
$$

$$
S^{-1}(p,\mu) = \frac{i\gamma \cdot p + M(p^2,\mu^2)}{Z(p^2,\mu^2)}
$$

$$
\Delta^{1\pm}(K) = \left[\delta_{\mu\nu} + \frac{K_\mu K_\nu}{m_{1\pm}^2} \right] \frac{1}{K^2 + m_{1\pm}^2},
$$

$$
\Delta^{0\pm}(K) = \frac{1}{K^2 + m_{0\pm}^2},
$$

\[\text{[Barabanov:2020jvn]} \]
• Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[
S^{-1}(p, \mu) = Z_{2F} S_{0}^{-1}(p) + Z_{1F} \int \frac{d^4p}{(2\pi)^4} g^2 D_{\rho\nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_{\rho} S(q; \mu) \Gamma^a_q(q, p; \mu).
\]

[Roberts:1994dr]
Schwinger – Dyson Equations

- Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[S^{-1}(p, \mu) = Z_2 F S^{-1}_0(p) + Z_1 F \int \frac{d^4 p}{(2\pi)^4} g^2 D_{\rho\nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_{\rho} S(q; \mu) \Gamma^a_{\gamma}(q, p; \mu). \]

Complete Propagator, dressed

[Roberts:1994dr]
• Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[S^{-1}(p, \mu) = Z_{2F} S^{-1}_0(p) + Z_{1F} \int \frac{d^4p}{(2\pi)^4} g^2 D_{\rho\nu}(p-q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \Gamma^a_\nu(q, p; \mu). \]
Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[S^{-1}(p, \mu) = Z_2 F S_0^{-1}(p) + Z_1 F \int \frac{d^4 p}{(2\pi)^4} g^2 D_{\rho\nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \gamma_\nu^a (q, p; \mu). \]

[Roberts:1994dr]
Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[
S^{-1}(p, \mu) = Z_2 F S_0^{-1}(p) + Z_1 F \int \frac{d^4 p}{(2\pi)^4} g^2 D_{\rho\nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \Gamma^a_q(q, p; \mu).
\]

Complete Propagator, dressed
Bare propagator, tree level
Dressed gluon propagator
Dressed quark-gluon vertex

[Roberts:1994dr]
• Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[S^{-1}(p, \mu) = Z_2 F S_0^{-1}(p) + Z_1 F \int \frac{d^4 p}{(2\pi)^4} g^2 D_{\rho \nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \Gamma^a_{\nu}(q, p; \mu). \]

• Truncation framework: Rainbow-Ladder

\[Z_1 F g^2 D_{\rho \nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \Gamma^a_{\nu}(q, p; \mu) \rightarrow k^2 G(k^2) D_{\rho \nu}^0(k; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \frac{\lambda^a}{2} \gamma_\nu. \]

[Roberts:1994dr]
Ideal for studying non-perturbative phenomena because nothing is assumed about the value of the coupling:

\[S^{-1}(p, \mu) = Z_2F S_0^{-1}(p) + Z_1F \int \frac{d^4p}{(2\pi)^4} g^2 D_{\rho\nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \Gamma^a_\nu(q, p; \mu). \]

- Complete Propagator, dressed
- Bare propagator, tree level
- Dressed gluon propagator
- Dressed quark-gluon vertex

Constituent mass vs current mass

\[m_u + m_u + m_d \approx 10 \text{ MeV} \]

\[m_{\text{protón}} \approx 1000 \text{ MeV} \]

Truncation framework: Rainbow-Ladder

\[Z_1F g^2 D_{\rho\nu}(p - q; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \Gamma^a_\nu(q, p; \mu) \rightarrow k^2 G(k^2) D_{\rho\nu}^0(k; \mu) \frac{\lambda^a}{2} \gamma_\rho S(q; \mu) \frac{\lambda^a}{2} \gamma_\nu \]

[R Roberts:1994dr]
Simplified QCD model, where UV divergences are regularized to preserve QCD symmetries, compatible with confinement and DCSB.
- Simplified QCD model, where UV divergences are regularized to preserve QCD symmetries, compatible with confinement and DCSB.

- The effective gluons mass in the IR motivates this truncation that replaces the full gluon propagator with a constant in the infrared.

\[\mathcal{G}(k^2)D^0_{\mu\nu}(k;\mu) \rightarrow \delta_{\mu\nu} \frac{4\pi\alpha_{IR}}{m_g^2} \]
Simplified QCD model, where UV divergences are regularized to preserve QCD symmetries, compatible with confinement and DCSB.

The effective gluons mass in the IR motivates this truncation that replaces the full gluon propagator with a constant in the infrared.

\[\mathcal{G}(k^2)D^0_{\mu\nu}(k; \mu) \rightarrow \delta_{\mu\nu} \frac{4\pi\alpha_{IR}}{m_g^2} \]

Interaction strength in infrared \(\alpha_{IR} = 0.93\pi \) compatible with modern computations.
• Simplified QCD model, where UV divergences are regularized to preserve QCD symmetries, compatible with confinement and DCSB.

• The effective gluons mass in the IR motivates this truncation that replaces the full gluon propagator with a constant in the infrared.

\[G(k^2)D_{\mu\nu}^0(k; \mu) \rightarrow \delta_{\mu\nu} \frac{4\pi \alpha_{IR}}{m_g^2} \]

Interaction strength in infrared
\[\alpha_{IR} = 0.93\pi \] compatible with modern computations

Gluon mass scale
500 MeV
- Simplified QCD model, where UV divergences are regularized to preserve QCD symmetries, compatible with confinement and DCSB.

- The effective gluons mass in the IR motivates this truncation that replaces the full gluon propagator with a constant in the infrared.

\[\mathcal{G}(k^2)D_{\mu\nu}^0(k;\mu) \rightarrow \delta_{\mu\nu} \frac{4\pi \alpha_{IR}}{m_g^2} \]

Interaction strength in infrared \(\alpha_{IR} = 0.93\pi \) compatible with modern computations

Gluon mass scale 500 MeV

[Gutierrez-Guerrero:2010waf, Roberts:2010rn]
The full $q\bar{q}$ scattering matrix or t-matrix, contains poles for all $q\bar{q}$ bound states, that is, the physical mesons. [Salpeter:1951sz]

\[
\Gamma^{f\bar{f}_{2}}_H(k; P)_{iu} = \int \frac{d^4q}{(2\pi)^4} \left[\chi^{f\bar{f}_{2}}_H(q; P) \right]_{sr} K^r_{iu}(q, k; P),
\]

\[
\chi^{f\bar{f}_{2}}_H(q; P) = S_{f_1}(q_+)\Gamma^{f\bar{f}_{2}}_H(q; P)S_{\bar{f}_2}(q_-),
\]

\[
\Gamma^{f}_{H}(k; P) = \gamma^l \gamma_5 \left[iE_+(k; P) + \gamma \cdot PF_+(k; P) + \gamma \cdot k G_+(k; P) + \sigma_{\mu\nu}k_{\nu}P_{\nu}D_+(k; P) \right],
\]
• The full $q\bar{q}$ scattering matrix or t-matrix, contains poles for all $q\bar{q}$ bound states, that is, the physical mesons. [Salpeter:1951sz]

\[
\left[\Gamma_{H}^{f_{1}f_{2}}(k; P) \right]_{i} = \int \frac{d^{4}q}{(2\pi)^{4}} \chi_{H}^{f_{1}f_{2}}(q; P) K_{i}^{f_{2}}(q, k; P),
\]

\[
\chi_{H}^{f_{1}f_{2}}(q; P) = S_{f_{1}}(q_{+}) \Gamma_{H}^{f_{1}f_{2}}(q; P) S_{f_{2}}(q_{-}).
\]

\[
\gamma_{H}^{i}(k; P) = \tau^{i} \gamma_{5} \left[iE_{H}(k; P) + \gamma \cdot PF_{H}(k; P) + \gamma \cdot k G_{H}(k; P) + \sigma_{\mu
\nu}k_{\nu}P_{\mu}D_{H}(k; P) \right],
\]

• En el Modelo CI las ABS no depende de k, el momento relativo:
• The full $q\bar{q}$ scattering matrix or t-matrix, contains poles for all $q\bar{q}$ bound states, that is, the physical mesons. [Salpeter:1951sz]

\[
\Gamma_H^{ij}(k; P)_{ij} = \int \frac{d^4q}{(2\pi)^4} \chi_H^{ij}(q; P) K^{rs}_{ij}(q, k; P), \\
\chi_H^{ij}(q; P) = S_{fi}(q_+) \Gamma_H^{ij}(q, P) S_{fj}(q_-),
\]

\[
\Gamma_H^j(k; P) = \tau^j \gamma_5 \left[iE_H(k; P) + \gamma \cdot PF_H(k; P) + \gamma \cdot k G_H(k; P) + \sigma_{\mu\nu}k_\nu P_\mu D_H(k; P) \right],
\]

• En el Modelo CI las ABS no depende de k, el momento relativo:

\[
\Gamma^0(\rho) = \text{Exp}, \\
\Gamma^+ = \gamma_5 \left[iE^+ + \frac{2M}{2M} \sigma_{\mu\nu}F_{\mu\nu} \right], \\
\Gamma^\mu_\rho = \gamma^\mu E^+ + \frac{1}{2M} \sigma_{\mu\nu}F_{\nu}^\rho, \\
\Gamma^\mu_\sigma = \gamma^\mu E^+ + \frac{1}{2M} \sigma_{\mu\nu}F_{\nu}^\sigma.
\]

\[P^2 = -M_H^2\]

<table>
<thead>
<tr>
<th>Meson</th>
<th>Exp.</th>
<th>CI</th>
<th>Diquarks Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>0.139</td>
<td>0.14</td>
<td>$(qq)_{0^+} = 0.78$</td>
</tr>
<tr>
<td>ρ</td>
<td>0.78</td>
<td>0.93</td>
<td>$(qq)_{1^+} = 1.06$</td>
</tr>
<tr>
<td>σ</td>
<td>1.2</td>
<td>1.22</td>
<td>$(qq)_{0^-} = 1.15$</td>
</tr>
<tr>
<td>a_1</td>
<td>1.260</td>
<td>1.37</td>
<td>$(qq)_{1^-} = 1.33$</td>
</tr>
</tbody>
</table>

The Faddeev equation in the CI dynamical quark-diquark picture:

\[
\begin{bmatrix}
S^p(l; P) \\
\mathcal{A}_\mu^p(l; P) \\
\mathcal{P}^p(l; P) \\
\mathcal{V}_\mu^p(l; P)
\end{bmatrix}
= \frac{4}{(2\pi)^4} \int \mathcal{M}_{\mu\nu}^{l}(k, l; P) \begin{bmatrix}
S^p(l; P) \\
\mathcal{A}_\nu^p(l; P) \\
\mathcal{P}^p(l; P) \\
\mathcal{V}_\mu^p(l; P)
\end{bmatrix}
\]

\[S^z = (s^z \mathbb{1}_D) \mathcal{G}^z\]
\[i \mathcal{A}_\mu^z = (a_1^0 \gamma_5 \gamma_\mu - i a_2^0 \gamma_5 \hat{P}_\mu) \mathcal{G}^z\]
\[i \mathcal{P}^z = (p^z \gamma_5) \mathcal{G}^z\]
\[i \mathcal{V}_\mu^z = (v_1^z \gamma_\mu - i v_2^z \gamma_5 \hat{P}_\mu) \mathcal{G}^z\]

\[\Psi_N = \begin{bmatrix}
r_1 u[ud]_{0^+} \\
r_2 d[uu]_{1^+} \\
r_3 u[ud]_{1^-} \\
r_4 u[ud]_{0^-} \\
r_5 u[ud]_{1^-}
\end{bmatrix}\]
The Faddeev equation in the CI dynamical quark-diquark picture:

\[
\begin{bmatrix}
S^p(l; P) \\
\mathcal{A}_\mu^{\alpha \beta}(l; P) \\
\mathcal{P}^p(l; P) \\
\mathcal{V}^p_\mu(l; P)
\end{bmatrix}
\quad u_p = 4 \int \frac{d^4 l}{(2\pi)^4} \mathcal{M}_{\mu \nu}^{\alpha \beta}(k, l, P)
\begin{bmatrix}
S^\lambda(l; P) \\
\mathcal{A}_\mu^{\alpha \beta}(l; P) \\
\mathcal{P}^\lambda(l; P) \\
\mathcal{V}^\mu_\nu(l; P)
\end{bmatrix}
\quad u_\lambda,
\]

\[
S^z = (s^z 1_D)^\frac{1}{2}
\]

\[
i \mathcal{A}_\mu^{\alpha \beta} = (a_1^{\alpha \beta} \gamma_5 \gamma_\mu - i a_2^{\alpha \beta} \tilde{\gamma}_\mu) G^z
\]

\[
i \mathcal{P}^z = (p^z \gamma_5) G^z
\]

\[
i \mathcal{V}_\mu^z = (v_1^z \gamma_\mu - i v_2^z \gamma_5 \tilde{\gamma}_\mu) G^z
\]

\[
\Psi_N = \begin{bmatrix}
 r_1 u[ud]_0^0 \\
r_2 d[uu]_1^0 \\
r_3 u[ud]_1^1 \\
r_4 u[ud]_0^1 \\
r_5 u[ud]_1^0
\end{bmatrix}
\]

\[
\psi_{\mu \nu}(P) u_\nu = \Gamma_{q_1 q_2}^{1+} \Delta_{\mu \nu, q_1 q_2}^{1+} (\ell_{q_2} q_1) \mathcal{D}_{\nu \rho}(P) u_\rho(P)
\]

\[
\mathcal{D}_{\nu \rho}(P) u_\rho(P) = f^{\rho}(P) \| D u_\nu(P)
\]
The Faddeev equation in the CI dynamical quark-diquark picture:

\[
\begin{bmatrix}
S^f(l; P) \\
\mathcal{A}^f_{\mu}(l; P) \\
\mathcal{P}^f(l; P) \\
\mathcal{V}^f_{\mu}(l; P)
\end{bmatrix}
\left[\begin{array}{c}
S^f(l; P) \\
\mathcal{A}^f_{\mu}(l; P) \\
\mathcal{P}^f(l; P) \\
\mathcal{V}^f_{\mu}(l; P)
\end{array}\right]
= 4 \int \frac{d^4l}{(2\pi)^4} \mathcal{M}^f_{\mu}(k, l; P)
\]

\[
S^z = (s^z \Gamma_{D}) G^z
\]

\[
i \mathcal{A}^f_{\mu} = (a^f \gamma_5 \gamma_\mu - i a^f \gamma_5 \gamma_\mu) G^z
\]

\[
i \mathcal{P}^z = (p^z \gamma_5) G^z
\]

\[
i \mathcal{V}^z = (v^z \gamma_\mu - i v^z \gamma_\mu) G^z
\]

\[
\Psi_N = \begin{bmatrix}
r_1 u[ud]^0 \\
r_2 d[uu]^1 \\
r_3 u[ud]^1 \\
r_4 u[ud]^0 \\
r_5 u[ud]^1
\end{bmatrix}
\]

\[
\psi_{\mu \nu}(P) u_\nu = \Gamma_{qq1+\mu} \Delta_{\mu \nu qq}^1 \mathcal{D}_{\nu \rho}(P) u_\rho(P)
\]

\[
\mathcal{M}^f_{\mu}(q_1, q_2, q_3, q_4) = \Gamma_{[q_1 q_2]}^{T} \Gamma_{[q_3 q_4]}^{T} \left[g_{PDB}^{P_{DB}} \Gamma_{[q_1 q_2]}^{S_{DB}} \Gamma_{[q_3 q_4]}^{P_{DB}} \right] S_{q_1}(l_{q_2}) \Delta_{[q_1 q_2]}^{f}(l_{q_3 q_4})
\]

Diquark breakup and recombination occurs via quark exchange.
• The Faddeev equation in the CI dynamical quark-diquark picture:

\[
\begin{bmatrix}
 S^p(l; P) \\
 \mathcal{A}_\mu^f(l; P) \\
 P^p(l; P) \\
 V_\mu^p(l; P)
\end{bmatrix}
\begin{bmatrix}
 u_p \\
 f^a_{\mu}(k, l, P) \\
 \mathcal{P}^p(l; P) \\
 \mathcal{V}_\mu^p(l; P)
\end{bmatrix}
= 4 \int \frac{d^4l}{(2\pi)^4} \mathcal{M}^{fg}_{\mu\nu}(k, l, P)
\]

\[
\begin{bmatrix}
 S^f(l; P) \\
 \mathcal{A}_\mu^g(l; P) \\
 P^f(l; P) \\
 V_\mu^f(l; P)
\end{bmatrix}
\begin{bmatrix}
 u_p \\
 f^b_{\mu}(k, l, P) \\
 \mathcal{P}^f(l; P) \\
 \mathcal{V}_\mu^f(l; P)
\end{bmatrix}
\]

\[
\psi_{\mu\nu}(P) u_\nu = \Gamma_{q_1 q_2} \Delta_{\mu\nu,q_q}^{1+} (\ell_{q_q}) \mathcal{D}_{\nu\rho}(P) u_\rho(P)
\]

\[
\mathcal{M}^{fg}_{[q_1 q_3][q_1 q_2]} = t^{[q_1 q_2]} [q_1 q_3] t^{q_3} \Gamma^{g}_{DB} \Gamma^{f}_{DB} (l_{q_1 q_2}) S^{T}_{q_1} \mathcal{S}_{q_1}^{P_d P_b} \mathcal{S}_{q_2}^{D_B F_g} \Delta_{q_1 q_3}^{g}(l_{q_1 q_2})
\]

\[
\Psi_N = \begin{bmatrix}
 r_1 u_{[ud]0} \\
 r_2 d_{[uu]}1 \\
 r_3 u_{[ud]}1 \\
 r_4 u_{[ud]}0 \\
 r_5 u_{[ud]}1
\end{bmatrix}
\]

• Diquark breakup and recombination occurs via quark exchange.

• The kernel penalizes the contribution of diquarks whose parity is opposite to that of the baryon using a multiplicative factor \(g_{P_b P_d} \).

• Comparison with other approaches:

<table>
<thead>
<tr>
<th>Method</th>
<th>Ω_{ccc}^{++}</th>
<th>Ω_{bbb}^{-*}</th>
<th>Ω_{cbb}^{++}</th>
<th>Ω_{cbb}^{0*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI-LP</td>
<td>4.78</td>
<td>14.39</td>
<td>8.03</td>
<td>11.10</td>
</tr>
<tr>
<td>CI-HP</td>
<td>4.93</td>
<td>14.23</td>
<td>8.03</td>
<td>11.12</td>
</tr>
<tr>
<td>PC</td>
<td>4.76</td>
<td>14.37</td>
<td>7.96</td>
<td>11.17</td>
</tr>
<tr>
<td>Lattice</td>
<td>4.80</td>
<td>14.37</td>
<td>8.01</td>
<td>11.20</td>
</tr>
<tr>
<td>Coulomb</td>
<td>4.76</td>
<td>14.37</td>
<td>7.98</td>
<td>11.19</td>
</tr>
<tr>
<td>Cornell</td>
<td>4.80</td>
<td>14.40</td>
<td>8.04</td>
<td>11.24</td>
</tr>
<tr>
<td>Fadv</td>
<td>4.80</td>
<td>14.40</td>
<td>8.02</td>
<td>11.22</td>
</tr>
<tr>
<td>BM</td>
<td>4.79</td>
<td>14.30</td>
<td>8.03</td>
<td>11.20</td>
</tr>
<tr>
<td>QCR</td>
<td>4.92</td>
<td>14.76</td>
<td>8.20</td>
<td>11.48</td>
</tr>
<tr>
<td>CQM1</td>
<td>4.97</td>
<td>14.83</td>
<td>8.26</td>
<td>11.55</td>
</tr>
<tr>
<td>CQM2</td>
<td>4.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQM</td>
<td>4.80</td>
<td>14.57</td>
<td>8.02</td>
<td>11.29</td>
</tr>
<tr>
<td>IQM</td>
<td>4.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM</td>
<td>4.74</td>
<td>14.45</td>
<td>8.10</td>
<td>11.38</td>
</tr>
<tr>
<td>SR</td>
<td>4.67</td>
<td>13.28</td>
<td>7.44</td>
<td>10.46</td>
</tr>
<tr>
<td>Regge</td>
<td>4.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRQCD</td>
<td>4.90</td>
<td>14.77</td>
<td>8.24</td>
<td>11.53</td>
</tr>
</tbody>
</table>
• Comparison with other approaches:
• Comparison with other approaches:
• The produced masses and diquark content:

- $N(940)$ and $N(1535)$

- The variation of $g_{DB} \to (1 \pm 0.5)g_{DB}$ produces:

[Lu:2017cln, Raya:2021pyr]
• As expected, the nucleon is mostly composed by scalar diquarks, while also exhibiting a axial- vector diquark component.

[Lu:2017cln, Raya:2021pyr]
The produced masses and diquark content:

As expected, the nucleon is mostly composed by scalar diquarks, while also exhibiting an axial-vector diquark component.

The nucleon $N(1535)$ shows a similar contribution from $0^+|0^-$ diquarks for $g_{DB} = 0.2$.

The variation of $g_{DB} \rightarrow (1 \pm 0.5)g_{DB}$ produces:

[Lu:2017cln, Raya:2021pyr]
Results for N^*

- In collaboration with K. Raya

[Liu:2022nku]
Results for Δ^*

- 1.39 GeV in Cl
- 1.346 GeV in Kindred
- 1.99 GeV in Cl
- 1.786 GeV in Kindred
- 1.72 GeV in Cl
- 1.871 GeV in Kindred
- 1.99 GeV in Cl
- 2.043 GeV in Kindred

[Liu:2022ndb]
• We need to normalize the Faddeev amplitudes in the transition diagram and for this we need the properties of the elastic form factors.

• The current for N EFF:

$$J_\mu(K, Q) = ie \Lambda_+(P_f) \Gamma_\mu(K, Q) \Lambda_+(P_i)$$

• The current for Δ EFF:

$$J_{\mu,\lambda}(K, Q) = \Lambda_+(P_f) R_{\lambda\alpha}(P_f) \Gamma_{\mu,\alpha\beta}(K, Q) \Lambda_+(P_i) R_{\beta\omega}(P_f)$$

[Segovia:2014aza, Nicmorus:2010sd]
We need to normalize the Faddeev amplitudes in the transition diagram and for this we need the properties of the elastic form factors.

The current for N EFF:

$$J_\mu(K, Q) = ie \Lambda_+(P_f) \Gamma_\mu(K, Q) \Lambda_+(P_i)$$

The vertex:

$$\Gamma_\mu(K, Q) = \gamma_\mu F_1(Q^2) + \frac{1}{2m_N} \sigma_{\mu\nu} Q_\nu F_2(Q^2)$$

The current for Δ EFF:

$$J_{\mu,\lambda\omega}(K, Q) = \Lambda_+(P_f) R_{\lambda\alpha}(P_f) \Gamma_{\mu,\alpha\beta}(K, Q) \Lambda_+(P_i) R_{\beta\omega}(P_i)$$

The vertex:

$$\Gamma_{\mu,\alpha\beta}(K, Q) = \left[(F_1^* + F_2^*) i\gamma_\mu - \frac{F_2^*}{m_\Delta} K_\mu \right] \delta_\alpha\beta - \left[(F_3^* + F_4^*) i\gamma_\mu - \frac{F_4^*}{m_\Delta} K_\mu \right] \frac{Q_\alpha Q_\beta}{4m^2_\Delta}$$
We need to normalize the Faddeev amplitudes in the transition diagram and for this we need the properties of the elastic form factors.

- The current for $N\,\text{EFF}$:

$$J_{\mu}(K, Q) = ie \Lambda_+(P_f) \Gamma_{\mu}(K, Q) \Lambda_+(P_i)$$

- The vertex:

$$\Gamma_{\mu}(K, Q) = \gamma_{\mu} F_1(Q^2) + \frac{1}{2m_N} \sigma_{\mu\nu} Q_{\nu} F_2(Q^2)$$

- Spatial distribution of charge and magnetic moment:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2} F_2(Q^2)$$
$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

- The current for $\Delta\,\text{EFF}$:

$$J_{\mu,\lambda\omega}(K, Q) = \Lambda_+(P_f) R_{\lambda\alpha}(P_f) \Gamma_{\mu,\alpha\beta}(K, Q) \Lambda_+(P_i) R_{\beta\omega}(P_i)$$

- The vertex:

$$\Gamma_{\mu,\alpha\beta}(K, Q) = \left[(F_1^* + F_2^*) i\gamma_{\mu} - \frac{F_2^*}{m_\Delta} K_{\mu} \right] \delta_{\alpha\beta} - \left[(F_3^* + F_4^*) i\gamma_{\mu} - \frac{F_4^*}{m_\Delta} K_{\mu} \right] \frac{Q_{\alpha} Q_{\beta}}{4m_\Delta^2}$$

- The G_{E0} form factor in terms of the F_i:

$$G_{E0}(Q^2) = \left(1 + \frac{2\tau_\Delta}{3} \right) (F_1^* - \tau_\Delta F_2^*) - \frac{\tau_\Delta}{3} (1 + \tau_\Delta) (F_3^* - \tau_\Delta F_4^*)$$

$$\tau_B = \frac{Q^2}{4m_B^2}$$
The electromagnetic current:

\[J^{\mu \lambda}(K, Q) = \Lambda_+(P_f) R^{\lambda \alpha}(P_f) i \gamma_5 \Gamma^{\alpha \mu}(K, Q) \Lambda_+(P_i) \]

The vertex with \(G_M^* \) magnetic dipole, \(G_E^* \) electric quadrupole and \(G_C^* \) Coulomb quadrupole:

\[
\Gamma^{\alpha \mu} = b \left[\frac{i \omega}{2 \lambda_+} (G_M^* - G_E^*) \gamma_5 \varepsilon^{\alpha \mu \gamma \delta} K^\gamma \hat{Q}^\delta - G_E^* T_Q^{\alpha \gamma} T_K^{\gamma \mu} - \frac{i T}{\omega} G_C^* \hat{Q}^{\alpha} K^\mu \right],
\]

\[
P_T^{\mu} = T_Q^{\mu \nu} P^\nu = P^\mu - (P \cdot \hat{Q}) \hat{Q}^\mu,
\]

\[
T_P^{\mu \nu} = \delta^{\mu \nu} - \hat{P}^\mu \hat{P}^{\nu}
\]

\[
\gamma_T^{\mu} = T_P^{\mu \nu} \gamma^{\nu}
\]

\[
\tau := \frac{Q^2}{2(M_N^2 + M_N^2)}, \quad \lambda_+ := \frac{(M_\Delta \pm M_N)^2 + Q^2}{2(M_N^2 + M_N^2)}
\]

\[
\omega := \sqrt{\lambda_+ \lambda_-} \quad \text{and} \quad b := \sqrt{\frac{3}{2}} (1 + M_\Delta/M_N).
\]
In general, the electromagnetic current is:

\[J_{\mu,x}(P_f, P_i) = \Lambda^P_{+,x}(P_f) \left(i e \Gamma_{\mu,x}(P_f, P_i) \right) \Lambda^P_{+,x}(P_i) \]

\[\Lambda^\pm_{+,x}(P) = G^\pm \Lambda_{+,x}(P) G^\pm \]
In general, the electromagnetic current is:

\[
\mathcal{J}_{\mu,x}(P_f, P_i) = \Lambda^\mathcal{P}_{+x}(P_f) \left(i e \Gamma_{\mu,x}(P_f, P_i) \right) \Lambda^\mathcal{P}_i(P_i)
\]

\[
\Lambda^\pm_{+x}(P) = G^\pm \Lambda_{+x}(P) G^\pm
\]

In the quark-diquark model, the electromagnetic current is described considering the interaction diagrams of the photon with the diquarks inside baryon.

\[
\mathcal{J}_{\mu,x}(P_f, P_i) = \sum_{I=\text{Diagrams}} \int \Lambda^\mathcal{P}_{+x}(P_f) \left(\Gamma^I_{\mu,x}(l; P_f, P_i) \right) \Lambda^\mathcal{P}_i(P_i)
\]

\[
= \Lambda^\mathcal{P}_{+x}(P_f) \left[\sum_d \Pi^d(l; P_f, P_i) + \sum_{d_1, d_2} \Pi^{(d_1, d_2)}(l; P_f, P_i) \right] \Lambda^\mathcal{P}_i(P_i)
\]

Where \(\Pi^d \) represents the diagrams where the photon hits the quark and \(\Pi^{(d_1, d_2)} \) represents the diagrams where the photon hits the diquark.
Each diagram has the following form:

\[\psi_A \rightarrow \psi_N \]

\[\int \frac{d^4k}{(2\pi)^4} D_{\alpha}(P_f)S_q(P_f-k)\Gamma^\mu(P_f-k,P_l-k)S_A(P_l-k)a_\mu(-P_l)\delta_{\alpha\beta}(-k) \]

\[\int \frac{d^4k}{(2\pi)^4} S_q(k)D_{\alpha}(P_f-k)\Gamma^\mu(P_f-k,P_l-k)S_A(P_l-k)\gamma_5(-P_l)\delta_{\alpha\beta}(P_l-k) \]

Diagrams courtesy of Luis Albino
Each diagram has the following form:

\[
\int \frac{d^4k}{(2\pi)^4} D_{\gamma'\gamma}(P_f) S_q'(P_f - k) \Gamma^\mu(P_f - k, P_i - k) S_q(P_i - k) \delta^{\mu
u}(-P_i) \delta_{\alpha\beta}(-k)
\]

In general we need to consider whether the photon hits the quark and the diquarks are spectators (4 contributions), and whether the photon hits the diquarks (16 contributions):

Diagrams courtesy of Luis Albino

[Raya:2021pyr]
• Dirac and Pauli transition form factors.
• It agrees quantitatively in magnitude and qualitatively in trend with data above \(x \geq 2 \).
• The data discrepancy in the \(x \leq 2 \) domain is attributed to the contribution of the meson cloud.
• The dashed-green band is inferred form of the meson cloud contribution from the data fit.

• Similar results for $\gamma^* p \rightarrow N(1535)_{1/2}^-$ and $\gamma^* p \rightarrow N(1520)_{3/2}^-$ are not yet available.
• Similar results for $\gamma^* p \rightarrow N(1535)_{1/2}^-$ and $\gamma^* p \rightarrow N(1520)_{3/2}^-$ are not yet available.

• An insightful starting point can be provided by the contact interaction.
• Similar results for $\gamma^* p \rightarrow N(1535)\frac{1}{2}^-$ and $\gamma^* p \rightarrow N(1520)\frac{3}{2}^-$ are not yet available.

• An insightful starting point can be provided by the contact interaction.

• A contact interaction treatment of $\gamma^* p \rightarrow N(1535)\frac{1}{2}^-$ transition amplitudes and form factors provides results providing us insight into its relative diquark content.
• G_M^* magnetic dipole, G_E^* electric quadrupole, G_C^* Coulomb quadrupole.

• In collaboration with L. Albino, K. Raya and J. Segovia.
A description of the nucleon transition form factors to $N(940)_{1/2}^+, \Delta(1232)_{3/2}^+, N(1440)_{1/2}^+, N(1535)_{1/2}^-, \Delta(1600)_{3/2}^+$ in CI and QCD kindred models is already available in the literature.
• A description of the nucleon transition form factors to $N(940)^{1/2+}$, $\Delta(1232)^{3/2+}$, $N(1440)^{1/2+}$, $N(1535)^{1/2-}$, $\Delta(1600)^{3/2+}$ in CI and QCD kindred models is already available in the literature.

• A CI treatment of transition amplitudes and form factors provides first results emphasizing its significant dependence on its structure and relative diquark content.
A description of the nucleon transition form factors to $N(940)_{1/2}^+, \Delta(1232)_{3/2}^+, N(1440)_{1/2}^+, N(1535)_{1/2}^-, \Delta(1600)_{3/2}^+$ in CI and QCD kindred models is already available in the literature.

A CI treatment of transition amplitudes and form factors provides first results emphasizing its significant dependence on its structure and relative diquark content.

A similar analysis for $N(1520)$ and other transitions is required. We have made a start with CI.
Summary and Scope

- A description of the nucleon transition form factors to $N(940)_{1/2}^+$, $\Delta(1232)_{3/2}^+$, $N(1440)_{1/2}^+$, $N(1535)_{1/2}^-$, $\Delta(1600)_{3/2}^+$ in CI and QCD kindred models is already available in the literature.

- A CI treatment of transition amplitudes and form factors provides first results emphasizing its significant dependence on its structure and relative diquark content.

- A similar analysis for $N(1520)$ and other transitions is required. We have made a start with CI.

- While Contact Interaction analyses have their limitations, they also has the advantage of algebraic simplicity and a demonstrated ability to reveal insights.
A description of the nucleon transition form factors to $N(940)^{1/2+}$, $\Delta(1232)^{3/2+}$, $N(1440)^{1/2+}$, $N(1535)^{1/2-}$, $\Delta(1600)^{3/2+}$ in CI and QCD kindred models is already available in the literature.

A CI treatment of transition amplitudes and form factors provides first results emphasizing its significant dependence on its structure and relative diquark content.

A similar analysis for $N(1520)$ and other transitions is required. We have made a start with CI.

While Contact Interaction analyses have their limitations, they also has the advantage of algebraic simplicity and a demonstrated ability to reveal insights.

These insights can then inform more sophisticated studies within frameworks that have closer ties to quantum chromodynamics.
A description of the nucleon transition form factors to $N(940)_{1/2}^+, \Delta(1232)_{3/2}^+, N(1440)_{1/2}^+, N(1535)_{1/2}^-, \Delta(1600)_{3/2}^+$ in CI and QCD kindred models is already available in the literature.

A CI treatment of transition amplitudes and form factors provides first results emphasizing its significant dependence on its structure and relative diquark content.

A similar analysis for $N(1520)$ and other transitions is required. We have made a start with CI.

While Contact Interaction analyses have their limitations, they also has the advantage of algebraic simplicity and a demonstrated ability to reveal insights.

These insights can then inform more sophisticated studies within frameworks that have closer ties to quantum chromodynamics.

I am currently interested in Lattice QCD, machine learning, high performance computing and data analysis.
A description of the nucleon transition form factors to $N(940)\frac{1}{2}^{+}$, $\Delta(1232)\frac{3}{2}^{+}$, $N(1440)\frac{1}{2}^{+}$, $N(1535)\frac{1}{2}^{-}$, $\Delta(1600)\frac{3}{2}^{+}$ in CI and QCD kindred models is already available in the literature.

A CI treatment of transition amplitudes and form factors provides first results emphasizing its significant dependence on its structure and relative diquark content.

A similar analysis for $N(1520)$ and other transitions is required. We have made a start with CI.

While Contact Interaction analyses have their limitations, they also has the advantage of algebraic simplicity and a demonstrated ability to reveal insights.

These insights can then inform more sophisticated studies within frameworks that have closer ties to quantum chromodynamics.

I am currently interested in Lattice QCD, machine learning, high performance computing and data analysis.

Thank you.
where \(G^{+(-)} = \mathbb{I}_D(i\gamma_5) \) and, with \(T_{\mu\nu} = \delta_{\mu\nu} + \dot{Q}_\mu \dot{Q}_\nu \)
\(\gamma^\perp_\mu = T_{\mu\nu} \gamma_\nu \), \(k^\perp_\mu = T_{\mu\nu} k_\nu \), \(\hat{k}^\perp_\mu \hat{k}^\perp_\mu = 1 \),

\[
\begin{align*}
X^1_\rho(k; Q) &= i\sqrt{3} \hat{k}^\perp_\rho \gamma_5 , \\
X^2_\rho(k; Q) &= i\gamma \cdot \hat{k}^\perp X^1_\rho(k; Q), \\
\mathcal{Y}^1_{\nu\rho}(k; Q) &= \delta_{\nu\rho} \mathbb{I}_D, \\
\mathcal{Y}^2_{\nu\rho}(k; Q) &= \frac{i}{\sqrt{5}} [2\gamma^\perp_\nu \hat{k}^\perp_\rho - 3\delta_{\nu\rho} \gamma \cdot \hat{k}^\perp], \\
\mathcal{Y}^3_{\nu\rho}(k; Q) &= -i\gamma^\perp_\nu \hat{k}^\perp_\rho , \\
\mathcal{Y}^4_{\nu\rho}(k; Q) &= \sqrt{3} \dot{Q}_\nu \hat{k}^\perp_\rho , \\
\mathcal{Y}^5_{\nu\rho}(k; Q) &= 3\hat{k}^\perp_\nu \hat{k}^\perp_\rho - \delta_{\nu\rho} - \gamma^\perp_\nu \hat{k}^\perp_\rho \gamma \cdot \hat{k}^\perp , \\
\mathcal{Y}^6_{\nu\rho}(k; Q) &= \gamma^\perp_\nu \hat{k}^\perp_\rho \gamma \cdot \hat{k}^\perp , \\
\mathcal{Y}^7_{\nu\rho}(k; Q) &= -i\gamma \cdot \hat{k}^\perp \mathcal{Y}^4_{\nu\rho}(k; Q), \\
\mathcal{Y}^8_{\nu\rho}(k; Q) &= \frac{i}{\sqrt{5}} [\delta_{\nu\rho} \gamma \cdot \hat{k}^\perp \\
&\quad + \gamma^\perp_\nu \hat{k}^\perp_\rho - 5\hat{k}^\perp_\nu \hat{k}^\perp_\rho \gamma \cdot \hat{k}^\perp].
\end{align*}
\]
• General Faddeev amplitudes for Baryons

where \(G^{+(-)} = \mathbb{I}_D(i\gamma_5) \) and, with \(T_{\mu\nu} = \delta_{\mu\nu} + \bar{Q}_\mu \bar{Q}_\nu \)

\[
\gamma_{\mu}^+ = T_{\mu\nu} \gamma_\nu, \quad k_{\mu}^+ = T_{\mu\nu} k_\nu, \quad \gamma_{\mu}^- k_{\mu}^- = 1,
\]

\[
\begin{align*}
\chi_{\rho}^1(k; Q) &= i\sqrt{3} \hat{k}_{\rho}^+ \gamma_5, \\
\chi_{\rho}^2(k; Q) &= i\gamma \cdot \hat{k}^\perp \chi_{\rho}^1(k; Q), \\
\gamma_{\nu\rho}^1(k; Q) &= \delta_{\nu\rho} \mathbb{I}_D, \\
\gamma_{\nu\rho}^2(k; Q) &= \frac{i}{\sqrt{5}} \left[2 \gamma_{\nu}^\perp \hat{k}_{\rho}^\perp - 3 \delta_{\nu\rho} \gamma \cdot \hat{k}^\perp \right], \\
\gamma_{\nu\rho}^3(k; Q) &= -i \gamma_{\nu}^\perp \hat{k}_{\rho}^\perp, \\
\gamma_{\nu\rho}^4(k; Q) &= \sqrt{3} \bar{Q}_\nu \hat{k}_{\rho}^+ , \\
\gamma_{\nu\rho}^5(k; Q) &= 3 \hat{k}_{\nu}^\perp \hat{k}_{\rho}^+ - \delta_{\nu\rho} - \gamma_{\nu}^\perp \hat{k}_{\rho}^+ \gamma \cdot \hat{k}^\perp, \\
\gamma_{\nu\rho}^6(k; Q) &= \gamma_{\nu}^\perp \hat{k}_{\rho}^+ \gamma \cdot \hat{k}^\perp, \\
\gamma_{\nu\rho}^7(k; Q) &= -i \gamma \cdot \hat{k}^\perp \gamma_{\nu\rho}^4(k; Q), \\
\gamma_{\nu\rho}^8(k; Q) &= \frac{i}{\sqrt{5}} \left[\delta_{\nu\rho} \gamma \cdot \hat{k}^\perp \\
&\quad + \gamma_{\nu}^\perp \hat{k}_{\rho}^+ - 5 \hat{k}_{\nu}^\perp \hat{k}_{\rho}^+ \gamma \cdot \hat{k}^\perp \right].
\end{align*}
\]

\[\Gamma = \quad + \quad [\quad + \quad + \quad + \quad + \quad + \ldots]\]
With the general structure:

\[\Pi'(l; P_f, P_i) = q_r \int_1^\infty \bar{\psi}^{(r)}(l_f^+ \Gamma_{\mu}(Q) S(l_i^+) \psi^{(r)} \Delta(-l) \]

\[l_{f,i} = \pm l + P_{f,i} \]
With the general structure:

\[\Pi'(l, P_f, P_i) = q_r \int \bar{\psi}^{(r)} S(l_f^+) \Gamma_{\mu}^{q}(Q) S(l_i^+) \psi^{(r)} \Delta'(-l) \]

Where the quark photon vertex is:

\[\Gamma_{\mu}^{qq}(Q) = \xi \frac{r_0}{Q^2} Q_{\mu} + P_T(Q^2) \left(\gamma_{\mu} - \frac{r_0}{Q^2} Q_{\mu} \right) + \eta \sigma_{\mu\nu} Q_{\nu} \]

\[l^+_{f,i} = \pm l + P_{f,i} \]
With the general structure:

\[\Pi'(l; P_f, P_i) = q_r \int l \bar{\psi}^{(r)} S(l_f^+) \Gamma_{\mu}^{\nu}(Q) S(l_i^-) \psi^{(r)} \Delta'(-l) \]

Where the quark photon vertex is:

\[\Gamma_{\mu}^{\nu}(Q) = \xi \frac{\nu \cdot Q}{Q^2} Q_{\mu} + P_T(Q^2) \left(\gamma_{\mu} - \frac{\nu \cdot Q}{Q^2} Q_{\mu} \right) + \eta \sigma_{\nu\nu} Q_{\nu} \]

Where \(\eta \) is the contribution of the anomalous magnetic moment of the quark (AMM), the origin of this contribution is related to DCSB.

\[\eta = \eta_0 \frac{-Q^2}{4 M_q^2} \frac{e}{2 M_q} \]
With the general structure:

\[\Pi'(l; P_f, P_i) = q_r \int_l^\infty \bar{\psi}(r) S(l_f^+) \Gamma_{\mu}^{\gamma\nu}(Q) S(l_i) \psi(r) \Delta'(-l) \]

Where the quark photon vertex is:

\[\Gamma_{\mu}^{\gamma\nu}(Q) = 3 \frac{r Q_\mu}{Q^2} Q_\nu + P_T(Q^2) \left(\gamma_\mu - \frac{r Q_\mu}{Q^2} Q_\nu \right) + \eta \sigma_{\mu\nu} Q_\nu \]

Where \(\eta \) is the contribution of the anomalous magnetic moment of the quark (AMM), the origin of this contribution is related to DCSB.

\[\eta = \eta_0 \frac{-Q^2}{4 M_q^2} \frac{e}{2 M_q} \]

Where \(P_T \) is a dressing function of the inhomogeneous BSE and its behavior recovers the tree-level vertex.
• With the general structure:

\[
\Pi^{(d_1,d_2)}(l; P_f, P_i) = q_{d_2\bar{d}_1} \int_l \psi^{f(d_2)} S(l) \psi^{\bar{i}(d_1)} \Delta^r(-l) \Gamma^{(d_1,d_2)}_{\mu,x}(l_f^-, l_i^-) \Delta^{\bar{d}_1}(l_i^-)
\]

\[l_{f,i}^\pm = \pm l + P_{f,i}\]

Backups Photon hits the diquark

With the general structure:

$$\Pi^{(d_1,d_2)}(I; P_f, P_i) = q_{d_2}d_1 \int l \psi^{f^{(d_2)}} S(l) \bar{\psi}^{j(d_1)} \Delta^{r(-l)}(l) \Gamma^{(d_1,d_2)\gamma\mu}(l^-) \Delta^{d_1}(l^-)$$

$$l_{f,i}^\pm = \pm l + P_{f,i}$$

The diquark photon vertex depends on the type of the interaction. Elastic:

$$\Gamma^{(qq,1+)}(k_f = K + Q/2, k_i = K - Q/2) = \sum_{j=1}^{3} T_{\mu,\rho\sigma}^j(K, Q) F_j^{(q_1,1+)}(Q^2),$$

$$T_{\mu,\rho\sigma}^1(K, Q) = 2K_\mu \mathcal{P}_{\rho\sigma}^T(k^\nu) \mathcal{P}_{\alpha\sigma}^T(k^\nu),$$

$$T_{\mu,\rho\sigma}^2(K, Q) = \left[Q_\rho - k_\rho^2 \frac{Q^2}{2m_{(qq,1+)}^2} \right] \mathcal{P}_{\mu\alpha}^T(k^\nu) - \left[Q_\sigma + k_\sigma^2 \frac{Q^2}{2m_{(qq,1+)}^2} \right] \mathcal{P}_{\mu\rho}^T(k^\nu),$$

$$T_{\mu,\rho\sigma}^3(K, Q) = \frac{K_\mu}{m_{(qq,1+)}^2} \left[Q_\rho - k_\rho^2 \frac{Q^2}{2m_{(qq,1+)}^2} \right] \left[Q_\sigma + k_\sigma^2 \frac{Q^2}{2m_{(qq,1+)}^2} \right],$$

$$\mathcal{P}_{\rho\sigma}^T(p) = \delta_{\rho\sigma} - p_\rho p_\sigma/p^2.$$
• With the general structure:

\[\Pi^{(d_1,d_2)}(l; P_f, P_i) = q_{d_2 \bar d_1} \int_S \psi_f^{(d_2)} S(l) \bar \psi_i^{(d_1)} \Delta^r(-l) \Gamma^{(d_1,d_2)}_{\mu,x} \gamma(l^-_f, l^-_i) \Delta^{d_1}(l^-_i) \]

\[l^\pm_{f,i} = \pm l + P_{f,i} \]

• The diquark photon vertex depends on the type of the interaction. Elastic:

\[\Gamma^{(qq,1+)}_{\rho\sigma}(k_f = K + Q/2, k_i = K - Q/2) = \sum_{j=1}^{3} T^j_{\mu,\rho\sigma}(K, Q) F_j^{(qq,1+)}(Q^2), \]

\[T^1_{\mu,\rho\sigma}(K, Q) = 2K_\mu \mathcal{P}^T_{\rho\sigma}(k^i) \mathcal{P}^T_{\alpha\sigma}(k^f), \]

\[T^2_{\mu,\rho\sigma}(K, Q) = \left[Q_\rho - k^i_\rho \frac{Q^2}{2m^2_{(qq,1+)}} \right] \mathcal{P}^T_{\mu\sigma}(k^f) - \left[Q_\sigma + k^i_\sigma \frac{Q^2}{2m^2_{(qq,1+)}} \right] \mathcal{P}^T_{\mu\rho}(k^i), \]

\[T^3_{\mu,\rho\sigma}(K, Q) = \frac{K_\mu}{m^2_{(qq,1+)}} \left[Q_\rho - k^i_\rho \frac{Q^2}{2m^2_{(qq,1+)}} \right] \left[Q_\sigma + k^i_\sigma \frac{Q^2}{2m^2_{(qq,1+)}} \right], \]

\[P^T_{\rho\sigma}(p) = \delta_{\rho\sigma} - p_{\rho} p_{\sigma}/p^2. \]

• Transition:

\[\Gamma^{10}_{\rho\mu}(k_2, k_1) = \Gamma^{01}_{\rho\mu}(-k_2, k_1) = \Gamma^{01}_{\mu\rho}(k_1, k_2), \]

\[\Gamma^{01}_{\mu\rho}(k_1, k_2) = \frac{g^{01}}{m_{(qq,1+)}} \epsilon_{\mu\rho\sigma\lambda} k_1\lambda k_2\beta G^{01}(Q^2). \]

[Raya:2017ggu]