Hadron scattering, resonances and exotics from lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

JLab Theory Seminar (virtual), 12 December 2022

- Introduction
- Charm mesons
 - $D\pi/DK$ ($J^{P} = 0^{+} D_{0}^{*}(2300), D_{s0}^{*}(2317)$)
 - D* π (J^P = 1⁺ and 2⁺)

Lattice QCD

Systematically-improvable first-principles calculations

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow i t$)

Note:

- Finite *a* and *L*
- Possibly heavy u, d quarks
 - (\rightarrow unphysical m_{π})

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

$$=\sum_{n}\frac{e^{-E_{n}t}}{2 E_{n}}\langle 0|\mathcal{O}_{i}(0)|n\rangle\langle n|\mathcal{O}_{j}^{\dagger}(0)|0\rangle$$

Lower-lying hadrons in each flavour sector are well determined (also isospin breaking, QED).

 C_i

Finite-volume energy eigenstates from:

Excited states: in each symmetry channel compute matrix of correlators for **large bases of interpolating operators** with appropriate variety of structures.

Variational method (generalised eigenvalue problem) $\rightarrow \{E_n\}$

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

$$\lambda^{(n)}(t) \sim e^{-E_n(t-t_0)} \qquad v_i^{(n)} \to Z_i^{(n)} \equiv \langle 0|\mathcal{O}_i|n\rangle \qquad (t > t_0)$$

Light mesons (isospin = 0 and 1)

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi} \Gamma D \dots \psi$

(also other m_{π} and volumes)

Light mesons (isospin = 0 and 1)

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi} \Gamma D \dots \psi$

(also other m_{π} and volumes)

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

c.f. 1-dim:
$$k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$$

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

$$\det\left[1+i\,\rho(E_{\rm Cm})\,t(E_{\rm Cm})\left(1+i\,\mathcal{M}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\det \left[1 + i \,\rho(E_{\rm Cm}) \,t(E_{\rm Cm}) \left(1 + i \,\mathcal{M}^{\vec{P}}(E_{\rm Cm},L) \right) \right] = 0$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\det \left[1 + i \,\rho(E_{\rm Cm}) \,t(E_{\rm Cm}) \left(1 + i \,\mathcal{M}^{\vec{P}}(E_{\rm Cm},L) \right) \right] = 0$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms (*K*-matrix forms, ...) [see e.g. review Briceño, Dudek, Young, Rev. Mod. Phys. 90, 025001 (2018)]

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\det \left[1 + i \,\rho(E_{\rm Cm}) \,t(E_{\rm Cm}) \left(1 + i \,\mathcal{M}^{\vec{P}}(E_{\rm Cm},L) \right) \right] = 0$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Param. $t(E_{cm})$ using various forms (*K*-matrix forms, ...)

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles.

Demonstrated in calcs. of ρ , light scalars, b_1 , charm mesons, ...

The ρ resonance: **elastic** P-wave $\pi\pi$ scattering

 $m_{\pi} \approx 236 \text{ MeV}$

Experimentally $BR(\rho \rightarrow \pi\pi) \sim 100\%$

Use many different operators

 $\overline{\psi} \Gamma D \dots \psi$

 $\sum_{\vec{p_1},\vec{p_2}} C(\vec{P},\vec{p_1},\vec{p_2})\pi(\vec{p_1})\pi(\vec{p_2})$

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **elastic** P-wave $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **elastic** P-wave $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

Other calculations

Some other lattice QCD work on DK and/or $D\pi$ scattering:

- Mohler *et al* [PR D87, 034501 (2013), 1208.4059];
- Liu *et al* [PR D87, 014508 (2013), 1208.4535];
- Mohler *et al* [PRL 111, 222001 (2013), 1308.3175];
- Lang et al [PR D90, 034510 (2014), 1403.8103];
- Bali et al (RQCD) [PR D96, 074501 (2017), 1706.01247];
- Alexandrou et al (ETM) [PR D101 034502 (2020), 1911.08435];
- Gregory *et al* [2106.15391]

Also:

- Martínez Torres et al [JHEP 05 (2015) 153, 1412.1706];
- Albaladejo *et al* [PL B767, 465 (2017), 1610.06727];
- Du et al [PR D98, 094018 (2018), 1712.07957];
- Guo et al [PR D98 014510 (2018), 1801.10122];
- Guo et al [EPJ C79, 13 (2019), 1811.05585]
- Lutz, Guo, Heo, Korpa [2209.10601]

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

Anisotropic lattices, $a_s/a_t \approx 3.5$, $a_s \approx 0.12$ fm, various volumes.

 N_f = 2+1, Wilson-clover fermions, $m_{\pi} \approx 239$ MeV & 391 MeV. Use many different fermion-bilinear $\sim \overline{\psi} \Gamma D \dots \psi$ and *DK*, ... operators

DK (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

DK (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

DK (isospin=0) – spectra

[JHEP 02 (2021) 100]

*m*_π ≈ 239 MeV

Use 22 energy levels for $\ell = 0, 1$

DK (isospin=0) – spectra

[JHEP 02 (2021) 100]

 $m_{\pi} \approx 391 \text{ MeV}$

Use 34 energy levels for $\ell = 0, 1$

[JHEP 02 (2021) 100]

DK (isospin=0) – amplitudes

*m*_π ≈ 239 MeV (22 energy levels) $\sim |amp|^2$ $|
ho t|^2$ 1.0 $t_{DK \to DK}^{(\ell=0)}$ S-wave 0.8 0.6 0.4 0.2 *P*-wave $t_{DK \to DK}^{(\ell=1)}$ $a_t E_{cm}$ 0.4 0.41 ю Ю ю Ю Ю Ю Ю Ю Ю Ю ю Ю Ю $DK_{\rm thr}$ $D_s \eta_{\rm othr}$ $D_s\pi\pi|_{\rm thr.}$ $^{2500} E_{\rm cm}/{\rm MeV}$ 2450 2400 $D_s\eta$. DK

Elastic *DK* scattering in *S* and *P*-wave Sharp turn-on in *S*-wave at threshold

[JHEP 02 (2021) 100]

DK (isospin=0) – amplitudes

*m*_π ≈ 239 MeV *m*_π ≈ 391 MeV (22 energy levels) (34 energy levels) $\sim |amp|^2$ $|\rho\,t|^2$ $|\rho t|^2$ 1.0 $t_{DK \to DK}^{(\ell=0)}$ 1.0 S-wave 0.8 0.8 0.6 0.6 $t_{DK \to DK}^{(\ell=0)}$ 0.4 0.4 0.2 **P**-wave 0.2 $t_{DK \to DK}^{(\ell=1)}$ $t_{DK \to DK}^{(\ell=1)}$ 0.42 0.41 $a_t E_{cm}$ $a_t E_{cm}$ 0.44 변화 0.4 0.41 ю Ю ю юн ю Ю ю Ю ю Ю 법 Ю ю Ю Ю Ю $DK_{\rm thr}$ $D_s \eta_{\rm othr}$ $D_s \eta_{\rm (thr.}$ $D_s\pi\pi|_{\rm thr.}$ $DK_{|\text{thr}}$ $^{2500} E_{\rm cm}/{\rm MeV}$ 2400 2450 2450 2500 $E_{\rm cm}/{\rm MeV}$ DK $D_{s}\eta$

Elastic *DK* scattering in *S* and *P*-wave Sharp turn-on in *S*-wave at threshold

Bound-state pole strongly coupled to *S*-wave *DK* $\Delta E = 25(3)$ MeV for $m_{\pi} \approx 239$ MeV $\Delta E = 57(3)$ MeV for $m_{\pi} \approx 391$ MeV

Bound-state pole strongly coupled to *S*-wave *DK* $\Delta E = 25(3)$ MeV for $m_{\pi} \approx 239$ MeV $\Delta E = 57(3)$ MeV for $m_{\pi} \approx 391$ MeV c.f. experiment $\Delta E \approx 45$ MeV (decays to $D_s \pi^0$)

Bound-state pole strongly coupled to *S*-wave *DK* $\Delta E = 25(3)$ MeV for $m_{\pi} \approx 239$ MeV $Z \lesssim 0.11$ $\Delta E = 57(3)$ MeV for $m_{\pi} \approx 391$ MeV $Z \approx 0.13(6)$ c.f. experiment $\Delta E \approx 45$ MeV (decays to $D_s \pi^0$)

Weinberg [PR 137, B672 (1965)] compositeness, $0 \le Z \le 1$ (assuming binding is sufficiently weak)

Bound-state pole strongly coupled to *S*-wave *DK* $\Delta E = 25(3)$ MeV for $m_{\pi} \approx 239$ MeV $Z \lesssim 0.11$ $\Delta E = 57(3)$ MeV for $m_{\pi} \approx 391$ MeV $Z \approx 0.13(6)$ c.f. experiment $\Delta E \approx 45$ MeV (decays to $D_s \pi^0$)

Weinberg [PR 137, B672 (1965)] compositeness, $0 \le Z \le 1$ (assuming binding is sufficiently weak)

Also deeply bound state in *P*-wave, D_s^* , but doesn't strongly influence *DK* scattering at these energies

[JHEP 02 (2021) 100]

$D\bar{K}$ (isospin=0,1)

Exotic flavour $(\overline{l} \, \overline{l} \, c \, s)$

[JHEP 02 (2021) 100]

$D\bar{K}$ (isospin=0,1)

Exotic flavour $(\overline{l} \, \overline{l} \, c \, s)$

[JHEP 02 (2021) 100]

$D\pi$ (isospin=1/2) – S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]

[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]

[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

> $m_{\pi} \approx 239 \text{ MeV}$ 29 energy levels (1 volume)

 $m_{\pi} \approx 391 \text{ MeV}$ 47 energy levels (3 volumes)

 D_0^* pole position may be lower than currently reported exp. mass. (See also Du *et al*, PRL 126, 192001 (2021), 2012.04599)

SU(3) multiplets:

SU(3) multiplets:

SU(3) multiplets:

S-wave results [broken SU(3)] suggest:

- $\overline{\mathbf{3}}$ resonance/bound state
- 6 virtual bound state
- $\overline{15}$ weak repulsion

[See also PR D87, 014508 (2013) (1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); PR D98 014510 (2018) (1801.10122); EPJ C79, 13 (2019) (1811.05585); arXiv:2106.15391]

Scattering involving non-zero spin hadrons [see also Woss, CT, Dudek, Edwards, Wilson, arXiv:1802.05580 (JHEP)]

 $J = \ell \otimes S$ and different partial waves with the same J^P can mix dynamically,

e.g.
$$J^{P} = 1^{+} (^{2S+1}\ell_{J} = {}^{3}S_{1}, {}^{3}D_{1})$$
 $t = \begin{bmatrix} t(^{3}S_{1}| {}^{3}S_{1}) & t(^{3}S_{1}| {}^{3}D_{1}) \\ t(^{3}S_{1}| {}^{3}D_{1}) & t(^{3}D_{1}| {}^{3}D_{1}) \end{bmatrix}$

Finite-volume lattice QCD: reduced sym \rightarrow additional 'mixing'

$D^* \pi$ (isospin=1/2)

27

94 energies to constrain $J^{P} = 1^{+}, 2^{+}, 0^{-}, 1^{-}, 2^{-}$

$D^* \pi$ (isospin=1/2) – poles

$D^* \pi$ (isospin=1/2) – poles

$D^* \pi$ (isospin=1/2) – poles

- Mapping out energy-dependence of scattering amplitudes using lattice QCD. A few examples.
- *DK*, $D\pi$, **exotic-flavour** isospin-0 $D\overline{K}$, $D^*\pi$
- Lighter (or heavier) light quarks? With SU(3) flavour sym?
- Further up in energy, inelastic scattering (3-meson scattering)

Acknowledgements

DiRAC

Hadron Spectrum Collaboration

[www.hadspec.org]

Jefferson Lab and surroundings, USA:

JLab: Robert Edwards, Jie Chen, Frank Winter, Arkaitz Rodas W&M: Jozef Dudek¹, F*elipe Ortega;* ODU: Raúl Briceño¹, Andrew Jackura ORNL: Bálint Joó (¹ and Jefferson Lab)

Trinity College Dublin, Ireland: Michael Peardon, Sinéad Ryan, Nicolas Lang

UK: University of Cambridge: CT, David Wilson, *Daniel Yeo, James Delaney* Edinburgh: Max Hansen; Southampton: Bipasha Chakraborty

Tata Institute, India: Nilmani Mathur

Ljubljana, Slovenia: Luka Leskovec