Hadron scattering, resonances and exotics from lattice QCD

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk

JLab Theory Seminar (virtual), 12 December 2022

Hadron spectroscopy

Hadron spectroscopy

Intriguing observations, e.g. $X(3872), Y(4260), Z_{c}{ }^{+}(4430), Z_{c}{ }^{+}(3900)$, $Z_{b}{ }^{+}, X(6900), X_{c c}, D_{s 0}(2317)$, charm-strange $X(2900)$, light scalars, $\pi_{1}(1600)\left[\mathrm{J}^{\mathrm{PC}}=1^{-+}\right], P_{c}$, Roper, other baryon resonances

BESIII

ATLAS

Hadron spectroscopy

Intriguing observations, e.g. $X(3872), Y(4260), Z_{c}{ }^{+}(4430), Z_{c}{ }^{+}(3900)$, $Z_{b}{ }^{+}, X(6900), X_{c c}, D_{s 0}(2317)$, charm-strange $X(2900)$, light scalars, $\pi_{1}(1600)\left[\mathrm{J}^{\mathrm{PC}}=1^{-+}\right], P_{c}$, Roper, other baryon resonances

Hadron spectroscopy

Intriguing observations, e.g. $X(3872), Y(4260), Z_{c}{ }^{+}(4430), Z_{c}{ }^{+}(3900)$, $Z_{b}{ }^{+}, X(6900), X_{c c}, D_{s 0}(2317)$, charm-strange $X(2900)$, light scalars, $\pi_{1}(1600)\left[\mathrm{J}^{\mathrm{PC}}=1^{-+}\right], P_{c}$, Roper, other baryon resonances

Exotic quantum numbers are
particularly interesting,
e.g. flavour or $\mathrm{J}^{\mathrm{PC}}=0^{--}, \mathrm{O}^{+-}, 1^{-+}, 2^{+-}$

Hadron spectroscopy

Intriguing observations, e.g. $X(3872), Y(4260), Z_{c}{ }^{+}(4430), Z_{c}{ }^{+}(3900)$, $Z_{b}{ }^{+}, X(6900), X_{c c}, D_{s 0}(2317)$, charm-strange $X(2900)$, light scalars, $\pi_{1}(1600)\left[\mathrm{J}^{\mathrm{PC}}=1^{-+}\right], P_{c}$, Roper, other baryon resonances

Exotic
particu
First-principles calculations in QCD \rightarrow lattice QCD e.g. fla

Outline

- Introduction
- Charm mesons
- Dr/DK (JP = $\left.0^{+} D_{0}^{*}(2300), D_{s 0}^{*}(2317)\right)$
- $\mathrm{D}^{*} \pi\left(\mathrm{~J}^{\mathrm{P}}=1^{+}\right.$and $\left.2^{+}\right)$

Lattice QCD

Systematically-improvable first-principles calculations

Lattice QCD spectroscopy

Finite-volume energy eigenstates from:

$$
\begin{aligned}
C_{i j}(t) & =\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| \mathcal{O}_{i}(0)|n\rangle\langle n| \mathcal{O}_{j}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Lower-lying hadrons in each flavour sector are well determined (also isospin breaking, QED).

Lattice QCD spectroscopy

Finite-volume energy eigenstates from:

$$
\begin{aligned}
C_{i j}(t) & =\langle 0| \underline{\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle} \\
& =\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| \mathcal{O}_{i}(0)|n\rangle\langle n| \mathcal{O}_{j}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Excited states: in each symmetry channel compute matrix of correlators for large bases of interpolating operators with appropriate variety of structures.

Variational method (generalised eigenvalue problem) $\rightarrow\left\{E_{n}\right\}$

$$
\begin{aligned}
& C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)} \\
& \lambda^{(n)}(t) \sim e^{-E_{n}\left(t-t_{0}\right)} \quad v_{i}^{(n)} \rightarrow Z_{i}^{(n)} \equiv\langle 0| \mathcal{O}_{i}|n\rangle_{\left(t \gg t_{0}\right)}
\end{aligned}
$$

Light mesons (isospin = 0 and 1)

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi}\ulcorner D \ldots \psi$
(also other m_{π} and volumes)

Light mesons (isospin = 0 and 1)
[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi}\ulcorner D \ldots \psi$
(also other m_{π} and volumes)

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD
Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD
Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\text { c.f. 1-dim: } k=\frac{2 \pi}{L} n+\frac{2}{L} \delta(k)
$$

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD
Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\operatorname{det}\left[1+i \boldsymbol{\rho}\left(E_{\mathrm{cm}}\right) \boldsymbol{t}\left(E_{\mathrm{cm}}\right)\left(1+i \boldsymbol{M}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD
Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\operatorname{det}\left[1+i \boldsymbol{\rho}\left(E_{\mathrm{cm}}\right) \boldsymbol{t}\left(E_{\mathrm{cm}}\right)\left(1+i \boldsymbol{\mathcal { M }}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Elastic scattering: one-to-one mapping $E_{c m} \leftrightarrow t\left(E_{c m}\right)$
[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD
Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\operatorname{det}\left[1+i \boldsymbol{\rho}\left(E_{\mathrm{cm}}\right) \boldsymbol{t}\left(E_{\mathrm{cm}}\right)\left(1+i \boldsymbol{\mathcal { M }}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Elastic scattering: one-to-one mapping $E_{c \mathrm{~cm}} \leftrightarrow t\left(E_{\mathrm{cm}}\right)$
Coupled channels: under-constrained problem (each E_{cm} constrains t-matrix at that E_{cm})
Param. $t\left(E_{\mathrm{cm}}\right)$ using various forms (K-matrix forms, ...)
[see e.g. review Briceño, Dudek, Young, Rev. Mod. Phys. 90, 025001 (2018)]
[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD
Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\operatorname{det}\left[1+i \boldsymbol{\rho}\left(E_{\mathrm{cm}}\right) \boldsymbol{t}\left(E_{\mathrm{cm}}\right)\left(1+i \boldsymbol{\mathcal { M }}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Elastic scattering: one-to-one mapping $E_{\mathrm{cm}} \leftrightarrow t\left(E_{\mathrm{cm}}\right)$
Coupled channels: under-constrained problem
(each E_{cm} constrains t-matrix at that E_{cm})
Param. $t\left(E_{\mathrm{cm}}\right)$ using various forms (K-matrix forms, ...)
Analytically continue $t\left(E_{\mathrm{cm}}\right)$ in complex E_{cm} plane, look for poles.
Demonstrated in calcs. of ρ, light scalars, b_{1}, charm mesons, ...

The ρ resonance: elastic P -wave $\pi \pi$ scattering

$$
m_{\pi} \approx 236 \mathrm{MeV}
$$

Experimentally

$$
\operatorname{BR}(\rho \rightarrow \pi \pi) \sim 100 \%
$$

Use many different operators

$$
\begin{aligned}
& \bar{\psi}\ulcorner D \ldots \psi \\
& \sum_{\overrightarrow{p_{1}}, \vec{p}_{2}} C\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}\right) \pi\left(\vec{p}_{1}\right) \pi\left(\vec{p}_{2}\right) \\
& \ldots
\end{aligned}
$$

The ρ resonance: elastic P -wave $\pi \pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic P-wave $\pi \pi$ scattering

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Other calculations

Some other lattice QCD work on $D K$ and/or $D \pi$ scattering:

- Mohler et al [PR D87, 034501 (2013), 1208.4059];
- Liu et al [PR D87, 014508 (2013), 1208.4535];
- Mohler et al [PRL 111, 222001 (2013), 1308.3175];
- Lang et al [PR D90, 034510 (2014), 1403.8103];
- Bali et al (RQCD) [PR D96, 074501 (2017), 1706.01247];
- Alexandrou et al (ETM) [PR D101 034502 (2020), 1911.08435];
- Gregory et al [2106.15391]

Also:

- Martínez Torres et al [JHEP 05 (2015) 153, 1412.1706];
- Albaladejo et al [PL B767, 465 (2017), 1610.06727];
- Du et al [PR D98, 094018 (2018), 1712.07957];
- Guo et al [PR D98 014510 (2018), 1801.10122];
- Guo et al [EPJ C79, 13 (2019), 1811.05585]
- Lutz, Guo, Heo, Korpa [2209.10601]

$D K$ (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

Anisotropic lattices,
$a_{s} / a_{t} \approx 3.5, a_{s} \approx 0.12 \mathrm{fm}$, various volumes.
$N_{f}=2+1$,
Wilson-clover fermions, $m_{\pi} \approx 239 \mathrm{MeV} \& 391 \mathrm{MeV}$.

Use many different fermion-bilinear

$$
\begin{gathered}
\quad \sim \bar{\psi}\ulcorner D \ldots \psi \\
\text { and } D K, \ldots \text { operators }
\end{gathered}
$$

$D K$ (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

$$
E_{\mathrm{cm}} / a_{t} E_{\mathrm{cm}} \quad \mathbf{P}=[0,0,0] \mathrm{J}^{\mathrm{P}}=0^{+},\left(4^{+}, \ldots\right)
$$

$D K$ (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

$D K$ (isospin=0) - spectra

$E_{\mathrm{cm}} / a_{t} E_{\mathrm{cm}}[000] A_{1}^{+} \quad[100] A_{1} \quad[110] A_{1} \quad[111] A_{1} \quad[200] A_{1} \quad m_{\pi}=239 \mathrm{MeV}$

$$
m_{\pi} \approx 239 \mathrm{MeV}
$$

$D K$ (isospin=0) - spectra

$m_{\pi} \approx 391 \mathrm{MeV}$

Use 34 energy levels for $\ell=0,1$

$D K$ (isospin=0) - amplitudes

$m_{\pi} \approx 239 \mathrm{MeV}$
(22 energy levels)
$\sim|a m p|^{2}$

Elastic $D K$ scattering in S and P-wave Sharp turn-on in S-wave at threshold

$D K$ (isospin=0) - amplitudes

[JHEP 02 (2021) 100]

Elastic $D K$ scattering in S and P-wave Sharp turn-on in S-wave at threshold

$D K$ (isospin=0) - S-wave poles

Bound-state pole strongly coupled to S-wave $D K$ $\Delta \mathrm{E}=25(3) \mathrm{MeV}$ for $m_{\pi} \approx 239 \mathrm{MeV}$ $\Delta \mathrm{E}=57(3) \mathrm{MeV}$ for $m_{\pi} \approx 391 \mathrm{MeV}$

$D K$ (isospin=0) - S-wave poles

Bound-state pole strongly coupled to S-wave $D K$ $\Delta \mathrm{E}=25(3) \mathrm{MeV}$ for $m_{\pi} \approx 239 \mathrm{MeV}$ $\Delta \mathrm{E}=57(3) \mathrm{MeV}$ for $m_{\pi} \approx 391 \mathrm{MeV}$
c.f. experiment $\Delta \mathrm{E} \approx 45 \mathrm{MeV}$ (decays to $D_{s} \pi^{0}$)

$D K$ (isospin=0) - S-wave poles

Bound-state pole strongly coupled to S-wave $D K$

$$
\begin{aligned}
& \Delta \mathrm{E}=25(3) \mathrm{MeV} \text { for } m_{\pi} \approx 239 \mathrm{MeV} \quad \mathrm{Z} \leqq 0.11 \\
& \Delta \mathrm{E}=57(3) \mathrm{MeV} \text { for } m_{\pi} \approx 391 \mathrm{MeV} \quad \mathrm{Z} \approx 0.13(6) \\
& \text { c.f. experiment } \left.\Delta \mathrm{E} \approx 45 \mathrm{MeV} \text { (decays to } D_{s} \pi^{0}\right)
\end{aligned}
$$

Weinberg [PR 137, B672 (1965)] compositeness, $0 \leq Z \leq 1$ (assuming binding is sufficiently weak)

$D K$ (isospin=0) - S-wave poles

Bound-state pole strongly coupled to S-wave $D K$

$$
\begin{aligned}
& \Delta \mathrm{E}=25(3) \mathrm{MeV} \text { for } m_{\pi} \approx 239 \mathrm{MeV} \quad \mathrm{Z} \leqq 0.11 \\
& \Delta \mathrm{E}=57(3) \mathrm{MeV} \text { for } m_{\pi} \approx 391 \mathrm{MeV} \quad \mathrm{Z} \approx 0.13(6) \\
& \text { c.f. experiment } \left.\Delta \mathrm{E} \approx 45 \mathrm{MeV} \text { (decays to } D_{s} \pi^{0}\right)
\end{aligned}
$$

Weinberg [PR 137, B672 (1965)] compositeness, $0 \leq Z \leq 1$ (assuming binding is sufficiently weak)

Also deeply bound state in P-wave, D_{s}^{*}, but doesn't strongly influence $D K$ scattering at these energies

$D \bar{K}$ (isospin=0,1)

Exotic flavour ($\bar{l} \bar{l} c s$)
[JHEP 02 (2021) 100]

(18,18 levels
for $\mathrm{I}=0,1$)
$\stackrel{1}{2400}$

$\delta_{t=0}^{t=0}$

$$
\begin{aligned}
& \text { fol } \mathrm{FO} \text { for } \\
& \text { for } \\
& \text { fol } \\
& \text { for }
\end{aligned}
$$

(29,28 levels
for $1=0,1$)
어
$E_{\text {cm }} / \mathrm{MeV}$

$D \bar{K}$ (isospin=0,1)

Exotic flavour ($\bar{l} \bar{l} c s)$
[JHEP 02 (2021) 100]

$\delta /$
$=0$

(18, 18 levels for $I=0,1$)

101
or

$$
I=1
$$

$$
\begin{aligned}
& \text { lol for for } \\
& \text { for } \\
& \text { iot } 1 \text { for } \mathrm{fOH}
\end{aligned}
$$

$D \bar{K}$ (isospin=0,1) Exotic flavour ($\bar{l} \bar{l} c s$)

[JHEP 02 (2021) 100]

$D \bar{K}(\mathrm{I}=0) S$-wave

Suggestion of a virtual bound-state pole (exotic flavour)

D π (isospin=1/2) - S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

D π (isospin=1/2) - S-wave

$$
\rho^{2}|t|^{2} \sim|\mathrm{amp}|^{2}
$$

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

$$
\begin{aligned}
& m_{\pi} \approx 239 \mathrm{MeV} \\
& 29 \text { energy levels } \\
& \text { (1 volume) }
\end{aligned}
$$

$$
m_{\pi} \approx 391 \mathrm{MeV}
$$

$$
47 \text { energy levels }
$$ (3 volumes)

D π (isospin=1/2) - S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson
$\rho^{2}|t|^{2} \sim|\operatorname{amp}|^{2}$

$m=\operatorname{Re} \sqrt{s_{0}} / \mathrm{MeV}$

D π (isospin=1/2) - S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson
$\rho^{2}|t|^{2} \sim|\mathrm{amp}|^{2}$

0.2 -

$$
m=\operatorname{Re} \sqrt{s_{0}} / \mathrm{MeV}
$$

Z ≈ 0.09 (8)

Resonance

Also deeply bound state in P-wave, D^{*}, but doesn't strongly influence $D \pi$ scattering at these energies
$\stackrel{\square}{2500}$

D π (isospin=1/2) - S-wave

$\rho^{2}|t|^{2} \sim|\mathrm{amp}|^{2}$ | | |
| :--- | :--- |
| | |
| | |
| $m_{\pi} \approx 239 \mathrm{MeV}$ | |

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]
c.f. DK (isospin=0)

$$
m_{\pi} \approx 391 \mathrm{MeV}
$$

DK and D π - S-wave poles

[JHEP 07 (2021) 123, JHEP 02 (2021) 100, JHEP 10 (2016), 011]

DK and D π - S-wave poles

[JHEP 07 (2021) 123, JHEP 02 (2021) 100, JHEP 10 (2016), 011]

DK and D π - S-wave poles

[JHEP 07 (2021) 123, JHEP 02 (2021) 100, JHEP 10 (2016), 011]

D_{0}^{*} pole position may be lower than currently reported exp. mass. (See also Du et al, PRL 126, 192001 (2021), 2012.04599)

SU(3) flavour symmetry

[JHEP 02 (2021) 100]

SU(3) multiplets:
$D_{(s)} \overline{\mathbf{3}} \quad$ Light/strange meson $\mathbf{8}$ or $\mathbf{1}$
$\overline{\mathbf{3}} \otimes 8 \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}, \quad \overline{\mathbf{3}} \otimes 1 \rightarrow \overline{\mathbf{3}}$

SU(3) flavour symmetry

SU(3) multiplets:
$D_{(s)} \overline{3} \quad$ Light/strange meson 8 or 1 $\overline{\mathbf{3}} \otimes 8 \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}, \quad \overline{\mathbf{3}} \otimes \mathbf{1} \rightarrow \overline{\mathbf{3}}$

$$
\begin{array}{ll}
(I=0) D K-D_{s} \eta: \overline{\mathbf{3}} \oplus \overline{\mathbf{1 5}} & \left(I=\frac{1}{2}\right) D \pi-D \eta-D_{s} \bar{K}: \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}} \\
(I=1) D K-D_{s} \pi: \mathbf{6} \oplus \overline{\mathbf{1 5}} & (I=0) D \bar{K}: \mathbf{6} \\
\left(I=\frac{1}{2}\right) D_{s} K,(I=1) D \bar{K},\left(I=\frac{3}{2}\right) D \pi: \overline{\mathbf{1 5}}
\end{array}
$$

SU(3) flavour symmetry

SU(3) multiplets:
$D_{(s)} \overline{3} \quad$ Light/strange meson 8 or 1
$\overline{\mathbf{3}} \otimes 8 \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}, \quad \overline{\mathbf{3}} \otimes \mathbf{1} \rightarrow \overline{\mathbf{3}}$

$$
\begin{array}{ll}
(I=0) D K-D_{s} \eta: \overline{\mathbf{3}} \oplus \overline{\mathbf{1 5}} & \left(I=\frac{1}{2}\right) D \pi-D \eta-D_{s} \bar{K}: \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}} \\
(I=1) D K-D_{s} \pi: \mathbf{6} \oplus \overline{\mathbf{1 5}} & (I=0) D \bar{K}: \mathbf{6} \\
\left(I=\frac{1}{2}\right) D_{s} K,(I=1) D \bar{K},\left(I=\frac{3}{2}\right) D \pi: \overline{\mathbf{1 5}}
\end{array}
$$

S-wave results [broken $\mathrm{SU}(3)$] suggest:
$\overline{3}$ resonance/bound state
6 virtual bound state $\overline{15}$ weak repulsion
[See also PR D87, 014508 (2013) (1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); PR D98 014510 (2018) (1801.10122);
EPJ C79, 13 (2019) (1811.05585);
arXiv:2106.15391]

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

D* π (isospin=1/2)

Scattering involving non-zero spin hadrons [see also Woss, CT, Dudek, Edwards, Wilson, arXiv:1802.05580 (JHEP)]
$\mathrm{J}=\ell \otimes \mathrm{S}$ and different partial waves with the same J^{P} can mix dynamically,
e.g. $\mathrm{J}^{\mathrm{P}}=1^{+}\left({ }^{2 S+1} \mathrm{e}_{\mathrm{J}}={ }^{3} \mathrm{~S}_{1},{ }^{3} \mathrm{D}_{1}\right) \quad \mathbf{t}=\left[\begin{array}{l}t\left({ }^{3} S_{1} \mid{ }^{3} S_{1}\right) \\ t\left({ }^{3} S_{1} \mid{ }^{3} D_{1}\right) \\ t\left({ }^{3} S_{1} \mid{ }^{3} D_{1}\right) \\ \hline\left({ }^{3} D_{1} \mid{ }^{3} D_{1}\right)\end{array}\right]$

Finite-volume lattice QCD: reduced sym \rightarrow additional 'mixing'

D* π (isospin=1/2)

94 energies to constrain $\mathrm{J}^{\mathrm{P}}=1^{+}, 2^{+}, 0^{-}, 1^{-}, 2^{-}$

$D^{*} \pi$ (isospin=1/2)

94 energies to constrain $\mathrm{J}^{\mathrm{P}}=1^{+}, 2^{+}, 0^{-}, 1^{-}, 2^{-}$

D* π (isospin=1/2) - poles

D* π (isospin=1/2) - poles

D* π (isospin=1/2) - poles

Summary

- Mapping out energy-dependence of scattering amplitudes using lattice QCD. A few examples.
- $D K, D \pi$, exotic-flavour isospin- $0 D \bar{K}, D^{*} \pi$
- Lighter (or heavier) light quarks? With SU(3) flavour sym?
- Further up in energy, inelastic scattering (3-meson scattering)

Acknowledgements

Science and
Technology Facilities Council

Hadron Spectrum Collaboration

[www.hadspec.org]

had spec

 Jefferson Lab and surroundings, USA:JLab: Robert Edwards, Jie Chen, Frank Winter, Arkaitz Rodas W\&M: Jozef Dudek ${ }^{1}$, Felipe Ortega; ODU: Raúl Briceño¹, Andrew Jackura ORNL: Bálint Joó (${ }^{1}$ and Jefferson Lab)

Trinity College Dublin, Ireland: Michael Peardon, Sinéad Ryan, Nicolas Lang
UK: University of Cambridge: CT, David Wilson, Daniel Yeo, James Delaney
Edinburgh: Max Hansen; Southampton: Bipasha Chakraborty
Tata Institute, India: Nilmani Mathur
Ljubljana, Slovenia: Luka Leskovec

