Eletroweak Parton Distribution Functions & Applications at High-Energy Muon Colliders

Keping Xie
Pittsburgh Particle-physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, PA 15260, USA

Jefferson Lab
November 21, 2022

Based on work with T. Han and Y. Ma
2007.14300, 2103.09844, 2106.01393
Why muon colliders?

- **Leptons** are the ideal probes of short-distance physics
 - Cleaner background comparing to hadron colliders
 - High-energy physics probed with much smaller collider energy

- **Electron colliders**
 - A glorious past: discovery of charm, τ, and gluon
 - Important future: Precision EW constraints on BSM physics, Higgs physics

- **Muon colliders**
 - A s-channel Higgs factory: Higgs production enhanced by $m^2_\mu/m^2_e \sim 40000$
 - Direct measurements on y_μ and Γ_H
 - Multi-TeV muon colliders: Less radiations then electron
 - Center of mass energy $3 - 15$ TeV and the more speculative $E_{cm} = 30$ TeV
 - New particle mass coverage $M \sim (0.5 - 1)E_{cm}$
 - Great accuracies for WWH, $WWHH$, H^3, H^4
 - [See Snowmass WPs, 2203.08033, 2203.07964, Report 2209.01318.]

Muon Collider Physics Potential Pillars

<table>
<thead>
<tr>
<th>Direct search of heavy particles</th>
<th>High rate indirect probes</th>
<th>High energy probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSY-inspired, WIMP, VBF production, 2->1</td>
<td>Higgs single and self-couplings, rare Higgs decays, exotic decays</td>
<td>difermion, diboson, EFT, Higgs compositeness</td>
</tr>
</tbody>
</table>
A possible high-energy muon collider

Size and Benchmarks [Ankenbrandt et al., arXiv:physics/9901022]

Integrated luminosity: $\mathcal{L} = \left(\frac{E_{\text{cm}}}{10 \text{ TeV}}\right)^2 \times 10 \text{ ab}^{-1}$ [The Muon Smasher’s Guide, 2103.14043]
Vector boson fusions vs. annihilations

General features:

- The annihilations decrease as $1/s$.
- ISR needs to be considered, which can give over 10% enhancement.
- The fusions increase as $\ln(s)$, which take over at high energies.
- The large collinear logarithm $\ln\left(\frac{Q^2}{m_\ell^2}\right)$ needs to be resummed.
- W^+W^- as a reference to separate high-energy EW and low-energy QED/QCD

Q: How to treat parton properly at high energies when W/Z become active?
EW physics at high energies

- At high energies, every particle become massless
 \[\frac{v}{E} : \frac{v}{100 \text{ TeV}} \sim \frac{\Lambda_{\text{QCD}}}{100 \text{ GeV}}, \quad \frac{v}{E}, \frac{m_t}{E}, \frac{M_W}{E} \to 0! \]

- The splitting phenomena dominate due to large log enhancement

- The EW symmetry is restored: \(SU(2)_L \times U(1)_Y \) unbroken

- Goldstone Boson Equivalence:
 \[\varepsilon^\mu_L(k) = \frac{E}{M_W}(\beta_W, \hat{k}) \simeq \frac{k^\mu}{M_W} + \mathcal{O}(\frac{M_W}{E}) \]
 The violation terms is power counted as \(v/E \to \text{QCD higher twist effects} \)

- We mainly focus on the splitting phenomena, which can be factorized and resummed as the EW PDFs in the ISR, and the Fragmentaions/Parton Shower in the FRS.

- Other interesting aspects: the polarized EW boson scattering, top-Yukawa coupling effect
Splitting phenomena

\[d\sigma \simeq d\sigma_X \times d\mathcal{P}_{A\to B+C}, \quad E_B \approx zE_A, \quad E_C \approx \bar{z}E_A, \quad k_T \approx z\bar{z}E_A\theta_{BC} \]

\[
\frac{d\mathcal{P}_{A\to B+C}}{dzdk_T^2} \simeq \frac{1}{16\pi^2} \frac{z\bar{z}|\mathcal{M}^{(\text{split})}|^2}{(k_T^2 + \bar{z}m_B^2 + zm_C^2 - z\bar{z}m_A^2)^2}, \quad \bar{z} = 1 - z
\]

- The dimensional counting: \(|\mathcal{M}^{(\text{split})}|^2 \sim k_T^2 \) or \(m^2 \)
- To validate the factorization formalism
 - The observable \(\sigma \) should be infra-red safe
 - Leading behavior comes from the collinear splitting

[Ciafaloni et al., hep-ph/0004071; 0007096; Bauer, Webber et al., 1703.08562; 1808.08831]

[Manohar et al., 1803.06347; Han, Chen, Tweedie, 1611.00788]
EW Splitting functions

- Starting from the unbroken phase: all massless
 \[\mathcal{L}_{SU(2)\times U(1)} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_\phi + \mathcal{L}_f + \mathcal{L}_{\text{Yukawa}} \]

- Particle contents:
 - Chiral fermions \(f_{L,R} \)
 - Gauge bosons: \(B, W^0, \pm \)
 - Higgs \(H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ h - i\phi^0 \end{pmatrix} / \sqrt{2} \)

- Splitting functions [See Ciafaloni et al. hep-ph/0505047, Han et al. 1611.00788 for complete lists.]

\[
\frac{1}{8\pi^2} \frac{1}{k_T^2} \frac{1+z^2}{z} \quad \rightarrow \quad V_T f_s^{(l)} \quad [BW]_T^0 f_s \quad H^0(\ast) f_{-s} \quad \phi^\pm f_{-s}' \\
\frac{1}{8\pi^2} \frac{1}{k_T^2} \frac{z}{2} \\
\]

\(f_s = L, R \)

\(g_\nu^2 (Q_{f_s}^V)^2 \quad g_1 g_2 \ Y_{f_s} \quad T_{f_s}^3 \quad y_{f_R}^{(l)} \)

- Soft & collinear singularites \((P_{gq}) \)
- Collinear singularity chirality-flip, Yukawa
Electroweak symmetry breaking

Goldstone Boson Equivalence Theorem (GBET)

[Lee, Quigg, Thacker (1977); Chanowitz & Gailard (1984)]

- At high energies $E \gg M_W$, the longitudinally polarized gauge bosons V_L behave like the corresponding Goldstone bosons. They remember their origin!
- Scalarization of V_L

 $$\varepsilon^\mu_L(k) = \frac{E}{M_W}(\beta_W, \hat{k}) \approx \frac{k^\mu}{M_W} + \mathcal{O}(M_W/E)$$

- The GBET violation can be counted as power corrections v/E → Higher twist effects in QCD (Λ_{QCD}/Q)

[Han et al. 1611.00788, Cuomo, Wulzer, 1703.08562; 1911.12366].
New splitting in a broken gauge theory

- Fermion splitting into longitudinal gauge boson $f \rightarrow V_L$

$$P \sim \frac{v^2}{k_T^2} \frac{d k_T^2}{k_T^2} \sim 1 - \frac{v^2}{Q^2}$$

- V_L is of IR, h has no IR [Han et al. 1611.00788]

The PDFs for W_L/Z_L behaves as constants, which does not run at the leading log: “Bjorken scaling” restoration

$$f_{V_L/f}(x, Q^2) \sim \alpha \frac{1-x}{x}$$

Residuals of the EWSB, v^2/E^2, similar to higher-twist effects
Polarizations in the EW splittings

- The EW splittings must be polarized due to the chiral nature of the EW theory

\[
f_{V+/A+} \neq f_{V-/A-}, \quad f_{V+/A-} \neq f_{V-/A+},
\]

\[
\hat{\sigma}(V_+B_+) \neq \hat{\sigma}(V_-B_-), \quad \hat{\sigma}(V_+B_-) \neq \hat{\sigma}(V_-B_+)
\]

We are not able to factorize the cross sections in an unpolarized form.

\[
\sigma \neq f_{V/A} \hat{\sigma}(VB), \quad f_{V/A} = \frac{1}{2} \sum_{\lambda,s_1} f_{V_\lambda/A_{s_1}}, \quad \hat{\sigma}(VB) = \frac{1}{4} \sum_{\lambda,s_2} \hat{\sigma}(V_\lambda B_{s_2})
\]
Definition of (QCD) PDFs

- Fast moving proton in the z direction $p^\mu = (E, 0, 0, p)$

 $n^\mu = (1, 0, 0, 1), \quad \bar{n} = (1, 0, 0, -1)$

 $n^2 = \bar{n}^2 = 0, \quad n \cdot \bar{n} = 2$

- Light-cone coordinates

 $p^\mu = \frac{1}{2} p^- n^\mu + \frac{1}{2} p^+ \bar{n}^\mu + p_\perp^\mu$, where

 $p^- = \bar{n} \cdot p = E + p_z \approx 2E, \quad p^+ = n \cdot p = E - p_z \approx \frac{m_p^2}{2E}$.

- Boost along z axis,

 $p^+ \to \lambda p^+, \quad p^- \to p^- / \lambda, \quad p_\perp \to p_\perp$.

- Quark PDFs: light-cone Fourier transforms [Collins & Soper, 1982]

 $f_q(x, \mu) = \langle p | O_q(r^-) | p \rangle, \quad x = r^- / p^-$

 $O_q(r^-) = \frac{1}{4\pi} \int_{-\infty}^{\infty} d\xi e^{-i\xi r} [\bar{q}(\bar{n} \xi) \psi(\bar{n} \xi)] \bar{n} [\psi^\dagger(0) q(0)]$.

 Similar expressions for antiquark PDFs and gluon PDFs.

- Collinear PDFs are defined at $x^- = 0$ and $x_\perp = 0$, which are boost invariant.
EW PDFs (different from the QCD ones)

- Due to confinement, QCD observables are color invariant.

\[
O_q(r^-) = \frac{1}{4\pi} \int_{-\infty}^{\infty} d\xi \, e^{-i\xi r}[\bar{q}(\bar{n}\xi)\mathcal{W}(\bar{n}\xi)]\gamma^\mu \left[\frac{1}{T^a}\right] \mathcal{W}^+(0) q(0),
\]

\[
\langle p|\bar{q}\cdots q|p\rangle = f_q(x, \mu), \quad \langle p|\bar{q}\cdots T^a \cdots |p\rangle = 0.
\]

Equal probabilities to find the different colors, \(q_1, q_2, q_3\)

- EW symmetry is broken

\[
\langle p|\bar{q}\cdots t^a \cdots |p\rangle \neq 0
\]

That is, isospin charge is not invariant in a physical observable.

- Non-singlet PDFs \((I \neq 0)\)

\[
\langle p|\bar{q}_L\cdots t^3\cdots q_L|p\rangle = \frac{1}{2} [f_{u_L} - f_{d_L}] \neq 0, \quad f_{u_L} \neq f_{d_L},
\]

which gives non-zero non-singlet PDFs.

[Bauer et al., 1703.08562, 1712.07147; Manohar, Waalewijn, 1802.08687; Han, Ma, KX, 2007,14300, 2103.09844]
Factorization violation

- Recall the QCD collinear factorization [CSS, 80s’]
 - One-side QCD radiation (Drell-Yan, SIA, and DIS)
 - Sufficiently inclusive, i.e., $pp \rightarrow V + X$
 - Unitary condition $\sum_X |X\rangle\langle X| = 1 \implies$ Ward identity \implies factorization

- Critical point: cancellation of Glauber gluon
 - $|p^+ p^-| \ll p_T^2 \ll Q^2$ [Rothstein, Stewart, 1601.04695]

- The Glauber non-cancellation leads to violation, e.g., k_T in the back-to-back di-jet [Qiu, Collins 0705.2141, Collins 0708.4410]

- In the EW case, the factorization violation is everywhere [Rothstein et al., 1811.04120]

- Can we rescue it? \implies Potentially!
 - Dealing with Glauber interaction
 - Deep \leftrightarrow Shallow factorization [Sterman, 2207.06507]

- We need sufficiently inclusive observables, e.g., EW jets.

- New operators and formalism are needed, e.g. bared charges.
Shallow EW factorization

- A inclusive cross section can be factorized into hard, collinear (PDFs and/or FFs) and soft functions [Manohar, 1802.08687]

\[\sigma(AB \rightarrow X) = \sum_{a,b} C_a/A C_b/B S_{ab} H_{ab}, \]

where the soft function

\[S_{ab} = \langle 0 | S_1^\dagger t^a S_1 S_2^\dagger t^b S_2 \cdots | 0 \rangle. \]

- In the QCD case, \(t^a \rightarrow T^a \) vanish unless \(T^A = 1 \). \(S^\dagger S = 1 \) leaves a trivial soft function \(S_{ab} = 1 \).

- In the EW theory, \(S \) is not trivially identity, leads a angular dependence \(\rightarrow \) Rapidity divergence \(\Rightarrow \) Collins-Soper Equation [1981]
 \(\Leftrightarrow \) rapidity RGE in SCET [Chiu et al. 1104.0881, 1202.0814]

- EW PDFs/FFs involve both singlet and non-singlet components \((I = 0, 1, 2) \).

- DGLAP equation in \(I \neq 0 \) sector will gives double-log evolution.
PDFs and Fragmentations (parton showers)

- **Initial state radiation (ISR): PDFs** [Bauer et al., 1703.08562; 1808.08831, Manohar et al., 1808.08831, Han, Ma, KX, 2007.14300],

 \[f_{B}(z, \mu^2, \nu^2) = \sum_{A} \int_{z}^{1} \frac{d\xi}{\xi} f_{A}(\xi, \mu^2, \nu^2) \int_{m^2}^{\mu^2} dk_{T}^{2} \mathcal{P}_{A \rightarrow B + C}(z/\xi, k_{T}^{2}, \nu^2) \]

 \[\frac{df_{B}(z, \mu^2, \nu^2)}{d \ln \mu^2} = \sum_{A} \int_{z}^{1} \frac{d\xi}{\xi} \frac{d\mathcal{P}_{A \rightarrow B + C}(z/\xi, \mu^2, \nu^2)}{dzdk_{T}^{2}} f_{A}(\xi, \mu^2, \nu^2) \]

 \[\frac{df_{B}^{(I \neq 0)}(z, \mu^2, \nu^2)}{d \ln \nu^2} = \hat{\gamma}_{V} f_{B}^{(I \neq 0)}(z, \mu^2, \nu^2) \]

- **The leading order splitting gives the effective \(W \) approximation (EWA)** [Kane, Repko, Rolnick, PLB1984, Dawson, NPB1985, Chanowitz, Gaillard, NPB1985]

 \(W_{L}(Z_{L}) \) capture the remnants of EWSB, governed by power correction \(\mathcal{O}(M_{Z}^{2}/Q^{2}) \) to the Goldstone Equivalence.

- **Final state radiation (FSR): Fragmentations** [Bauer et al., 1806.10157; Han, Ma, KX, 2203.11129] or parton showers [Han et al., 1611.00788]

 \[\Delta_{A}(t) = \exp \left[-\sum_{B} \int_{t}^{t} dt' \int dz \frac{d\mathcal{P}_{A \rightarrow B + C}(z, t')}{dzdt'} \right] \]
Parton inside of a lepton

Equivalent photon approximation (EPA) [Fermi, Z. Phys. 29, 315 (1924), von Weizsacker, Z. Phys. 88, 612 (1934)]

Treat photon as a parton constituent in the lepton

\[\sigma(\ell^- + a \rightarrow \ell^- + X) = \int dx f_{\gamma/\ell} \hat{\sigma}(\gamma a \rightarrow X) \]

\[f_{\gamma/\ell,\text{EPA}}(x_\gamma, Q^2) = \frac{1}{2\pi} \frac{1 + (1 - x_\gamma)^2}{x_\gamma} \ln \frac{Q^2}{m_\ell^2} \]

Extra terms to Improve: [Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. (1975)], [Frixione, Mangano, Nason, Ridolfi, 9310350]

Photon fusions and annihilations with initial state radiations

Effective \(W\) approximation (EWA) [Kane, Repko, Rolnick, PLB1984, Dawson, NPB1985, Chanowitz, Gaillard, NPB1985]
The novel features of the EWA

- The EW PDFs must be polarized due to the chiral nature of the EW theory
 \[f_{V+/A+} \neq f_{V-/A-}, \quad f_{V+/A-} \neq f_{V-/A+}, \]
 \[\hat{\sigma}(V_+ B_+) \neq \hat{\sigma}(V_- B_-), \quad \hat{\sigma}(V_+ B_-) \neq \hat{\sigma}(V_- B_+) \]
 We are not able to factorize the cross sections in an unpolarized form.

 \[\sigma \neq f_{V/A} \hat{\sigma}(VB), \quad f_{V/A} = \frac{1}{2} \sum_{\lambda, s_1} f_{V\lambda/A{s_1}}, \quad \hat{\sigma}(VB) = \frac{1}{4} \sum_{\lambda, s_2} \hat{\sigma}(V\lambda B{s_2}) \]

- The interference gives the mixed PDFs
 \[f_{\gamma Z} \sim A^{\mu\nu} Z_{\mu\nu} + \text{h.c.}, \quad f_{hZ_L} \sim hZ_L \]

- Bloch-Nordsieck theorem violation due to the non-cancelled divergence in \(f \rightarrow f'V \):
 fully inclusive observables [Manohar, 1802.08687]
 \[f_1 = \frac{1}{2} (f_\nu + f_e) \sim \frac{\alpha_W}{2\pi} \log, \]
 \[f_3 = \frac{1}{2} (f_\nu - f_e) \sim \frac{\alpha_W}{2\pi} \log^2 \]

- Numerical small \(\Rightarrow \) cutoff \(M_V/Q \) [Bauer et al., 1703.08562, Han, Ma, KX, 2007.14300]
Go beyond the EPA/EWA

We have been doing:

- $\ell^+\ell^-$ annihilation
- EPA and ISR
- “Effective W Approx.” (EWA)

```
\[ \ell^+ \ell^- \quad \text{annihilation} \]

\[ \gamma \]

\[ \ell^+ \quad \ell^- \]

We complete:

- Above $\mu_{QCD}$: QED$\otimes$QCD
  - $q, g$ become active [Han, Ma, KX, 2103.09844]

```

\[\ell^+ \quad \ell^- \quad \gamma \quad f \quad \bar{f} \]

\[\ell^+ \quad \ell^- \quad \gamma \quad f \quad \bar{f} \]

\[\ell^+ \quad \ell^- \quad \gamma \quad f \quad \bar{f} \]

\[\ell^+ \quad \ell^- \quad \gamma \quad f \quad \bar{f} \]

- Above $\mu_{EW} = M_Z$: EW\otimesQCD
 - EW partons emerge [Han, Ma, KX, 2007.14300]

```

\[ \ell^+ \quad \ell^- \quad \gamma/Z/W \quad \gamma/Z/W \quad \ell^+ \]

\[ \ell^+ \quad \ell^- \quad \gamma/Z/W \quad \gamma/Z/W \quad \ell^+ \]

\[ \ell^+ \quad \ell^- \quad \gamma/Z/W \quad \gamma/Z/W \quad \ell^+ \]

\[ \ell^+ \quad \ell^- \quad \gamma/Z/W \quad \gamma/Z/W \quad \ell^+ \]

In the end, every content is a parton, i.e. the full SM PDFs.
The PDF evolution: DGLAP

- The DGLAP equations

\[
\frac{d f_i}{d \log Q^2} = \sum_I \frac{\alpha_I}{2\pi} \sum_j P_{ij}^I \otimes f_j
\]

- The initial conditions

\[f_\ell/\ell(x, m_\ell^2) = \delta(1 - x)\]

- Three regions and two matchings
  - \(m_\ell < Q < \mu_{\text{QCD}}\): QED
  - \(Q = \mu_{\text{QCD}} \lesssim 1 \text{ GeV}\): \(f_q \propto P_q \gamma \otimes f_\gamma, f_g = 0\) [Simplified Non-pert. parameterization.]
  - \(\mu_{\text{QCD}} < Q < \mu_{\text{EW}}\): QED\otimes\text{QCD}
  - \(Q = \mu_{\text{EW}} = M_Z\): \(f_\nu = f_t = f_W = f_Z = f_\gamma Z = 0\)
  - \(Q > \mu_{\text{EW}}\): EW\otimes\text{QCD}.

\[
\begin{pmatrix}
  f_B \\
  f_{W^3} \\
  f_{BW^3}
\end{pmatrix}
= \begin{pmatrix}
  c_W^2 & s_W^2 & -2c_W s_W \\
  s_W^2 & c_W^2 & 2c_W s_W \\
  c_W s_W & -c_W s_W & c_W^2 - s_W^2
\end{pmatrix}
\begin{pmatrix}
  f_\gamma \\
  f_Z \\
  f_\gamma Z
\end{pmatrix}
\]

- We work in the \((B, W)\) basis [See backup for details.]

- Double logs are retained through [Bauer, Ferland, Webber, 1703.08562.]

\[
f_3 = \frac{\alpha_W}{2\pi} \log \int_x^{1 - M_V/Q} \frac{dz P_{ff} \otimes (f_\nu - f_e)}{x} \sim \frac{\alpha_W}{2\pi} \log^2
\]

Same physics as the Rapidity RGE [Manohar, Waalewijn 1802.08687]
The QED⊗QCD PDFs for lepton colliders

**Electron beam:**
- Scale unc. 10% for $f_{g/e}$ [2103.09844]
- $\mu_{QCD}$ unc. 15%
- The averaged momentum fractions $\langle x_i \rangle = \int x f_i(x) dx \ [%]$

<table>
<thead>
<tr>
<th>$Q(e^\pm)$</th>
<th>$e_{val}$</th>
<th>$\gamma$</th>
<th>$\ell_{sea}$</th>
<th>$q$</th>
<th>$g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 GeV</td>
<td>96.6</td>
<td>3.20</td>
<td>0.069</td>
<td>0.080</td>
<td>0.023</td>
</tr>
<tr>
<td>50 GeV</td>
<td>96.5</td>
<td>3.34</td>
<td>0.077</td>
<td>0.087</td>
<td>0.026</td>
</tr>
<tr>
<td>$M_Z$</td>
<td>96.3</td>
<td>3.51</td>
<td>0.085</td>
<td>0.097</td>
<td>0.028</td>
</tr>
</tbody>
</table>

**Muon beam:**
- Scale unc. 20% for $f_{g/\mu}$ [2103.09844]
- $\mu_{QCD}$ unc. 5% [2106.01393]

<table>
<thead>
<tr>
<th>$Q(\mu^\pm)$</th>
<th>$\mu_{val}$</th>
<th>$\gamma$</th>
<th>$\ell_{sea}$</th>
<th>$q$</th>
<th>$g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 GeV</td>
<td>98.2</td>
<td>1.72</td>
<td>0.019</td>
<td>0.024</td>
<td>0.0043</td>
</tr>
<tr>
<td>50 GeV</td>
<td>98.0</td>
<td>1.87</td>
<td>0.023</td>
<td>0.029</td>
<td>0.0051</td>
</tr>
<tr>
<td>$M_Z$</td>
<td>97.9</td>
<td>2.06</td>
<td>0.028</td>
<td>0.035</td>
<td>0.0062</td>
</tr>
</tbody>
</table>
**EWPDFs of a lepton**

- The sea leptonic and quark PDFs

\[ \nu = \sum_i (\nu_i + \bar{\nu}_i), \ \ell_{\text{sea}} = \ell_{\text{val}} + \sum_{i \neq \ell_{\text{val}}} (\ell_i + \bar{\ell}_i), \ q = \sum_{i = d}^t (q_i + \bar{q}_i) \]

Even neutrino becomes active.

- All SM particles are partons [Han, Ma, KX, 2007.14300]
- \( W_L(Z_L) \) does not evolve: **Bjorken-scaling restoration**: \( f_{W_L}(x) = \frac{\alpha_2}{4\pi} \frac{1-x}{x} \).
- The EW correction can be large: \( \sim 50\% \ (100\%) \) for \( f_{d/e} \ (f_{d/\mu}) \) due to the relatively **large SU(2) gauge coupling**. [Han, Ma, KX et. al, 2106.01393]
- Scale uncertainty: \( \sim 15\% \ (20\%) \) between \( Q = 3 \) TeV and \( Q = 5 \) TeV
Parton luminosities at high-energy lepton colliders

Consider a 3 TeV $e^+e^-$ machine and a 10 TeV $\mu^+\mu^-$ machine

- Partonic luminosities for $\ell^+\ell^-$, $\gamma\ell$, $\gamma\gamma$, $qq$, $\gamma q$, $\gamma g$, $gg$, and $gg$

- The partonic luminosity of $\gamma g + \gamma q$ is $\sim 50\% \ (20\%)$ of the $\gamma\gamma$ one
- The partonic luminosities of $qq$, $gq$, and $gg$ are $\sim 2\% \ (0.5\%)$ of the $\gamma\gamma$ one
- Given the large strong coupling, sizable QCD cross sections are expected.
- Scale unc. are $\sim 20\% \ (50\%)$ for photon (gluon) luminosities
Di-jet production at possible lepton colliders

- Low-$p_T$ range is dominated by non-perturbative hadron production [backup for details]
- High-$p_T$ range $p_T > (4 + \sqrt{s}/3 \text{ TeV})$ GeV: perturbatively computable
- Threshold cut: $\hat{s} > 20$ GeV
- Detector angle: $\theta_{\text{cut}} = 5^\circ (10^\circ) \Leftrightarrow |\eta| < 3.13 (2.44)$

Including the QCD contribution leads to much larger total cross section.
- $gg$ initiated cross sections are large for its large multiplicity
- $gq$ initiated cross sections are large for its large luminosity.
- $\gamma\gamma$ initiated cross sections are slightly smaller than the EPA estimations.
- scale variation $Q : \sqrt{\hat{s}}/2 \to \sqrt{\hat{s}}$ brings a $6\% - 15\% (30\% - 40\%)$ enhancement
Kinematic distributions

A conservative acceptance cut: \(10^\circ < \theta < 170^\circ \Leftrightarrow |\eta| < 2.44\)

Two different mechanisms: \(\mu^+\mu^-\) annihilation v.s. fusion processes

- Annihilation is more than 2 orders of magnitude smaller than fusion process.
- Annihilation peaks at \(m_{ij} \sim \sqrt{s}\);
- Fusion processes peak near \(m_{ij}\) threshold.
- Annihilation sharply peaked around \(y_{ij} \sim 0\), spread out due to ISR;
- Fusion processes spread out, especially for \(\gamma q\) and \(\gamma g\) initiated ones.
Jet production dominates over $WW$ production until $p_T \gtrsim 60$ GeV or $E_j \gtrsim 200$ GeV.

QCD contributions are mostly forward-backward; $\gamma\gamma$, $\gamma q$, and $\gamma g$ initiated processes are more isotropic.
A high-energy muon collider

- All SM particles are partons at high energies: \( \langle x_i \rangle = \int x f_i(x) dx \) [%]

<table>
<thead>
<tr>
<th>( Q )</th>
<th>( \mu_{\text{val}} )</th>
<th>( \gamma, Z, \gamma Z )</th>
<th>( W^\pm )</th>
<th>( \nu )</th>
<th>( \ell_{\text{sea}} )</th>
<th>( q )</th>
<th>( g )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M_Z )</td>
<td>97.9</td>
<td>2.06</td>
<td>0</td>
<td>0</td>
<td>0.028</td>
<td>0.035</td>
<td>0.0062</td>
</tr>
<tr>
<td>3 TeV</td>
<td>91.5</td>
<td>3.61</td>
<td>1.10</td>
<td>3.59</td>
<td>0.069</td>
<td>0.13</td>
<td>0.019</td>
</tr>
<tr>
<td>5 TeV</td>
<td>89.9</td>
<td>3.82</td>
<td>1.24</td>
<td>4.82</td>
<td>0.077</td>
<td>0.16</td>
<td>0.022</td>
</tr>
</tbody>
</table>

- We need polarized PDFs due to the chiral nature of EW theory
- The EW parton luminosities [Han, Ma, KX, 2007.14300]
EW semi-inclusive processes

Just like in hadronic collisions:

\[ \mu^+ \mu^- \rightarrow \text{exclusive particles} + \text{remnants} \]
$t\bar{t}$ production at a muon collider
$W^+ W^-$, $ZH$ production

$\mu^+ \mu^- \rightarrow W^+ W^-$

$\mu^+ \mu^- \rightarrow ZH$

$\sqrt{s} = 14$ TeV

$\sqrt{s} = 14$ TeV

[Han, Ma, KX et al., 2106.01393]
Summary and prospects

- A high-energy muon collider is a dream machine for new physics search, both for energy and precision frontiers

**The parton picture play an important role**
- At very high energies, the collinear splittings dominate. **All SM particles should be treated as partons that described by EW PDFs.**
- The large collinear logarithm needs to be resummed via solving the DGLAP equations, so the **QCD partons (quarks and gluons) emerge.**
- When $Q > \mu_{EW}$, the EW splittings are activated: the EW partons appear, and the existing QED$\otimes$QCD PDFs may receive big corrections.

**A high-energy muon collider is an EW version HE LHC**
- Two classes of processes: $\mu^+\mu^-$ annihilation v.s. VBF [Han, Ma, KX, 2007.14300]
- Quark and gluon initiated jet production dominates [Han, Ma, KX, 2103.09844]
- EW PDFs are essential for high-energy muon colliders [Han, Ma, KX, 2007.14300, 2106.01393]
The QED⊗QCD DGLAP evolution

- The singlets and gauge bosons

\[
\frac{d}{d \log Q^2} \begin{pmatrix} f_L \\ f_U \\ f_D \\ f_\gamma \\ f_g \end{pmatrix} = \begin{pmatrix} P_{\ell\ell} & 0 & 0 & 2N_\ell P_{\ell\gamma} & 0 \\ 0 & P_{uu} & 0 & 2N_u P_{u\gamma} & 2N_u P_{ug} \\ 0 & 0 & P_{dd} & 2N_d P_{d\gamma} & 2N_d P_{dg} \\ P_{\gamma\ell} & P_{\gamma u} & P_{\gamma d} & P_{\gamma\gamma} & 0 \\ 0 & P_{gu} & P_{gd} & 0 & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_L \\ f_U \\ f_D \\ f_\gamma \\ f_g \end{pmatrix}
\]

- The non-singlets

\[
\frac{d}{d \log Q^2} f_{NS} = P_{ff} \otimes f_{NS}.
\]

- The averaged momentum fractions of the PDFs: \( f_{\ell\text{val}}, f_\gamma, f_{\ell\text{sea}}, f_q, f_g \)

\[
\langle x_i \rangle = \int x f_i(x) dx, \quad \sum_i \langle x_i \rangle = 1
\]

\[
\frac{\langle x_q \rangle}{\langle x_{\ell\text{sea}} \rangle} \gtrsim \frac{N_c \left[ \sum_i (e_{u_i}^2 + \bar{e}_{u_i}^2) + \sum_i (e_{d_i}^2 + \bar{e}_{d_i}^2) \right]}{e_{\ell\text{val}}^2 + \sum_{i \neq \text{val}} (e_{\ell_i}^2 + e_{\bar{\ell}_i}^2)} = \frac{22/3}{5}
\]
The EW isospin (T) and charge-parity (CP) basis

- The leptonic doublet and singlet in the (T,CP) basis
  \[ f_0^{0\pm} = \frac{1}{4} \left[ (f_{\nu_L} + f_{\ell_L}) \pm (f_{\bar{\nu}_L} + f_{\bar{\ell}_L}) \right], \quad f_1^{1\pm} = \frac{1}{4} \left[ (f_{\nu_L} - f_{\ell_L}) \pm (f_{\bar{\nu}_L} - f_{\bar{\ell}_L}) \right]. \]
  \[ f_0^{0\pm} = \frac{1}{2} [f_{e_R} \pm f_{\bar{e}_R}] \]

- Similar for the quark doublet and singlets.

- The bosonic
  \[ f_B^{0\pm} = f_{B_+} \pm f_{B_-}, \quad f_W^{1\pm} = f_{BW_+} \pm f_{BW_-}, \]
  \[ f_W^{0\pm} = \frac{1}{3} \left[ (f_{W_+} + f_{W_-} + f_{W_3^0}) \pm (f_{W_+} + f_{W_-} + f_{W_3^0}) \right], \]
  \[ f_W^{1\pm} = \frac{1}{2} \left[ (f_{W_+} - f_{W_-}) \mp (f_{W_+} - f_{W_-}) \right], \]
  \[ f_W^{2\pm} = \frac{1}{6} \left[ (f_{W_+} + f_{W_-} - 2f_{W_3^0}) \pm (f_{W_+} + f_{W_-} - 2f_{W_3^0}) \right]. \]
The EW PDFs in the singlet/non-singlet basis

Construct the singlets and non-singlets

- **Singlets**
  
  \[ f_L^{0,1\pm} = \sum_i f_{\ell}^{0,1\pm}, \quad f_E^{0\pm} = \sum_i f_e^{0\pm}, \]

- **Non-singlets**
  
  \[ f_{L,NS}^{0,1\pm} = f_{\ell_1}^{0,1\pm} - f_{\ell_2}^{0,1\pm}, \quad f_{E,NS}^{0\pm} = f_e^{0\pm} - f_e^{0\pm} \]

- **The trivial non-singlets**
  
  \[ f_{L,23}^{0,1\pm} = f_{E,23}^{0\pm} = 0 \]

Reconstruct the PDFs for each flavors

- **The leptonic PDFs**
  
  \[ f_{\ell_1}^{0,1\pm} = \frac{f_L^{0,1\pm} + (N_g - 1) f_{L,NS}^{0,1\pm}}{N_g}, \quad f_{\ell_2}^{0,1\pm} = f_{\ell_3}^{0,1\pm} = \frac{f_L^{0,1\pm} - f_{L,NS}^{0,1\pm}}{N_g}, \]
  \[ f_e^{0\pm} = \frac{f_E^{0\pm} + (N_g - 1) f_{E,NS}^{0\pm}}{N_g}, \quad f_{e_2}^{0\pm} = f_{e_3}^{0\pm} = \frac{f_E^{0\pm} - f_{E,NS}^{0\pm}}{N_g}. \]

- **The quark components can be constructed as singlets/non-singlets, and reconstructed correspondingly as well.**
The DGLAP in the singlet and non-singlet basis

\[
\frac{d}{dL} \begin{pmatrix}
    f_L^{0\pm} \\
    f_Q^{0\pm} \\
    f_E^{0\pm} \\
    f_U^{0\pm} \\
    f_D^{0\pm} \\
    f_B^{0\pm} \\
    f_W^{0\pm} \\
    f_g^{0\pm}
\end{pmatrix} = 
\begin{pmatrix}
    P_{LL}^{0\pm} & 0 & 0 & 0 & 0 & P_{LB}^{0\pm} & P_{LW}^{0\pm} & 0 \\
    0 & P_{QQ}^{0\pm} & 0 & 0 & 0 & P_{QB}^{0\pm} & P_{QW}^{0\pm} & P_{Qg}^{0\pm} \\
    0 & 0 & P_{EE}^{0\pm} & 0 & 0 & P_{EB}^{0\pm} & 0 & 0 \\
    0 & 0 & 0 & P_{UU}^{0\pm} & 0 & P_{UB}^{0\pm} & 0 & P_{Ug}^{0\pm} \\
    0 & 0 & 0 & 0 & P_{DD}^{0\pm} & P_{DB}^{0\pm} & 0 & P_{Dg}^{0\pm} \\
    P_{BL}^{0\pm} & P_{BQ}^{0\pm} & P_{BE}^{0\pm} & P_{BU}^{0\pm} & P_{BB}^{0\pm} & 0 & 0 & 0 \\
    P_{WL}^{0\pm} & P_{WQ}^{0\pm} & 0 & 0 & 0 & P_{WW}^{0\pm} & 0 & 0 \\
    0 & P_{gQ}^{0\pm} & 0 & P_{gU}^{0\pm} & P_{gD}^{0\pm} & 0 & 0 & P_{gg}^{0\pm}
\end{pmatrix} \otimes
\begin{pmatrix}
    f_L^{0\pm} \\
    f_Q^{0\pm} \\
    f_E^{0\pm} \\
    f_U^{0\pm} \\
    f_D^{0\pm} \\
    f_B^{0\pm} \\
    f_W^{0\pm} \\
    f_g^{0\pm}
\end{pmatrix}
\]

\[
\frac{d}{dL} \begin{pmatrix}
    f_L^{1\pm} \\
    f_Q^{1\pm} \\
    f_W^{1\pm} \\
    f_B^{1\pm} \\
\end{pmatrix} = 
\begin{pmatrix}
    P_{LL}^{1\pm} & 0 & P_{LL}^{1\pm} & P_{LM}^{1\pm} \\
    0 & P_{QQ}^{1\pm} & P_{QW}^{1\pm} & P_{QM}^{1\pm} \\
    P_{WL}^{1\pm} & P_{WQ}^{1\pm} & P_{WW}^{1\pm} & 0 \\
    P_{ML}^{1\pm} & P_{MQ}^{1\pm} & 0 & P_{MM}^{1\pm}
\end{pmatrix} \otimes
\begin{pmatrix}
    f_L^{1\pm} \\
    f_Q^{1\pm} \\
    f_W^{1\pm} \\
    f_B^{1\pm}
\end{pmatrix}
\]

\[
\frac{d}{dL} f_W^{2\pm} = P_{WW}^{2\pm} \otimes f_W^{2\pm}
\]

The splitting functions can be constructed in terms of Refs. [Han et al. 1611.00788, Bauer et al. 1703.08562, 1808.08831]
Large photon induced non-perturbative hadronic production


- $\sigma_{\gamma\gamma \rightarrow \text{hadrons}}$ may reach micro-barns level at TeV c.m. energies
- $\sigma_{\ell\ell \rightarrow \text{hadrons}}$ may reach nano-barns, after folding in the $\gamma\gamma$ luminosity

• The events populate at low $p_T$ regime
  So we can separate from this non-perturbative range via a $p_T$ cut.

[T. Barklow, D. Dannheim, M. O. Sahin, and D. Schulte, LCD-2011-020]