## A separable Bethe-Salpeter approach to deuteron structure



- Main idea: deuteron structure in a separable Bethe-Salpeter approach.
- Separability means the Bethe-Salpeter equation can be solved.
- Solving a Bethe-Salpeter equation has several benefits:
- Ensures covariance.
- Ensures correct normalization.
- Allows two-body currents to be derived from Lagrangian.
- The true $N N$ interaction isn't separable—need a model.
- This talk is about such a model.
- I'm going to present some in-progress work here.
- Details and results aren't all finalized.
- Thoughts and suggestions are welcome!

- Figure above from Gilman \& Gross, AIP Conf. Proc. 603 (2001) 55
- This talk is about a Bethe-Salpeter approach. (but without locality)
- Generalized parton distributions exhibit polynomiality.

$$
\int \mathrm{d} x x H_{1}(x, \xi, t)=\mathcal{G}_{1}(t)+\xi^{2} \mathcal{G}_{3}(t) \quad \text { etc. }
$$

- Required for unambiguous extraction of energy-momentum tensor from GPDs.
- Polynomiality requires covariance.
- X. Ji, J. Phys. G24 (1998) 1181
- Finite Fock expansion (standard method) violates covariance.
- Example: landmark calculation of Cano and Pire EPJA 19 (2004) 423

- Adapted from non-local NJL model.
- Bowler \& Birse, Nucl. Phys. A582 (1995) 655
- Modified to be a nucleon-nucleon interaction.
- $V$ and $T$ currents in isosinglet channel:

$$
\begin{aligned}
B_{V n}^{\mu}(x) & =\frac{1}{2} \int \mathrm{~d}^{4} z f_{n}(z) \psi^{\top}\left(x+\frac{z}{2}\right) C^{-1} \tau_{2} \gamma^{\mu} \psi\left(x-\frac{z}{2}\right) \\
B_{T n}^{\mu \nu}(x) & =\frac{1}{2} \int \mathrm{~d}^{4} z f_{n}(z) \psi^{\top}\left(x+\frac{z}{2}\right) C^{-1} \tau_{2} \mathbf{i} \sigma^{\mu \nu} \psi\left(x-\frac{z}{2}\right)
\end{aligned}
$$

- $f_{n}(z)$ a spacetime form-factor; regulates UV divergences.
- $f_{n}(z) \rightarrow \delta^{(4)}(z)$ gives (local) four-point contact interaction.
- Interaction Lagrangian:

$$
\mathscr{L}_{I}=\sum_{n=1}^{N}\left\{g_{V n} B_{V n}^{\mu}\left(B_{V n \mu}\right)^{*}+\frac{1}{2} g_{T n} B_{T n}^{\mu \nu}\left(B_{T n \mu \nu}\right)^{*}\right\}
$$

- Momentum-space Feynman rule for interactions:

- Separable interaction: initial \& final momentum dependence factorize.
- (isospin dependence suppressed to compactify formula)
- $\widetilde{f}_{n}(k)$ is Fourier transform of $f_{n}(z)$; I choose Yukawa form:

$$
\widetilde{f}_{n}(k) \equiv \frac{\Lambda}{k^{2}-\Lambda_{n}^{2}+\mathrm{i} 0}
$$

- $\Lambda_{n}$ is the regulator scale (non-locality scale).
- Each $\Lambda_{n}$ can be different!
- Kernel encodes channels with multiple quantum numbers:

$$
\gamma^{\mu} C \otimes C^{-1} \gamma_{\mu}=\left(\gamma^{\mu}-\frac{\not p p^{\mu}}{p^{2}}\right) \underset{\uparrow}{\text { spin-one }} \underset{\uparrow}{\otimes} C^{-1}\left(\gamma_{\mu}-\frac{\not p p_{\mu}}{p^{2}}\right)+\frac{1}{p^{2}} \not p C \overbrace{\uparrow}^{\otimes} C^{-1} \not p
$$

$$
\sigma^{\mu \nu} C \otimes C^{-1} \sigma_{\mu \nu}=\frac{1}{p^{2}} \sigma^{\mu p} C \stackrel{\otimes}{\otimes} C^{-1} \sigma_{\mu p}+\left(\sigma^{\mu \nu}-\frac{\sigma^{\mu p} p^{\nu}-\sigma^{\nu p} p^{\mu}}{p^{2}}\right) C \underset{\uparrow}{\otimes} C^{-1}\left(\sigma^{\mu \nu}-\frac{\sigma^{\mu p} p^{\nu}-\sigma^{\nu p} p^{\mu}}{p^{2}}\right)
$$

even parity
odd parity

- $p$ is center-of-mass momentum (deuteron momentum)
- Need only structures with deuteron quantum numbers:

$$
\gamma_{V}^{\mu} \equiv \gamma^{\mu}-\frac{\not p p^{\mu}}{p^{2}} \quad \gamma_{T}^{\mu} \equiv \frac{\mathrm{i} \sigma_{\mu p}}{\sqrt{p^{2}}}
$$

- Other structures fully decouple in the T-matrix equation!
- Bethe-Salpeter equation (BSE) for T-matrix given by:

- Separability of interaction entails separability of T-matrix:

$$
\mathcal{T}\left(p, k, k^{\prime}\right)=\sum_{\substack{n=1 \\ m=1}}^{N} \sum_{\substack{X=V, T \\ Y=V, T}} \frac{\Lambda_{n}}{k^{\prime 2}-\Lambda_{n}^{2}} \frac{\Lambda_{m}}{k^{2}-\Lambda_{m}^{2}}\left(\gamma_{X}^{\mu} C \otimes C^{-1} \gamma_{Y \mu}\right) T_{X Y}^{n m}\left(p^{2}\right)
$$

- Helpful to arrange $T_{X Y}^{n m}\left(p^{2}\right)$ into a matrix.
- Helpful to arrange $T_{X Y}^{n m}\left(p^{2}\right)$ into a matrix.

$$
T\left(p^{2}\right)=\left[\begin{array}{ccccc}
T_{V V}^{11}\left(p^{2}\right) & T_{V T}^{11}\left(p^{2}\right) & T_{V V}^{12}\left(p^{2}\right) & T_{V T}^{12}\left(p^{2}\right) & \ldots \\
T_{T V}^{11}\left(p^{2}\right) & T_{T T}^{11}\left(p^{2}\right) & T_{T V}^{12}\left(p^{2}\right) & T_{T T}^{12}\left(p^{2}\right) & \ldots \\
T_{V V}^{21}\left(p^{2}\right) & T_{V T}^{21}\left(p^{2}\right) & T_{V V}^{22}\left(p^{2}\right) & T_{V T}^{22}\left(p^{2}\right) & \ldots \\
T_{T V}^{21}\left(p^{2}\right) & T_{T T}^{21}\left(p^{2}\right) & T_{T V}^{22}\left(p^{2}\right) & T_{T T}^{22}\left(p^{2}\right) & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $N \times N$ grid of $2 \times 2$ block matrices.
- With this, the Bethe-Salpeter equation will become an algebraic matrix equation!

- T-matrix solution given by:

$$
T\left(p^{2}\right)=\left(1+K \Pi\left(p^{2}\right)\right)^{-1} K
$$

- Deuteron bound state pole exists where:

$$
\operatorname{det}\left(1+K \Pi\left(p^{2}=M_{\mathrm{D}}^{2}\right)\right)=0
$$

- Deuteron vertex from residues at pole:

$$
T\left(p^{2} \approx M_{\mathrm{D}}^{2}\right) \approx-\frac{1}{p^{2}-M_{\mathrm{D}}^{2}}\left[\begin{array}{cccc}
\alpha_{1}^{2} & \alpha_{1} \beta_{1} & \alpha_{1} \alpha_{2} & \ldots \\
\alpha_{1} \beta_{1} & \beta_{1}^{2} & \alpha_{2} \beta_{1} & \ldots \\
\alpha_{1} \alpha_{2} & \alpha_{2} \beta_{1} & \alpha_{2}^{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $\alpha$ and $\beta$ are coefficients in deuteron Bethe-Salpeter vertex.
- Correct normalization automatically from solving Bethe-Salpeter equation.
- The result of all this is a deuteron Bethe-Salpeter vertex:

$$
\Gamma_{\mathrm{D}}^{\mu}(p, k)=\sum_{n=1}^{N} \frac{\Lambda_{n}}{k^{2}-\Lambda_{n}^{2}+\mathrm{i} 0}\left\{\alpha_{n} \gamma_{V}^{\mu}+\beta_{n} \gamma_{T}^{\mu}\right\} C \tau_{2}
$$

- Simple $k$ dependence fixed by separable interaction.
- Can be used to covariantly calculate all sorts of observables.
- Relationship to fundamental model parameters:

$$
\left\{\Lambda_{n}, g_{V n}, g_{T n}\right\} \rightarrow\left\{M_{\mathrm{D}}, \alpha_{n}, \beta_{n}\right\}
$$

- One constraint from empirical $M_{\mathrm{D}}$ value.
- More constraints from empirical properties, e.g. charge radius.
- More constraints from good behavior of non-relativistic limit!
- Non-relativistic, momentum-space wave function:

$$
\psi_{\mathrm{NR}}(\boldsymbol{k}, \lambda) \sim \frac{-1}{\sqrt{8 M_{\mathrm{D}}}} \frac{\bar{u}\left(\boldsymbol{k}, s_{1}\right)\left(\Gamma_{\mathrm{D}} \cdot \varepsilon_{\lambda}\right) \bar{u}^{\top}\left(-\boldsymbol{k}, s_{2}\right)}{\boldsymbol{k}^{2}+m \epsilon_{\mathrm{D}}}
$$

- Working out the Dirac matrix algebra and using the limit $\boldsymbol{k}^{2} \ll m^{2}$ will give:

$$
\begin{array}{cc}
\psi_{\mathrm{NR}}(\boldsymbol{k}, \lambda)=4 \pi\left\{u(k) Y_{101}^{\lambda}(\hat{k})+w(k) Y_{121}^{\lambda}(\hat{k})\right\} \\
u(k)=\sum_{j=0}^{N} \frac{C_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} & w(k)=\sum_{j=0}^{N} \frac{D_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} \\
C_{j}=C_{j}\left(\alpha_{n}, \beta_{n}, \Lambda_{n}\right) & D_{j}=D_{j}\left(\alpha_{n}, \beta_{n}, \Lambda_{n}\right)
\end{array}
$$

$$
\begin{aligned}
& B_{0}=\sqrt{m \epsilon_{\mathrm{D}}} \\
& B_{n}=\Lambda_{n}
\end{aligned}
$$

- $u(k)$ is S-wave, $w(k)$ is D-wave.
- This is a standard parametrization for deuteron wave functions:

$$
u(k)=\sum_{j=0}^{N} \frac{C_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} \quad w(k)=\sum_{j=0}^{N} \frac{D_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}}
$$

- First used by Paris group, Lacombe et al., PLB 101 (1981) 139
- Entails coordinate-space forms:

$$
u(r)=\sum_{j=0}^{N} C_{j} \mathrm{e}^{-B_{j} r} \quad w(r)=\sum_{j=0}^{N} D_{j} \mathrm{e}^{-B_{j} r}\left(1+\frac{3}{B_{j} r}+\frac{3}{\left(B_{j} r\right)^{2}}\right)
$$

- Requires $B_{0}=\sqrt{\epsilon_{\mathrm{D}} m}$ to get the right large- $r$ behavior. (Check!)
- Require the following for correct $r \rightarrow 0$ behavior:

$$
\sum_{j=0}^{N} C_{j}=\sum_{j=0}^{N} D_{j}=\sum_{j=0}^{N} D_{j} B_{j}^{-2}=\sum_{j=0}^{N} D_{j} B_{j}^{2}=0
$$

- These impose extra constraints on separable kernel.
- Need $N \geq 3$ for non-zero D-wave.

1. Old idea: use the $\left\{B_{j}, C_{j}, D_{j}\right\}$ from an existing wave function to build deuteron vertex

- Numerically unstable; finely-tuned cancelations
- Saw some success by refitting with fewer terms; less accuracy

2. New idea: build a minimal consistent model

- Smallest $N$ consistent with non-zero D-wave
- Fit parameters to static deuteron properties
- I'll pursue this idea here
- One typically uses $B_{j}=B_{0}+B^{\prime} j$ (just 1 parameter for the $B_{j}$ 's).
- $N=3$ smallest model with non-zero D-wave and correct $r \rightarrow 0$ behavior.
- $2 N+3=8$ parameters.
- 4 constraints from $r \rightarrow 0$ behavior, 1 from normalization.
- $2 N-2=4$ free parameters.
- Empirical D/S asymptotic ratio can add another constraint:

$$
\lim _{r \rightarrow \infty} \frac{w(r)}{u(r)}=\frac{D_{0}}{C_{0}}=\eta_{D / S}=0.0256(4)
$$

- Last 3 parameters can be set with 3 electromagnetic properties.
- Charge radius $\left(r_{d}\right)$, magnetic moment $\left(\mu_{d}\right)$, quadrupole moment $\left(Q_{d}\right)$
- One can obtain the kernel parameters from the Yukawa parametrization:

$$
\left\{C_{j}\right\},\left\{D_{j}\right\} \rightarrow\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \rightarrow\left\{g_{V n}\right\},\left\{g_{T n}\right\}
$$




- Softer D-wave than AV18 \& Paris
- Harder D-wave than CD-Bonn
- Electromagnetic form factors (obtained!)
- Collinear parton distributions (obtained!)
- Includes $b_{1}$ structure function and EMC ratio.
- Gravitational form factors (in progress)
- Manifest covariance helpful here.
- Previous non-covariant work (AF \& Cosyn, PRD) found inconsistencies in EMT components.
- Currently hit a snag in separable model calculations (open to advice/suggestions!)
- Generalized parton distributions (in progress)
- GPDs are the main goal of this project.
- Existing deuteron GPDs violate polynomiality.
- Manifest covariance of this framework guarantees polynomiality.
- Sum of nucleon impulse and two-body currents:

- Two-body current uniquely determined by gauge invariance.
- Non-local interaction requires Wilson lines.
- Diagrams can be evaluated exactly in the separable model!
- Symbolic algebra program needed though—results are long (hundreds of lines of generated Fortran code)
- Results are covariant too.
- Nucleon impulse given by triangle diagram

- Can use standard nucleon form factors in vertex;

- Using Kelly parametrization; meaning to try Ye et al.
- Two-body currents given by bicycle diagram

- Derived from Wilson lines in vertex:

$$
\begin{aligned}
\widetilde{h}_{X}^{\mu}(k, q) & =\int_{-1}^{+1} \mathrm{~d} \tau \frac{\operatorname{sgn}(\tau) \Lambda_{X}\left(k^{\mu}-\tau \frac{q^{\mu}}{2}\right)}{\left[\left(k-\tau \frac{q}{2}\right)^{2}-\Lambda_{X}^{2}\right]^{2}}
\end{aligned}
$$

- A free Lagrangian for pointlike nucleons might look like:

$$
\mathscr{L}=\bar{\psi}(x)\left(\frac{\mathrm{i}}{2} \overleftrightarrow{\not \partial}-e A(x)\right) \psi(x)-\frac{e \kappa}{4 m_{N}} F_{\mu \nu}(x) \bar{\psi}(x) \sigma^{\mu \nu} \psi(x)
$$

- Effectively, $F_{1 N}(t)=1$ and $F_{2 N}(t)=\kappa$.
- Anomalous magnetic moment in non-minimal Puali coupling.
- Smearing this over spacetime might look like:

$$
\begin{array}{r}
\mathscr{L}=\frac{\mathrm{i}}{2} \bar{\psi}(x) \overleftrightarrow{\not \partial} \psi(x)-e \int \mathrm{~d}^{4} y \widetilde{F}_{1 N}(y) \bar{\psi}(x) \mathscr{A}(x+y) \psi(x) \\
-\frac{e}{4 m_{N}} \int \mathrm{~d}^{4} y \widetilde{F}_{2 N}(y) F_{\mu \nu}(x+y) \bar{\psi}(x) \sigma^{\mu \nu} \psi(x)
\end{array}
$$

- Wilson lines should be smeared if minimal coupling is.
- $F_{1 N}$ is what smears the non-minimal coupling.
- Foreshadowing: it's less clear what to do for gravitational structure of vertex.
- Standard form factor breakdown:

$$
J_{D}^{\mu}\left(p, p^{\prime}\right)=\text { 促 }
$$

- Often use Sachs-like form factors:

$$
\begin{aligned}
& G_{C}(t)=G_{1}(t)-\frac{t}{6 M_{\mathrm{D}}^{2}} G_{Q}(t) \\
& G_{M}(t)=G_{2}(t) \\
& G_{Q}(t)=G_{1}(t)-G_{2}(t)+\left(1-\frac{t}{4 M_{\mathrm{D}}^{2}}\right) G_{3}(t)
\end{aligned}
$$

Coulomb form factor
magnetic form factor
quadrupole form factor




|  | Empirical | Model (total) | Impulse approx. | Two-body current |
| :---: | :---: | :---: | :---: | :---: |
| $r_{d}(\mathrm{fm})$ | 2.12799 | 2.126 | 2.127 | -0.0776 |
| $\mu_{d}\left(\mu_{N}\right)$ | 0.8574382284 | 0.876 | 0.876 | 0 |
| $Q_{d}\left(e-\mathrm{fm}^{2}\right)$ | 0.2859 | 0.296 | 0.286 | 0.010 |

- Model has mixed success.
- Better at smaller - $t$.
- Two-body currents are significant.






- Sum of convolution and two-body current diagrams:

- Diagrams evaluated in the Bjorken limit:

- Here $0<x_{D}<1$, in contrast to usual normalization.
- $0<x_{\mathrm{Bj}}=\frac{M_{d}}{m_{N}} x_{D}<\frac{M_{d}}{m_{N}} \approx 2$ is the usual variable.
- $x_{D}$ is easier to use in calculations.
- Compare empirical data in terms of $x_{\mathrm{Bj}}$.
- Effective triangle diagram (Bjorken limit):

- Convolution formula results:

$$
H_{i}\left(x_{D}, \xi, t, Q^{2} ; \lambda\right)=\sum_{N=p, n} \int_{-1}^{1} \frac{\mathrm{~d} y}{|y|}\left[h_{i}(y, \xi, t ; \lambda) H_{N}\left(\frac{x_{D}}{y}, \frac{\xi}{y}, t, Q^{2}\right)\right.
$$

- Forward limit $(t \rightarrow 0)$ gives standard PDF convolution:

$$
\left.+e_{i}(y, \xi, t ; \lambda) E_{N}\left(\frac{x_{D}}{y}, \frac{\xi}{y}, t, Q^{2}\right)\right]
$$

$$
q_{d}\left(x_{D}, Q^{2} ; \lambda\right)=\sum_{N=p, n} \int_{x_{D}}^{1} \frac{\mathrm{~d} y}{y} f(y ; \lambda) q_{N}\left(\frac{x_{D}}{y}, Q^{2}\right)
$$

- Light cone density: a PDF assuming pointlike nucleons.

- Nucleon sum rule obeyed:

$$
\sum_{N=p, n} \int_{0}^{1} \mathrm{~d} y f(y ; \lambda)=2
$$

- Momentum sum rule seemingly violated!

$$
\sum_{N=p, n} \int_{0}^{1} \mathrm{~d} y y f(y ; \lambda)=\left\{\begin{array}{lll}
1.0042 & : & \lambda= \pm 1 \\
0.9978 & : & \lambda=0
\end{array}\right.
$$



- Interaction carries momentum
- Effective bicycle diagram (Bjorken limit):

- New Feynman rule for operator insertion:

$$
\underbrace{j, k_{1}}_{j^{\prime}, k_{4}}=-\frac{1}{2} \sum_{X} g_{X} \mathcal{S}\left\{\tilde{h}_{X}^{+}\left(k, k_{3}\right)\left(\delta\left(x p^{+}-k_{1}^{+}\right)+\delta\left(x p^{+}-k_{2}^{+}\right)\right) \tilde{f}_{X}\left(k^{\prime}\right)\right.
$$

$$
\left.-\widetilde{f}_{X}(k) \widetilde{h}_{X}^{+}\left(k^{\prime}, 0\right)\left(\delta\left(x p^{+}-k_{3}^{+}\right)+\delta\left(x p^{+}-k_{4}^{+}\right)\right)\right\}\left(\gamma_{X}^{\nu} C \tau_{2}\right)_{i^{\prime} j^{\prime}}\left(C^{-1} \tau_{2} \bar{\gamma}_{X \nu}\right)_{i j}
$$

- ...assuming pointlike nucleon.
- Use convolution formula to fold in $N N$ vertex structure???

- Momentum sum rule obeyed.
- Saved by the bicycle diagram!
- Also makes LCD symmetric.

$$
f_{U}(y)=\frac{f(y, 0)+f(y,+1)+f(y,-1)}{3}
$$

- Slight negative support.
- Either a flaw with the framework ...

$$
f_{T}(y)=f(y, 0)-\frac{f(y,+1)+f(y,-1)}{2}
$$

- ...or a feature of renormalization? cf. Collins, Rogers \& Sato, PRD (2022)
- Deuteron PDFs via convolution:
$q_{d}\left(x_{D}, Q^{2} ; \lambda\right)=\sum_{N=p, n} \int_{x_{D}}^{1} \frac{\mathrm{~d} y}{y} q_{N}\left(\frac{x_{D}}{y}, Q^{2}\right) f(y ; \lambda)$
- Use JAM PDFs for nucleon.
- C. Cocuzza et al., PRD106 (2022) L031502
- Same PDF for triangle \& bicycle diagrams.

- Plot in terms of

$$
x=x_{\mathrm{Bj}} \equiv \frac{Q^{2}}{2 m_{N} \nu}=\frac{M_{d}}{m_{N}} x_{D} \approx 2 x_{D}
$$

- This is the standard $x$ variable.



- Use free nucleon PDFs inside both triangle \& bicycle diagrams.
- Use JAM22 PDFs.
- Unpolarized $F_{2 D}\left(x_{\mathrm{Bj}}, Q^{2}\right)$ structure function.
- Looks reasonable.
- But no EMC effect when using free PDFs.
- Tensor-polarized $b_{1 D}\left(x_{\mathrm{Bj}}, Q^{2}\right)$ structure function looks standard.
- Total (blue curve) looks similar to Cosyn \&al., PRD (2017).
- Can't explain HERMES $b_{1}$ data.
- The energy-momentum tensor describes density and flow of energy \& momentum.

$$
\begin{gathered}
\text { Energy density } \\
T^{\tilde{\mu} \nu}(x)=\left[\begin{array}{cccc} 
& \begin{array}{lll}
T^{00}(x) & T^{01}(x) & T^{02}(x)
\end{array} T^{03}(x) \\
T^{10}(x) & T^{11}(x) & T^{12}(x) & T^{13}(x) \\
T^{20}(x) & T^{21}(x) & T^{22}(x) & T^{23}(x) \\
T^{30}(x) & T^{31}(x) & T^{32}(x) & T^{33}(x)
\end{array}\right] \\
\\
\\
\end{gathered}
$$

- Conserved current from local spacetime translations (Noether's second theorem):

- Noether's theorems: symmetries imply conservation laws
- Local translation: move spacetime differently everywhere
- The energy-momentum tensor is a response to these deformations

$$
\Delta S_{\mathrm{QCD}}=\int \mathrm{d}^{4} x T_{\mathrm{QCD}}^{\mu \nu}(x) \partial_{\mu} \xi_{\nu}(x)
$$

- Conserved if the action is invariant
- Basically, equivalent to doing a gravitational gauge transform.
- The energy-momentum tensor is parametrized using gravitational form factors
- It's just a name.
- The energy-momentum tensor is the source of gravitation
- But we don't really use gravitation to measure them
- Spin-zero example:

$$
\left\langle p^{\prime}\right| \hat{T}^{\mu \nu}(0)|p\rangle=2 P^{\mu} P^{\nu} A(t)+\frac{1}{2}\left(\Delta^{\mu} \Delta^{\nu}-\Delta^{2} g^{\mu \nu}\right) D(t)
$$

- $A(t)$ encodes momentum density
- $D(t)$ encodes stress distributions (anisotropic pressures)
- Mix of both encodes energy density

- Sum of nucleon impulse and two-body currents:

- Two-body current uniquely determined via Noether's second theorem.
- Diagrams can be evaluated exactly in the separable model!
- Symbolic algebra program needed though—results are long (hundreds of lines of generated Fortran code)
- Results are covariant too.
- Nucleon impulse given by triangle diagram

- Can use standard nucleon form factors in vertex;

- Using Mamo-Zahed model for form factors.


## Energy-momentum-currents: bicycle diagram

- Two-body currents given by bicycle diagram

- Derived from Noether's second theorem—assuming pointlike nucleons:


$$
\times\left(\gamma_{X}^{\nu} C \tau_{2}\right)_{i^{\prime} j^{\prime}}\left(C^{-1} \tau_{2} \bar{\gamma}_{X \nu}\right)_{i j}-g^{\mu \nu} \times \text { kernel }
$$

- How to fold in nucleon structure?
- Trying $A_{N}(t)$ at first but there are issues.
- Spin-one breakdown:

$$
\begin{aligned}
\left\langle p^{\prime}, \lambda^{\prime}\right| T_{\mu \nu}(0)|p, \lambda\rangle & =-2 P_{\mu} P_{\nu}\left[\left(\epsilon^{\prime *} \epsilon\right) \mathcal{G}_{1}(t)-\frac{\left(\Delta \epsilon^{\prime *}\right)(\Delta \epsilon)}{2 M_{\mathrm{D}}^{2}} \mathcal{G}_{2}(t)\right] \\
& -\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-\Delta^{2} g_{\mu \nu}\right)\left[\left(\epsilon^{\prime *} \epsilon\right) \mathcal{G}_{3}(t)-\frac{\left(\Delta \epsilon^{\prime *}\right)(\Delta \epsilon)}{2 M_{\mathrm{D}}^{2}} \mathcal{G}_{4}(t)\right] \\
& +P_{\{\mu}\left(\epsilon_{\nu\}}^{\prime *}(\Delta \epsilon)-\epsilon_{\nu\}}\left(\Delta \epsilon^{\prime *}\right)\right) \mathcal{G}_{5}(t) \\
& +\frac{1}{2}\left[\Delta_{\{\mu}\left(\epsilon_{\nu\}}^{\prime *}(\Delta \epsilon)+\epsilon_{\nu\}}\left(\Delta \epsilon^{\prime *}\right)\right)-\epsilon_{\{\mu}^{\prime *} \epsilon_{\nu\}} \Delta^{2}-g_{\mu \nu}\left(\Delta \epsilon^{\prime *}\right)(\Delta \epsilon)\right] \mathcal{G}_{6}(t) \\
& +\epsilon_{\{\mu}^{\prime *} \epsilon_{\nu\}} M_{\mathrm{D}}^{2} \mathcal{G}_{7}(t)+g_{\mu \nu} M_{\mathrm{D}}^{2}\left(\epsilon^{\prime *} \epsilon\right) \mathcal{G}_{8}(t)+\frac{1}{2} g_{\mu \nu}\left(\Delta \epsilon^{\prime *}\right)(\Delta \epsilon) \mathcal{G}_{9}(t)
\end{aligned}
$$

- Well, that's a lot. (Nine form factors!)
- $\mathcal{G}_{7-9}(t)=0$ required by energy/momentum conservation!


- $\mathcal{G}_{7}(t)$ should vanish at all $t$.
- Follows from energy conservation.
- Only works out at $t=0$.
- $t=0$ values related to LCD (check!)

$$
\begin{aligned}
& \int_{0}^{1} \mathrm{~d} y y f_{T}^{\mathrm{tri}}(y)=\mathcal{G}_{7}^{\mathrm{tri}}(t) \\
& \int_{0}^{1} \mathrm{~d} y y f_{T}^{\mathrm{bi}}(y)=\mathcal{G}_{7}^{\mathrm{bi}}(t)
\end{aligned}
$$

- Part of the $t$ dependence from nucleon form factors.
- Was I wrong to multiply bicycle diagram by $A_{N}(t)$ ?
- If so, then what's right-and how to derive?
- Important to resolve before moving on to GPDs- $\mathcal{G}_{7}(t)$ appears in GPD sum rules!
- Presented a covariant model of deuteron structure.
- Separable kernel.
- Bethe-Salpeter equation solvable in Minkowski spacetime.
- Covariance means GPDs will obey polynomiality.
- Reproduced known deuteron properties in this framework.
- Necessary sanity check.
- Two-body currents (bicycle diagrams) must be accounted for!
- Much more to be done:
- Energy momentum tensor and gravitational form factors.
- Generalized parton distributions (the main purpose of this project!)

Thank you for your time!

