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~Introduction

» Main idea: deuteron structure in a separable Bethe-Salpeter approach.
P Separability means the Bethe-Salpeter equation can be solved.

» Solving a Bethe-Salpeter equation has several benefits:

» Ensures covariance.
» Ensures correct normalization.
» Allows two-body currents to be derived from Lagrangian.

» The true N N interaction isn’t separable—need a model.
» This talk is about such a model.

> I’'m going to present some in-progress work here.

P Details and results aren’t all finalized.
» Thoughts and suggestions are welcome!
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The variety of approaches

Relativity
with a fixed number of particles

hamiltonian dynamics propagator dynamics

suppress negative energy states manifest covariance and locality
lose locality and manifest covariance include negative energy states
[ |
Equal Time (ET) manifest covariance
instant form front form point form | !
BSLT PWM Spectator Bethe-Salpeter

» Figure above from Gilman & Gross, AIP Conf. Proc. 603 (2001) 55

» This talk is about a Bethe-Salpeter approach. (but without locality)
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Why coevariance matters

» Generalized parton distributions exhibit pelynomiality. o1

0.05 |

/ Ao oH (2,6,8) = Gi(£) + £2G5(t)  ete.

=01
» Required for unambiguous extraction of

energy-momentum tensor from GPDs.

» Polynomiality requires covariance.
> X.Ji, J. Phys. G24 (1998) 1181

» Finite Fock expansion (standard method) violates
covariance.

» Example: landmark calculation of Cano and Pire
EPJA 19 (2004) 423

-0.05 |

. 0.4 .

6! 1ol B®
ceeeesaee] 02F E
—_—] « STV TT T3 5]
EICAN S E

|

| L I

L L
0.05 0.1 0.15 0.2

L
0 005 0.1 015 0.2

e

] 0

*1o0.05

-4 005

! ! ~0.1
0.05 0.1 0.15 0.2

! ! !
0 005 0.1 0.15 0.2

0.01 prerrr
0.005 [ I5(£)

0

T

T é

~0.005 f+ s ssssssst

—-0.01 & - -

0 005 0.1

£

0.15 0.2

4/42



Non-lecal Lagrangian

» Adapted from non-local NJL model.

» Bowler & Birse, Nucl. Phys. A582 (1995) 655
» Modified to be a nucleon-nucleon interaction.

» V and 7T currents in isosinglet channel:

By, () = % / d'z fu()" (24 5) €m0 - 2)

Bra(@) = ;/d% ()T (33 + %) Cryiohep (m — %)

» f.(z) a spacetime form-factor; regulates UV divergences.
» f.(z) = 6@ (z) gives (local) four-point contact interaction.

» Interaction Lagrangian:

N
_ .
2= Z {gV”B\ljn(BVnH) + §ngBC!ZL“I:L(BTn,LW) }

n=1
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—Kernel

» Momentum-space Feynman rule for interactions:

J i

3
—

P Separable interaction: initial & final momentum dependence factorize.
P (isospin dependence suppressed to compactify formula)

> fn(k) is Fourier transform of f,,(z); I choose Yukawa form:
7 4
k2= A2 410

» A, is the regulator scale (non-locality scale).

» FEach A,, can be different!
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Quantum-numbers in kernel

» Kernel encodes channels with multiple quantum numbers:

1 PPy 1

spin-one spin-zero

_ 1 B . wp, v vp, B » up, vV o _UD L
M CRC oy = L 0"C @ C 1(,,,p+<(,u - w) Coc ((,; _ w)
p p I p
even parity odd parity

P p is center-of-mass momentum (deuteron momentum)
» Need only structures with deuteron quantum numbers:

o .
wo_ o PP pwo— Oup

P Other structures fully decouple in the T-matrix equation! i



Bethe-Salpeter-equation for the T-matrix

» Bethe-Salpeter equation (BSE) for T-matrix given by:

\%’ik QH/V
p

4

2

L —

> Separability of interaction entails separability of T-matrix:

AITL —
p,k‘ k/ Z Z A’Q /12 k2 — A?n (’79(0(2)0 I'YY,u)T)?n}}(p?)

n=1 X=V,
m=1y= VT

» Helpful to arrange 7% (p?) into a matrix.
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Matrix form of the T-matrix

T () Tyr®) TR0 Ty ®?) -
Ty () Trr(®) T73,(0%) T37(07) -
T = | Tov 0®) Tor(®?) TR0 TR0 -
T3y () Tir(®) T, (0%) Ti70°) -

> N x N grid of 2 x 2 block matrices.

» With this, the Bethe-Salpeter equation will become an algebraic matrix equation!
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Elements of the-Bethe-Salpeter equation

S
[

>

SIS

T(p*) T(p?) K
Kernel Bubble matrix
gvi O 0 5
0 gm O ) = (:)
K =
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Deuteron-bound state pole

» T-matrix solution given by:

T(p*) =1+ KI{p*) 'K

» Deuteron bound state pole exists where:

det(1+ KII(p* = M3)) =0

» Deuteron vertex from residues at pole:

ai  a1fi ara
5 1 aifi B7 azfh
STEoME | moe mb o3

P « and 3 are coefficients in deuteron Bethe-Salpeter vertex.

» Correct normalization automatically from solving Bethe-Salpeter equation.
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Deuteron vertex

» The result of all this is a deuteron Bethe-Salpeter vertex:
" Ay
I (p k Zm{ n’YV-i-ﬁnWT}Cﬁ

» Simple k£ dependence fixed by separable interaction.
P Can be used to covariantly calculate all sorts of observables.

» Relationship to fundamental model parameters:

{AmgVna ng} — {MD7 a’flv 671}

» One constraint from empirical Mp value.
» More constraints from empirical properties, e.g. charge radius.

» More constraints from good behavior of non-relativistic limit!
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Non-relativistic reduction

» Non-relativistic, momentum-space wave function:

—1 ﬂ(k?, 81)(FD . SA)ﬂT(*k, 52)
8MD k2 + mep

YR (K, A) ~

» Working out the Dirac matrix algebra and using the limit k% < m? will give:

dnm (e, A) = dr{u(k) ity (k) + w(k) Vi (k) §

N C- N D
() — J ., - J
W= W= e
Ci - Cj(am Bna/ln) Dl - Dj(a7L7/3’L’A"L)
By = /mep
B,= A,

» (k) is S-wave, w(k) is D-wave.
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The Sum-of-Yukawas parametrization

» This is a standard parametrization for deuteron wave functions:

C; D;
“(k)_zk2+32 w(k)_ZkQ_i_BZ
j=0 7=0
» First used by Paris group, Lacombe et al., PLB 101 (1981) 139

» Entails coordinate-space forms:

N N 3 3
— o= Bjr — e =
r)—ngCje J w(r) ;)D]e " <1+Br+(Br))

» Requires By = /epm to get the right large-r behavior. (Check!)
» Require the following for correct » — 0 behavior:

N N N N
Y C¢;=>Dj=) D;B;*=> D;B} =
j=0 j=0 j=0 j=0

» These impose extra constraints on separable kernel.

» Need N > 3 for non-zero D-wave. L2



—Twoideas

1. Old idea: use the { B;,C};, D;} from an existing wave function to build deuteron vertex

» Numerically unstable; finely-tuned cancelations
P Saw some success by refitting with fewer terms; less accuracy

2. New idea: build a minimal consistent model

» Smallest N consistent with non-zero D-wave
P Fit parameters to static deuteron properties
» I’ll pursue this idea here
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Minimal-separable model

» One typically uses B; = By + B’j (just 1 parameter for the B;’s).

» /N = 3 smallest model with non-zero D-wave and correct » — 0 behavior.
> 2N + 3 = 8 parameters.

» 4 constraints from r — 0 behavior, 1 from normalization.
» 2N — 2 = 4 free parameters.

» Empirical D/S asymptotic ratio can add another constraint:

wr) Dy
r—oo u(r) Co

= np/s = 0.0256(4)

P Last 3 parameters can be set with 3 electromagnetic properties.
P Charge radius (r4), magnetic moment (1), quadrupole moment (@) )

» One can obtain the kernel parameters from the Yukawa parametrization:
{Cj}v {D]} - {an}a {/Bn} — {gVn}a {ng}
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Non-relativistic-wave function

—— Separable model 0.15
--= AVI8 ’

0.2 —-— Paris .
é_\ """" CD Bonn &

= = 0.10
) )
o <
3 3

= = 0.05
R L

0.00

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
k (GeV) k (GeV)

» Softer D-wave than AV18 & Paris

» Harder D-wave than CD-Bonn
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Things to-de-with this framework

» Electromagnetic form factors (obtained!)

» Collinear parton distributions (obtained!)
» Includes b; structure function and EMC ratio.

» Gravitational form factors (in progress)

» Manifest covariance helpful here.
» Previous non-covariant work (AF & Cosyn, PRD) found inconsistencies in EMT components.
» Currently hit a snag in separable model calculations (open to advice/suggestions!)

» Generalized parton distributions (in progress)

» GPDs are the main goal of this project.
» Existing deuteron GPDs violate polynomiality.
» Manifest covariance of this framework guarantees polynomiality.
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Electromagnetic current of deuteron

» Sum of nucleon impulse and two-body currents:

» Two-body current uniquely determined by gauge invariance.
» Non-local interaction requires Wilson lines.

» Diagrams can be evaluated exactly in the separable model!

» Symbolic algebra program needed though—results are long
(hundreds of lines of generated Fortran code)
P Results are covariant too.
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Electromagnetic-current: triangle diagram

» Nucleon impulse given by triangle diagram

la

»
>

» Can use standard nucleon form factors in vertex;

lA T (t)+iUHAF (1)
=7 Lr1IN Imn 2N

» Using Kelly parametrization; meaning to try Ye et al.
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Electromagnetic-current: bicycle diagram

» Two-body currents given by bicycle diagram

» Derived from Wilson lines in vertex:

J lq i’
() = e ox {Fk (k) Jx (k) = Fx Wk (K.0) } (5 Cm) (€7 77x,) | Fin(@)
X
1 7’

-, +1 sgn(7)Ax (k“ — 7-7“)
k= [
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» A free Lagrangian for pointlike nucleons might look like:

<

£ =) (“5 _ eA<x>) V&) = o Fu (@) ()

2

» Effectively, Fin(t) = 1 and Fon (L) = k.
» Anomalous magnetic moment in non-minimal Puali coupling.

» Smearing this over spacetime might look like:

i—

£ = 55(@) Fota) - ¢ [ aly Fiy()ie) Ao + 5)0(a)

- ﬁ / dby Fon (y) Fouw (z + y)ib(2) o™ ()

» Wilson lines should be smeared if minimal coupling is.
P> [y is what smears the non-minimal coupling.

» Foreshadowing: it’s less clear what to do for gravitational structure of vertex.
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Electromagnetic-form factors

» Standard form factor breakdown:

la

J5(p,p) =

Y

= —-2p"(e-M)G1(t) + [E’*“(a-A) — 8“(€I*~A)} Go(t) + —

» Often use Sachs-like form factors:

Gelt) = G1(0) - i

Gu(t) = Ga(t) magnetic form factor

Golt) = Ga(t) — Ga(t) + (1 - 4;43

Go(t) Coulomb form factor

) Gs(t) quadrupole form factor
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Model results for form factors

IUU

[Go(t)]

Empirical ‘ Model (total) Impulse approx. Two-body current
rq (fm) 2.12799 2.126 2.127 —0.0776
ta (un)  0.8574382284 0.876 0.876 0
Qg (e-fm?) 0.2859 0.296 0.286 0.010

» Model has mixed success.
» Better at smaller —¢.

» Two-body currents are significant.
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Virtual Comptoen. scattering amplitude

» Sum of convolution and two-body current diagrams:

» Diagrams evaluated in the Bjorken limit:

1 dZ : + - z z
— 2 izppTzT = +
—>E — _ D - I
q Q200 q€q2/27re q< 2>’yq(2>

» Here 0 < xp < 1, in contrast to usual normalization.
> 0 < = gf\] < % ~ 2 is the usual variable.

» 1 is easier to use in calculations.
» Compare empirical data in terms of xg;.
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Triangle diagram

» Effective triangle diagram (Bjorken limit):

» Convolution formula results:

N=p,n

+ ei(yagat; )‘)EN ('%.D’ §7ta Q2> :|
vy

» Forward limit (¢ — 0) gives standard PDF convolution:

qd Ip, Q2 Z / 7f ya (xyD7QQ>

N=p,n
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Light cone density-(triangle diagram)

» Light cone density: a PDF assuming pointlike nucleons.

_ P A
./2\\ pointlike nucleons f(y7 )

>

» Nucleon sum rule obeyed: 20
! 15
S dyfya) =2
N=p,n 0

10

» Momentum sum rule seemingly violated!

1
1.0042 : A=+l
dyyf(y; A) = {
NZp:n/O 09978 : A=0 0

Light cone density

» Interaction carries momentum



Bieycle diagram

» Effective bicycle diagram (Bjorken limit):

—
Q%00

» New Feynman rule for operator insertion:

Jrk i ks

- ZgXS{E;(k, 0)(8(p™ — k) + 8(apt — k3)) Fx (k')
X

i'j

— Fx (WR (K, 0)(8(ep™ = k) + 6(ap™ — k) } (som),., (€7 max)

» ...assuming pointlike nucleon.
P> Use convolution formula to fold in NV vertex structure??? 20/42



Light cone density-(triangle+bicycle)

0.050

0.025
= 0.000
=
5 —0.02

—0.050] " Trian
0 /. icyc

0.0 0.2 0.4 0.6 0.8 1.0
Y
» Momentum sum rule obeyed.
P Saved by the bicycle diagram!
» Also makes LCD symmetric.
» Slight negative support.

» Either a flaw with the framework ...
» ...or a feature of renormalization?
cf. Collins, Rogers & Sato, PRD (2022)

f(yvo) + f(yv +1) + f(ya _1)

fuly) = 3

f(ya +1) + f(ya _1)

fr(y) = f(y,0) - 5
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Collinear-parton-distributions

» Deuteron PDFs via convolution:

» Use JAM PDFs for nucleon.

» C. Cocuzza et al., PRD106 (2022) L031502

» Same PDF for triangle & bicycle diagrams.

» Plot in terms of

IL’:[L‘BJ'E

» This is the standard x variable.

Q2

2mpyv

107° 1074 1073 1072 107! 100

My
= —Ip~ QSUD
mn
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-
05 Total
~== Triangle diagram
0.4 —-— Bicycle diagram
P oNC
= T HERMES
&
<S03 i spac
B I Fommilab
LS 0.2 & BCDMS
0.1
0.0
0.0 0.5 1.0 1.5 2.0

DIS structure functions

Total
~==- Triangle diagram
—= Bicycle diagram
T BONUS

0.0 0.2 0.4 0.6 0.8

1.0

0.002

0.000

zbip(z, Q%)

—0.002

» Use free nucleon PDFs inside both triangle & bicycle diagrams.

> Use JAM22 PDFs.

» Unpolarized Fyp(wpj, Q%) structure function.

» Looks reasonable.

» But no EMC effect when using free PDFs.
» Tensor-polarized b; p(xg;, Q2) structure function looks standard.

P Total (blue curve) looks similar to Cosyn &al., PRD (2017).
» Can’t explain HERMES b, data.

Total

-~ Triangle diagram

—— Bieycle diagram

i

HERMES
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The energy-momentum tensor

» The energy-momentum tensor describes density and flow of energy & momentum.

Energy density
J Momentum densities
i TOO(J,‘) 701 (x) T02(x) T03(x) i
. Tlo(fE) Tll(fE) TIQ(IE) T13(IE)
™ (.%') - T20(.CC) T21(.T) T22(.T) T23(.T)
i T3O(x) 731 (:c) T32(:c) T33($) |
Energy fluxes |

Stress tensor
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Noether’s theorems-and spacetime distortions

» Conserved current from local spacetime translations (Noether’s second theorem):

r—z+E(x)

» Noether’s theorems: symmetries imply conservation laws
P Local translation: move spacetime differently everywhere

» The energy-momentum tensor is a response to these deformations

ASaen = / &t THY (2)0,6, ()

» Conserved if the action is invariant
» Basically, equivalent to doing a gravitational gauge transform.

AF, Phys. Rev. D 106 (2022) 125012 3442



Gravitational-form factors

» The energy-momentum tensor is parametrized using gravitational form factors
P It’s just a name.
» The energy-momentum tensor is the source of gravitation
» But we don’t really use gravitation to measure them

» Spin-zero example:
. 1
(p'[T7(0)lp) = 2PMPYA(t) + S (A*AY — A%g™) D (1)

» A(t) encodes momentum density

» D(t) encodes stress distributions
(anisotropic pressures)

» Mix of both encodes energy density

35/42



Gravitational-current of deuteron

» Sum of nucleon impulse and two-body currents:

T (.p) = , T2 L4
: L = I
—> —>

» Two-body current uniquely determined via Noether’s second theorem.
» Diagrams can be evaluated exactly in the separable model!

» Symbolic algebra program needed though—results are long
(hundreds of lines of generated Fortran code)
» Results are covariant too.

A 4
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Energy-momentum-currents: triangle diagram

» Nucleon impulse given by triangle diagram
|a

[
>

» Can use standard nucleon form factors in vertex;

A {n pr} iplugria APAY — AZghv
s ——An{t) + By (1) + g

Dy (1)

dmpn dmpy

» Using Mamo-Zahed model for form factors.
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Energy-momentum-currents: bicycle diagram

» Two-body currents given by bicycle diagram

» Derived from Noether’s second theorem—assuming pointlike nucleons:

J i’
lA
O - ‘% §gx{ﬁzi“<k, Ok Fx () = Fx ()R (K, )™ }

-/

i J

X (73’(072) _ (C’lTﬁXJ — g"” x kernel
il 5! ij
» How to fold in nucleon structure?

» Trying Ay (t) at first but there are issues. -



Gravitational form-factors for spin-one targets

» Spin-one breakdown:

(', N|T,(0)|p, \) = —2P,P, [(Gl*E)gl (t) — %gx )]
- %(Auﬁu — M%) [(6'*6)%(75) - (A;hkl\)i(;@gﬂf(t)}

+ P{“ (e(8e) = e (Ae)) G5 (1)
[A{u< o (Ae) + e ( (Ae™) ) e{u V}A gW(Ae’*)(Ae)} Ge(t)

+ €0 MBGR() + g MB(E G (1) + 50 (A) (Ae)Gio(1)

» Well, that’s a lot. (Nine form factors!)
» G7_9(t) = 0 required by energy/momentum conservation!
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The-G7 problem

0.0050

0.0025

= 0.0000

—0.0025

—0.0050

—— Full
—==- Impulse approximation

------- Two-body current

—t (GeV?)

» G7(t) should vanish at all ¢.
» Follows from energy conservation.

» Only works out at ¢ = 0.
» ¢ = 0 values related to LCD (check!)

1
/0 dyy S5 (y) = G (1)

1
/0 dy y () = GBI (1)

» Part of the ¢ dependence from nucleon form factors.
» Was I wrong to multiply bicycle diagram by Ay (¢)?

» If so, then what’s right—and how to derive?

» Important to resolve before moving on to GPDs—G(t) appears in GPD sum rules!
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—Qutlook

» Presented a covariant model of deuteron structure.

» Separable kernel.
P Bethe-Salpeter equation solvable in Minkowski spacetime.
» Covariance means GPDs will obey polynomiality.

» Reproduced known deuteron properties in this framework.

P Necessary sanity check.
» Two-body currents (bicycle diagrams) must be accounted for!

» Much more to be done:

» Energy momentum tensor and gravitational form factors.
» Generalized parton distributions (the main purpose of this project!)

Thank you for your time!
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