A lattice QCD calculation of the off-forward Compton amplitude and generalised parton distributions

Alec Hannaford Gunn
Ross Young, James Zanotti, Kadir Utku Can

For the CSSM/QCDSF/UKQCD collaboration

27th June, 2022
The H Compton form factor.

GPD moments.
1 Background:
What are GPDs? Why are we interested in lattice calculations?

2 Outline of method:
Novel application of Feynman-Hellmann methods

3 Established results:
Presented in AHG et al., PRD 105, 2022

4 New results
Preliminary!
1 GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

3 Established results
 presented in AHG et al., PRD 105, 2022

4 New Results
 Preliminary!

5 Conclusions and Outlook
Outline of the problem

- Extensions of parton distribution functions (PDFs), related to elastic form factors
- Contain a staggering amount of physical information: a solution to proton spin puzzle, the spatial distributions of hadron constituents, and more

However...

- Difficult to measure experimentally
- and difficult to calculate on the lattice

In this talk:

- a new lattice method to calculate GPDs (Feynman-Hellmann)
- with strong parallels to experimental measurements
What are generalised parton distributions?

Light-cone matrix element:

\[
\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \gamma_\mu \psi_q(\lambda n/2) | P \rangle \\
= H^q(x, \xi, t) \bar{u}(P') \gamma_\mu u(P) \\
+ E^q(x, \xi, t) \bar{u}(P') \frac{i\sigma^{\mu\nu} n_\mu \Delta_\nu}{2M} u(P).
\]

- \(H^q \) and \(E^q \) are helicity-conserving and -flipping GPDs (analogous \(F_1 \) and \(F_2 \)).
- \(t = (P' - P)^2 \) momentum transfer.
- \(x, \xi \) are momentum fractions.
Measurement of GPDs

Deeply virtual Compton scattering:
\[e^- + p \rightarrow e^- + p + \gamma. \]

Measure the off-forward Compton amplitude

Compton form factors at large \(-q^2\)

\[
\text{CFF} = \int_{-1}^{1} dx \left(\frac{1}{x - \xi + i\varepsilon} \pm \frac{1}{x + \xi + i\varepsilon} \right) \text{GPD}
\]

Difficulties:
- deconvolution problem,
- spanning kinematics,
- lack of theoretical constraints.

Lattice calculations:
- provide theoretical constraints,
- access unphysical kinematics \((\xi = 0)\),
- exclude models,

Our aim: calculate this OFCA with lattice QCD for \(\xi = 0\). Previous calculations: focus on leading-order.
Lattice QCD

QCD path integral

\[\langle O \rangle = \frac{1}{Z} \int \mathcal{D}A_\mu \mathcal{D}\bar{\psi} \mathcal{D}\psi O e^{iS_{\text{QCD}}}. \]

To evaluate this numerically:

1. discrete spacetime,
2. Wick rotation \(t \to -i\tau, \ e^{iS_{\text{QCD}}} \to e^{-S_{\text{QCD}}^E}, \)
3. generate gauge configurations according to \(e^{-S_{\text{QCD}}^E}. \)

Then, the path integral can be evaluated as a weighted sum over gauge configurations:

\[\langle O \rangle \approx \frac{1}{N} \sum_{i=0}^{N} O_i. \]
Why can’t we calculate parton distributions directly?

Wick rotated separation:

\[x^2 = (-i\tau)^2 - |\vec{x}|^2 = -\tau^2 - |\vec{x}|^2 < 0. \]

All spacelike.
But parton distributions are lightlike correlation functions:

\[\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P^{(i)} | \bar{\psi}_{q}(-\lambda n/2) \psi_{q}(\lambda n/2) | P \rangle, \]

since \(n^2 = 0 \). ∴ can only calculate related quantities.
Hunt for lattice parton distributions

A lot of related quantities:
- Moments from 3-pt functions
- Quasi- and pseudo-distributions
- Lattice cross sections
- Heavy-quark OPE
- and others...

GPD studies:
- Many 3-pt calculations of leading $n = 1, 2, 3$ moments (insufficient for full reconstruction)
Why the Compton amplitude?

- 3-pt moments and quasi leading-order
- But in DVCS expt., hard scale relatively small: $Q^2 < 10 \text{ GeV}^2$
- Unknown subtraction function, S_1

From lattice OFCA, can we get:
- Q^2 dependence [Latt. 2021 PoS 324]
- higher-order terms [Latt. 2019 PoS 278]
- subtraction function [Latt. 2021 PoS 028]

For the **forward** ($P = P'$) Compton amplitude, we have calculated these properties with Feynman-Hellmann.
Summary

• GPDs contain LOTS of physical information.
• They are hard to measure from experiment.
• They are hard to calculate on the Lattice.
• We want lattice calculation of Compton amplitude (more overlap with experiment) → GPDs
1. GPDs—what are they and why are they interesting?

2. The Feynman-Hellmann method

3. Established results
 presented in AHG et al., PRD 105, 2022

4. New Results
 Preliminary!

5. Conclusions and Outlook
Why Feynman-Hellmann?

Lattice OFCA:

\[T_{\mu\nu} = \sum_{z_\mu} e^{i(q+q') \cdot z} \langle P' | T \{ j_\mu(z) j_\nu(0) \} | P \rangle. \]

Requires 4-pt function:

\[\langle \chi(z_4) j_\mu(z_3) j_\nu(z_2) \chi^\dagger(z_1) \rangle \]

- New inversion for each \((\tau, \tau')\)
- Large \(T\): \(\tau_{\text{sink}} \gg \tau', \tau_{\text{srce}} \ll \tau\)
- Expensive!

Feynman-Hellmann perturbed Dirac operator:

\[iD - m \rightarrow iD - m - \lambda_1 \mathcal{J}(q_1) - \lambda_2 \mathcal{J}(q_2) \]

Expand around \(\lambda_1, \lambda_2 = 0\):

\[
\begin{align*}
\text{Graph} & = \sum_j \lambda_j \sum_{\tau_1} \mathcal{J}_j(\tau_1) + \sum_{j,k} \lambda_j \lambda_k \sum_{\tau_1 \geq \tau_2} \mathcal{J}_k(\tau_2) \mathcal{J}_j(\tau_1) + \mathcal{O}(\lambda^3)
\end{align*}
\]

Then \(\lambda_1 \lambda_2\) term will be OFCA.
In more detail

Calculate perturbed quark propagator:

\[S_{(\lambda_1, \lambda_2)}(x_n - x_m) = \left[M - \lambda_1 \cos(\bar{q}_1 \cdot \bar{x}) \gamma_3 - \lambda_2 \cos(\bar{q}_2 \cdot \bar{x}) \gamma_3 \right]^{-1}_{n,m}. \]

Two couplings, \(\lambda_1, \lambda_2 \); two momenta, \(\bar{q}_1 \) and \(\bar{q}_2 \); choose \(\gamma_3 \), which gives \(T_{33} \) component.

\[S_{\bar{\lambda}} = \underbrace{S}_{\text{unperturbed}} + \sum_i \lambda_i S J_3(\bar{q}_i) S + \sum_{i,j} \lambda_i \lambda_j S J_3(\bar{q}_i) S J_3(\bar{q}_j) S + \mathcal{O}(\lambda^3) \]

Put into nucleon propagator: \(G_{d\bar{d}} \sim \langle S^u S^u S^d \rangle \), or \(G_{u\bar{u}} \sim \langle S^u S^u S^d \rangle \).

\[G_{(\lambda,\lambda)} + G_{(-\lambda,-\lambda)} - G_{(-\lambda,\lambda)} - G_{(\lambda,-\lambda)} \approx \lambda^2 + \mathcal{O}(\lambda^4) \]

The \((\lambda_1)^2 \) and \((\lambda_2)^2 \) terms give forward Compton amplitudes. The \(\lambda_1 \lambda_2 \) term gives OFCA.
Off-forward Compton amplitude from Feynman-Hellmann

Ground state saturation

\[|\vec{p}| = |\vec{p} + \vec{q}_1 - \vec{q}_2| \] (equal energy but momentum transfer)

Feynman-Hellmann relation

\[
R_\lambda \equiv \frac{G(\lambda,\lambda) + G(-\lambda,-\lambda) - G(-\lambda,\lambda) - G(\lambda,-\lambda)}{G_0} \simeq 2\lambda^2 \tau \frac{T_{33}}{E_N}.
\]

- \(T_{33} \) is OFCA for \(\mu = \nu = 3 \).
- Linear in \(\tau \), Euclidean time; quadratic in \(\lambda \).
Fits and signal quality

\[R_\lambda(\tau) \simeq 2\lambda^2 \tau \frac{T_{33}}{E_N}. \]

Extract \(T_{33} \) for a given sink momentum, \(\mathbf{p} \). Now, what do we do with it?
Forward Compton amplitude from Feynman-Hellmann

Forward Compton amplitude:

\[
T_{\mu\nu}(p, q) = \left(-\eta_{\mu\nu} + \frac{q_\mu q_\nu}{q^2}\right) F_1(\omega, Q^2)
+ \left(p_\mu - \frac{p \cdot q}{q^2} q_\mu\right) \left(p_\nu - \frac{p \cdot q}{q^2} q_\nu\right) \frac{F_2(\omega, Q^2)}{p \cdot q},
\]

- Previously calculated with Feynman-Hellmann [CSSM/QCDSF PRL 118 (2017), PRD 102 (2020)]
- Same calculation but with one \(\lambda\) and \(\vec{q}\).
- Extract \(T_{33}(\vec{p}, \vec{q})\), forward Compton amplitude.

Spin-independent:

\[
F_1(\omega, Q^2) = F_1(0, Q^2) = 2\omega^2 \int_0^1 dx \frac{2xF_1(x, Q^2)}{1 - x^2\omega^2 - i\epsilon},
\]
\[
F_2(\omega, Q^2) = 4\omega \int_0^1 dx \frac{F_2(x, Q^2)}{1 - x^2\omega^2 - i\epsilon}
\]

- From FH, \(F_{1,2}\) and subtraction function \(S_1(Q^2) = F_1(0, Q^2)\)
- Inverse Bjorken variable, \(\omega = 2\vec{p} \cdot \vec{q}/q^2\)
- DIS structure functions \(F_{1,2}\) become PDFs at \(Q^2 \rightarrow \infty\).
Parton distribution moments

On lattice, Euclidean CA. To relate to Minkowski,

\[E_X(\vec{p} \pm \vec{q}) > E_N(\vec{p}), \quad \Rightarrow \quad \omega = \left| \frac{2\vec{p} \cdot \vec{q}}{q^2} \right| < 1 \]

For \(|\omega| < 1\),

\[\overline{F}_1(\omega, Q^2) = 2\omega^2 \int_0^1 dx \frac{2xF_1(x, Q^2)}{1 - x^2\omega^2 - i\epsilon}, \]

\[\overline{F}_1(\omega, Q^2) = 4 \sum_{n=2,4,6} \omega^n M_n(Q^2) \]

\[M_n(Q^2) \xrightarrow{Q^2 \to \infty} \int_0^1 dxx^{n-1} q(x). \]

Euclidean Compton amplitude \(\to\) moments of physical Compton amplitude.
Perturbative expansion of OFCA

Off-forward is very similar, but more complicated...\[
T_{\mu\nu} = \frac{1}{2P \cdot \bar{q}} \left[- \left(h \cdot \bar{q} H_1 + e \cdot \bar{q} \xi_1 \right) g_{\mu\nu} + \frac{1}{P \cdot \bar{q}} \left(h \cdot \bar{q} H_2 + e \cdot \bar{q} \xi_2 \right) \bar{P}_\mu \bar{P}_\nu + H_3 h_{\{\mu} \bar{P}_{\nu\}} \right] + \ldots
\]

OFCA has 18 Compton form factors, but we want to relate these to GPDs. Lots of perturbative expansions of OFCA. A classic from X. Ji, PRL 78 (1997):

\[
T^{\mu\nu}(P, q; P', q') = -\frac{1}{2} \left(n^\mu \tilde{n}^\nu + n^\nu \tilde{n}^\mu - g^{\mu\nu} \right) \int_{-1}^{1} dx \left(\frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi + i\epsilon} \right) \times \left[H(x, \xi, t) \bar{u}(P') \tilde{n} u(P) + E(x, \xi, t) \bar{u}(P') i\sigma^{\alpha\beta} \tilde{n}_\alpha \Delta_\beta \frac{2M}{2M} u(P) \right].
\]

- But \(n^\mu \) and \(\tilde{n}^\mu \) are lightlike vectors.
- Almost all published expansions of OFCA use light-cone kinematics (especially for nucleon).
- But it can’t be compared to a Euclidean lattice calculation.
GPD moments from the Compton amplitude

\[T_{\mu\nu} = \frac{1}{2\bar{P} \cdot \bar{q}} \left[-\left(h \cdot \bar{q} \mathcal{H}_1 + e \cdot \bar{q} \mathcal{E}_1 \right) g_{\mu\nu} + \frac{1}{\bar{P} \cdot \bar{q}} \left(h \cdot \bar{q} \mathcal{H}_2 + e \cdot \bar{q} \mathcal{E}_2 \right) \bar{P}_\mu \bar{P}_\nu + \mathcal{H}_3 h_{\{\mu} \bar{P}_{\nu\}} \right] + \ldots \]

My master’s:

- Matching non-perturbative tensor decomposition (e.g. Tarrach) to leading-order GPD moments
- Even though we’re interested in non-perturbative structure, want high-energy limit \((\bar{Q}^2 \to \infty)\) to guide us.

\[\mathcal{H}_1(\bar{\omega}, t) - S_1 = \int_{-1}^{1} dx \frac{2x}{(x - 1/\bar{\omega})^2 + i\varepsilon} H(x, t) \quad \mathcal{E}_1(\bar{\omega}, t) + S_1 = \int_{-1}^{1} dx \frac{2x}{(x - 1/\bar{\omega})^2 + i\varepsilon} E(x, t) \]

\[= 2 \sum_{n=2,4,6} \bar{\omega}^n A_{n,0}(t), \quad |\bar{\omega}| < 1 \]

\[= 2 \sum_{n=2,4,6} \bar{\omega}^n B_{n,0}(t), \quad |\bar{\omega}| < 1 \]

To fit GPD moments

Feynman-Hellmann

\[\sum_{\text{spins}} \Gamma u' T^{33} \tilde{u} \propto \sum_{n=2,4,6} \bar{\omega}^n \left[N_A^{A} A_{n,0}(t) + N_B^{B} B_{n,0}(t) \right] + \mathcal{O}\left(\frac{1}{Q^2} \right). \]
Summary

- Feynman-Hellmann efficient method to calculate four-point functions in lattice QCD.
- Can be extended to off-forward kinematics.
- We can extract the off-forward Compton amplitude, and relate it to GPDs.
1 GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

3 Established results
 presented in AHG et al., PRD 105, 2022

4 New Results
 Preliminary!

5 Conclusions and Outlook
Calculation Details

<table>
<thead>
<tr>
<th>N_f</th>
<th>κ_u</th>
<th>κ_d</th>
<th>$L^3 \times T$</th>
<th>a</th>
<th>M_{π}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 1</td>
<td>0.1209</td>
<td>32$^3 \times 64$</td>
<td>0.07</td>
<td>470</td>
<td></td>
</tr>
</tbody>
</table>

- SU(3) flavour symmetric point—u, d and s quarks have same mass.
- Heavy pion mass: ~ 470 MeV, compared to the physical point ~ 140 MeV (π^+).

Feynman-Hellmann details:

- To isolate $\lambda_1 \lambda_2$, we calculate perturbed propagators with:
 $$(\lambda, \lambda), \quad (-\lambda, -\lambda), \quad (\lambda, -\lambda), \quad (-\lambda, \lambda).$$
- Two magnitudes: $\lambda = 0.0125, 0.025$.
- Each set of perturbed propagators, insert two momenta: \vec{q}_1 and \vec{q}_2.
- These momenta define the kinematics accessible for the calculation.
Kinematics

Our momentum scalars are:

- \(\bar{\omega} = \frac{4\vec{p} \cdot (\vec{q}_1 + \vec{q}_2)}{(\vec{q}_1 + \vec{q}_2)^2}, \quad \xi \propto \vec{q}_1^2 - \vec{q}_2^2. \)

- We always choose \(|\vec{q}_1| = |\vec{q}_2|, \) so \(\xi = 0. \)

- Momentum transfers:

\[
t = -(\vec{q}_1 - \vec{q}_2)^2, \quad \bar{Q}^2 = \frac{1}{4} (\vec{q}_1 + \vec{q}_2)^2.
\]

\(t \) determines how off-forward, while \(\bar{Q}^2 \to \infty \) isolates leading-order GPDs.

Note: we need to keep source/sink momenta equal magnitude: \(|\vec{p}| = |\vec{p} + \vec{q}_2 - \vec{q}_1| \)

Right: \(\bar{\omega} = 0.8, \bar{Q}^2 = 25, t = -4 \) (lattice units).
Data Sets

<table>
<thead>
<tr>
<th>Set</th>
<th>q_1, q_2</th>
<th>t [GeV2]</th>
<th>Q^2 [GeV2]</th>
<th>N_{meas}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>$(1, 5, 1), (-1, 5, 1)$</td>
<td>-1.10</td>
<td>7.13</td>
<td>996</td>
</tr>
<tr>
<td>#2</td>
<td>$(4, 2, 2), (2, 4, 2)$</td>
<td>-2.20</td>
<td>6.03</td>
<td>996</td>
</tr>
</tbody>
</table>

Note that the two data sets have different \bar{Q}^2.

- Can compare this the forward Compton amplitude, from K. U. Can et al PRD 102 (2020).
- In those results, $Q^2 = 7.13$ GeV2, $t = 0$.
Applying Feynman-Hellmann

By varying the sink momentum, \vec{p}, we vary scaling variable:

$$\tilde{\omega} = \frac{4\vec{p} \cdot (\vec{q}_1 + \vec{q}_2)}{(\vec{q}_1 + \vec{q}_2)^2}$$
Compton Amplitude

- Red curve is forward Compton amplitude: $t = 0$, $Q^2 = 7.13$ GeV2 (PRD 102, 2020)
- up quarks, with unpolarised spin-parity projector: $T_\uparrow + T_\downarrow$
\[
\overline{T}^{\text{unpol}}(\bar{\omega}, t) = 2 \sum_{n=2,4,6}^{\infty} \bar{\omega}^n [A_{n,0}^u(t) + \frac{t}{2m(E + m)} B_{n,0}^u(t)]
\]
- Dominated by \mathcal{H} CFF, equivalently $A_{n,0}$ moments
- Decrease with $-t$.
Fitting Moments

Fit our data to

\[f_{N_{\text{max}}} (\bar{\omega}) = M_2 \bar{\omega}^2 + M_4 \bar{\omega}^4 + \ldots + M_{2N_{\text{max}}} \bar{\omega}^{2N_{\text{max}}} \]

To prevent over-fitting, use MCMC with monotonic decreasing priors (not rigorous):

\[M_2 \geq M_4 \geq \ldots \geq M_{2N_{\text{max}}} - 2 \geq M_{2N_{\text{max}}} \geq 0. \]

Extract the linear combination of moments

\[M_n(t) \approx A_{n,0}(t) + \frac{t}{8m^2} B_{n,0}(t). \]

- Fit \(N_{\text{max}} = 3; \) limited by number of \(\bar{\omega} \) points
- \(n = 4 \) moments never calculated before!
- \(n = 2 \) consistent with 3-pt moments at similar pion mass
Summary

- Preliminary calculation was successful
- Extracted linear combination of GPD moments ($A_{n,0}$ and $B_{n,0}$)

However,

- We would like A and B moments (equivalently \mathcal{H} and \mathcal{E} CFFs) separately
- More $\bar{\omega}$ values
- Better motivated fitting priors (not monotonic)
1 GPDs—what are they and why are they interesting?

2 The Feynman-Hellmann method

3 Established results
 presented in AHG et al., PRD 105, 2022

4 New Results
 Preliminary!

5 Conclusions and Outlook
New data

<table>
<thead>
<tr>
<th>Set</th>
<th>t [GeV2]</th>
<th>Q^2 [GeV2]</th>
<th>N_{meas}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0</td>
<td>4.86</td>
<td>10000</td>
</tr>
<tr>
<td>#2</td>
<td>-0.29</td>
<td>4.79</td>
<td>1000</td>
</tr>
<tr>
<td>#3</td>
<td>-0.57</td>
<td>4.86</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>-1.14</td>
<td>4.86</td>
<td>1000</td>
</tr>
</tbody>
</table>

For $L^3 \times T = 48^3 \times 96$, $m_\pi = 410$ MeV.

Benefits of new calculation:
- Many more $\bar{\omega}$ values (larger lattice)
- More $-t$ values and smaller
- Can isolate \mathcal{H}_1 and \mathcal{E}_1 and therefore A and B moments

New kinematics:
- Choose momentum transfer $\vec{q}_1 - \vec{q}_2$ in same direction as EM current
- Allows use to access a linear combination of \mathcal{H}_1 and \mathcal{E}_1 (only 2 CFFs)
- Use two different spin-parity projectors— isolate each CFF.
Separating \mathcal{H} and \mathcal{E}

New kinematics:

$$\text{tr}\left\{ \Gamma \bar{u}' T_{33} u \right\} = N_f^h \mathcal{H}_1 + N_f^e \mathcal{E}_1$$

Γ is spin-parity projector.

Then, similar to elastic FFs,

$$\left(\begin{array}{c} \Re T_{33}^{\text{unpol}} \\ \Im T_{33}^{\text{pol}} \end{array} \right) = \left(\begin{array}{cc} N_h^{\text{unpol}} & N_e^{\text{unpol}} \\ N_h^{\text{pol}} & N_e^{\text{pol}} \end{array} \right) \left(\begin{array}{c} \mathcal{H}_1 \\ \mathcal{E}_1 \end{array} \right)$$

Linear combination of \mathcal{H} and \mathcal{E} not as orthogonal as we’d like, but still workable

Isovector results for $t = -0.57 \text{ GeV}^2$.

Alec Hannaford Gunn

GPDs from Feynman-Hellmann

CSSM/QCDSF/UKQCD collaboration

33 / 37
Model-independent GPD positivity constraints [Pobylitsa, PRD 65, 2002]:

\[|A_{n,0}(t)| \leq a_n, \quad |B_{n,0}(t)| \leq \frac{2m}{\sqrt{-t}} a_n \]

- Note: different \(m_\pi \) and \(\bar{Q}^2 \approx 5 \text{ GeV}^2 \)
- Different systematics between all three
- But still consistent—less so with quasi at larger \(-t\)
1. GPDs—what are they and why are they interesting?

2. The Feynman-Hellmann method

3. Established results
 presented in AHG et al., PRD 105, 2022

4. New Results
 Preliminary!

5. Conclusions and Outlook
Conclusion:

- New method to calculate OFCA \rightarrow GPDs
- Allows strong parallels with experiment: scaling, subtraction function, higher-twist
- Calculation of leading moments of \mathcal{H}_1 and \mathcal{E}_1

Outlook:

- Beyond leading moments: GPD model fits, inversion methods
- Off-forward analogue of \mathcal{F}_2: test off-forward Callan-Gross—test higher-order
- More \bar{Q}^2 values: $2 - 10 \text{ GeV}^2$
- More t values (drop equal energy condition, extend FH)
Thank you for listening—questions?
\mathcal{E}_1 moments

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Comparison of $B_{u-d}^2(t)$ with different fits and models.}
\end{figure}

PRELIMINARY

$\vec{Q}^2 \approx 5 \text{ GeV}^2, 48^3 \times 96$

Lin 21 (quasi fit)

ETMC 20 2f

ETMC 20 2+1+1f
Markov chain Monte Carlo fits

Compare fits:
- J is number of moments.
- Uniform priors are $[0, 100]$.
- For $32^3 \times 64$ dataset—few \bar{w} values.
- Yet to repeat with new data set or new priors.
OPE predicts $S_1(Q^2) \rightarrow 0$ with $Q^2 \rightarrow \infty$.
Subtraction Term

Subtraction function from DVCS; input for calculation of proton pressure distribution.

Varies with discretisation: see forthcoming proceedings.