Thermal modification of open-charm mesons from an effective hadronic theory

Glòria Montaña

University of Barcelona
Institute of Cosmos Sciences

[GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, Phys.Lett.B 806 (2020)]

Theory Seminar - Jefferson Lab
September 14, 2020
OUTLINE

1. Motivation
2. Hadronic molecular model: Effective hadronic interaction & Unitarization
3. Results I: Dynamically generated states at $T = 0$
4. Finite temperature corrections
5. Results II: Thermal modifications
6. Euclidean correlators: comparison with lattice QCD
7. Results III: Open-charm Euclidean correlators
8. Conclusions and Outlook
Motivation
→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of **hadronic properties under extreme conditions of temperature and density**.
→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of **hadronic properties under extreme conditions of temperature and density**.

Theoretical tools to study the matter at high temperatures:

- Perturbative theories
- Lattice QCD
- Non-perturbative effective hadronic theories
MOTIVATION (I)

→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of *hadronic properties under extreme conditions of temperature and density.*

→ Due to the large mass and relaxation time of the c quark, *charmed mesons are a powerful probe of the QGP.*
→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of **hadronic properties under extreme conditions of temperature and density.**

→ Due to the large mass and relaxation time of the c quark, **charmed mesons are a powerful probe of the QGP.**

Quarkonia suppression

- Color screening
- Comover scattering
MOTIVATION (II)

→ Properties of hadrons and their thermal modification are contained in their spectral functions.
→ Properties of hadrons and their thermal modification are contained in their spectral functions.

→ **Spectral functions** can be directly calculated using effective hadronic theories within a unitarized approach.
MOTIVATION (II)

→ Properties of hadrons and their thermal modification are contained in their spectral functions.

→ **Spectral functions** can be directly calculated using effective hadronic theories within a unitarized approach.

→ We focus on **finite-temperature mesonic matter** to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).
Motivation

Properties of hadrons and their thermal modification are contained in their spectral functions.

Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.

We focus on finite-temperature mesonic matter to study the high temperature (< \(T_c \)) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).

Ground-state heavy mesons (e.g. \(D, D_s, D^*, D_s^* \)) modify their properties in hot matter.
Properties of hadrons and their thermal modification are contained in their spectral functions.

Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.

We focus on finite-temperature mesonic matter to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).

Ground-state heavy mesons (e.g. D, D_s, D^*, D_s^*) modify their properties in hot matter.

Consequences in the behavior of excited mesonic states, such as the non-strange $D_0^*(2300)$ and $D_1^*(2430)$ and the strange $D_{s0}^*(2317)$ and $D_{s1}^*(2460)$, dynamically generated in a heavy-light molecular model at finite temperature.
Motivation (II)

→ Properties of hadrons and their thermal modification are contained in their spectral functions.

→ **Spectral functions** can be directly calculated using effective hadronic theories within a unitarized approach.

→ We focus on **finite-temperature mesonic matter** to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).

→ **Ground-state heavy mesons** (e.g. D, D_s, D^*, D_s^*) modify their properties in hot matter.

→ Consequences in the behavior of **excited mesonic states**, such as the non-strange $D_0^*(2300)$ and $D_1^*(2430)$ and the strange $D_{s0}^*(2317)$ and $D_{s1}^*(2460)$, dynamically generated in a heavy-light molecular model at finite temperature.

→ Spectral functions can be obtained at unphysical meson masses and used to calculate **Euclidean correlators** to compare with lattice QCD results.
Hadronic molecular model: Effective hadronic interaction & Unitarization
Although the basic constituents in QCD are quarks and gluons, the **conventional quark model** (Gell-Mann, 1964; Zweig, 1964) has been very successful in describing hadron structure.

QUARK MODEL

Baryon

q, q, q

$p, n, \Lambda, \Delta, \Xi_c, ...$

Meson

q, \bar{q}

$\pi, K, D, B, J/\psi, ...$
EXOTIC HADRONS

There are many (excited) hadrons that do not accommodate in the qqq or $q\bar{q}$ picture. Other configurations allowed by QCD, e.g., $qqq\bar{q}$, $qqqq\bar{q}$, etc., are called exotic.

Baryonic systems
Pentaquarks $qqq\bar{q}$

Compact pentaquark

Meson-baryon molecule

$\Lambda(1405)$, $\Lambda_c(2595)$, $\Lambda_c(2625)$, $P_c(4380)$, $P_c(4450)$, ...
Mesonic systems

Tetraquarks $qar{q}qar{q}$

- **Compact tetraquark**
- **Meson-meson molecule**

- Hybrid
- Glueball

$D_{0}^{*}(2300)$, $D_{s}^{*}(2317)$, $X(3872)$, charged Z states, ...
EXOTIC HADRONS

Mesonic systems

Tetraquarks $q\bar{q}q\bar{q}$

Compact tetraquark

Meson-meson molecule

$D_0^*(2300), D_s^*(2317), X(3872), \text{charged } Z \text{ states, ...}$

Hadronic molecules are deuteron-like quasi-bound states of two mesons (tetraquark), a meson and a baryon (pentaquark) or two baryons (hexaquark).

→ Dynamically generated via multiple scattering of their meson/baryon components.

→ Located near threshold $m_1 + m_2$

→ Studied using effective hadronic theories.

→ Mesons and baryons are the degrees of freedom.
EFFECTIVE HADRONIC THEORY

The most general effective Lagrangian, up to a given order, consistent with the symmetries of the underlying theory.
The most general effective Lagrangian, up to a given order, **consistent with the symmetries** of the underlying theory.

Heavy-light meson-meson interaction \rightarrow Symmetries of QCD:

- **Chiral symmetry** in the limit $m_u, m_d, m_s \rightarrow 0$
- **Heavy-quark symmetry** in the limit $m_c, m_b \rightarrow \infty$

Mesons and baryons are the degrees of freedom.

Interaction mediated by the exchange of mesons.
The most general effective Lagrangian, up to a given order, consistent with the symmetries of the underlying theory.

Heavy-light meson-meson interaction \rightarrow Symmetries of QCD:

- **Chiral symmetry** in the limit $m_u, m_d, m_s \rightarrow 0$
- **Heavy-quark symmetry** in the limit $m_c, m_b \rightarrow \infty$

Mesons and baryons are the degrees of freedom.

Interaction mediated by the exchange of mesons.

Interaction of $D(*)$ and $D_s(*)$ with light mesons:

\rightarrow Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

$$\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}}$$
INTERACTION LAGRANGIAN (LO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

\[\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} \]

\[\mathcal{L}_{\text{LO}} = \langle \nabla^\mu D \nabla_\mu D^\dagger \rangle - m_D^2 \langle DD^\dagger \rangle - \langle \nabla^\mu D^{*\nu} \nabla_\mu D^{*\dagger}_\nu \rangle + m_D^2 \langle D^{*\nu} D^{*\dagger}_\nu \rangle
+ ig \langle D^{*\mu} u_\mu D^\dagger - Du_\mu D^{*\dagger}_\mu \rangle + \frac{g}{2m_D} \langle D^{*\mu} u_\alpha \nabla_\beta D^{*\dagger}_\nu - \nabla_\beta D^{*\mu} u_\alpha D^{*\dagger}_\nu \rangle \epsilon^{\mu\nu\alpha\beta} \]

\[\nabla_\mu D^{(*)} = \partial_\mu D^{(*)} - D^{(*)} \Gamma^\mu \quad \Gamma^\mu = \frac{1}{2} (u^\dagger \partial_\mu u + u \partial_\mu u^\dagger) \]

\[u_\mu = i (u^\dagger \partial_\mu u - u \partial_\mu u^\dagger) \]

\[u = \sqrt{U} = \exp \left(\frac{i \Phi}{\sqrt{2f_\pi}} \right) \]

[Kolomeitsev and Lutz (2004)]
[Lutz and Soyeur (2008)]
[Guo, Hanhart and Meißner (2009)]
[Geng, Kaiser, Martin-Camalich and Weise (2010)]
INTERACTION LAGRANGIAN (LO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

\[
\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}}
\]

\[
\mathcal{L}_{\text{LO}} = \langle \nabla_{\mu} D \nabla_{\mu} D^\dagger \rangle - m_D^2 \langle DD^\dagger \rangle - \langle \nabla_{\mu} D^* \nu \nabla_{\mu} D_{\nu}^\dagger \rangle + m_D^2 \langle D^* \nu \ D_{\nu}^\dagger \rangle + ig \langle D^* \mu \ u_{\mu} D^\dagger - D u_{\mu} D_{\mu}^\dagger \rangle + \frac{g}{2m_D} \langle D_{\mu}^* u_{\alpha} \nabla_{\beta} D_{\nu}^\dagger - \nabla_{\beta} D_{\mu}^* u_{\alpha} D_{\nu}^\dagger \rangle \epsilon^{\mu\nu\alpha\beta}
\]

\[
\nabla_{\mu} D^{(*)} = \partial_{\mu} D^{(*)} - D^{(*)} \Gamma_{\mu} \quad \Gamma_{\mu} = \frac{1}{2} (u^\dagger \partial_{\mu} u + u \partial_{\mu} u^\dagger) \quad u = \sqrt{U} = \exp \left(\frac{i \Phi}{\sqrt{2f_{\pi}}} \right)
\]

[Kolomeitsev and Lutz (2004)]
[Lutz and Soyeur (2008)]
[Guo, Hanhart and Meißner (2009)]
[Geng, Kaiser, Martin-Camalich and Weise (2010)]
INTERACTION LAGRANGIAN (LO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

\[\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} \]

\[\mathcal{L}_{\text{LO}} = \langle \nabla^\mu D^\mu D^\dagger \rangle - m_D^2 \langle DD^\dagger \rangle - \langle \nabla^\mu D^\nu \nabla_\nu D^\dagger \rangle + m_D^2 \langle D^\nu D^\dagger \rangle \]

\[+ ig \langle D^\mu u^\mu D^\dagger \rangle - D^\mu u^\mu D^\dagger \rangle + \frac{g}{2m_D} \langle D^\mu u_\alpha \nabla_\beta D^\dagger \rangle - \nabla_\beta D^\mu u_\alpha D^\dagger \rangle \epsilon^{\mu\nu\alpha\beta} \]

\[\nabla_\mu D^{(*)} = \partial_\mu D^{(*)} - D^{(*)}\Gamma^\mu \quad \Gamma^\mu = \frac{1}{2}(u^\dagger \partial_\mu u + u\partial_\mu u^\dagger) \]

\[u_\mu = i(u^\dagger \partial_\mu u - u\partial_\mu u^\dagger) \quad u = \sqrt{U} = \exp \left(\frac{i \Phi}{\sqrt{2f_\pi}} \right) \]

[Kolomeitsev and Lutz (2004)]
[Lutz and Soyeur (2008)]
[Guo, Hanhart and Meißner (2009)]
[Geng, Kaiser, Martin-Camalich and Weise (2010)]
INTERACTION LAGRANGIAN (LO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

\[\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} \]

\[\mathcal{L}_{\text{LO}} = \langle \nabla^{\mu} D \nabla_{\mu} D^\dagger \rangle - m^2_D \langle DD^\dagger \rangle - \langle \nabla^{\mu} D^* \nabla_{\mu} D^*_{\nu} \rangle + m^2_D \langle D^*_{\nu} D^*_{\nu} \rangle
+ ig \langle D^*_{\mu} u_{\mu} D^\dagger \rangle - Du^\mu D^*_{\mu} \rangle
+ \frac{g}{2m_D} \langle D^*_{\mu} u_{\alpha} \nabla_{\beta} D^*_{\nu} \rangle - \nabla_{\beta} D^*_{\mu} u_{\alpha} D^*_{\nu} \rangle \epsilon^{\mu \nu \alpha \beta} \]

\[D \text{ mesons:} \]
\[D = (D^0 \quad D^+ \quad D^+_s) , \quad D^*_{\mu} = (D^{*0} \quad D^{*+} \quad D^{*+}_s)_{\mu} \]

\[\mathbf{D}_i \quad \mathbf{D}_j \]

\[\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta \\ \frac{1}{\sqrt{2}} \pi^- + \frac{1}{\sqrt{6}} \eta \\ \frac{1}{\sqrt{2}} \pi^+ + \frac{1}{\sqrt{6}} \eta \\ K^- \\ K^0 \\ \sqrt{2} \eta \end{pmatrix} \]

\[\Phi_i \quad \Phi_j \]
INTERACTION LAGRANGIAN (NLO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

\[\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} \]

\[\mathcal{L}_{\text{NLO}} = - h_0 \langle DD^\dagger \rangle \langle \chi_+ \rangle + h_1 \langle D\chi_+ D^\dagger \rangle + h_2 \langle DD^\dagger \rangle \langle u^\mu u_\mu \rangle
+ h_3 \langle Du^\mu u_\mu D^\dagger \rangle + h_4 \langle \nabla_\mu D \nabla_\nu D^\dagger \rangle \langle u^\mu u_\nu \rangle + h_5 \langle \nabla_\mu D \{ u^\mu, u_\nu \} \nabla_\nu D^\dagger \rangle
+ \tilde{h}_0 \langle D^{*\mu} D^{*\dagger}_\mu \rangle \langle \chi_+ \rangle - \tilde{h}_1 \langle D^{*\mu} \chi_+ D^{*\dagger}_\mu \rangle - \tilde{h}_2 \langle D^{*\mu} D^{*\dagger}_\mu \rangle \langle u^\nu u_\nu \rangle
- \tilde{h}_3 \langle D^{*\mu} u^\nu u_\nu D^{*\dagger}_\mu \rangle - \tilde{h}_4 \langle \nabla_\mu D^{*\alpha} \nabla_\nu D^{\dagger*}_\alpha \rangle \langle u^\mu u_\nu \rangle - \tilde{h}_5 \langle \nabla_\mu D^{*\alpha} \{ u^\mu, u_\nu \} \nabla_\nu D^{\dagger*}_\alpha \rangle \]

\[\chi_+ = u^\dagger \chi u^\dagger + u \chi u \quad \chi = \text{diag}(m_\pi^2, m_\pi^2, 2m_K^2 - m_\pi^2) \quad \text{LECs} : \ h_0, \ldots, 5, \ \tilde{h}_0, \ldots, 5 \]

[Liu, Orginos, Guo, Hanhart and Meißner (2013)]
[Tolos and Torres-Rincon (2013)]
[Albaladejo, Fernandez-Soler, Guo and Nieves (2017)]
[Guo, Liu, Meißner, Oller and Rusetsky (2019)]
INTERACTION LAGRANGIAN (NLO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

\[
\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}}
\]

\[
\mathcal{L}_{\text{NLO}} = - h_0 \langle DD^\dagger \rangle \langle \chi_+ \rangle + h_1 \langle D\chi_+ D^\dagger \rangle + h_2 \langle DD^\dagger \rangle \langle u^\mu u_\mu \rangle \\
+ h_3 \langle Du^\mu u_\mu D^\dagger \rangle + h_4 \langle \nabla_\mu D\nabla_\nu D^\dagger \rangle \langle u^\mu u^\nu \rangle + h_5 \langle \nabla_\mu D\{u^\mu, u^\nu\} \nabla_\nu D^\dagger \rangle \\
+ \tilde{h}_0 \langle D^{*\mu} D^{*\dagger}_\mu \rangle \langle \chi_+ \rangle - \tilde{h}_1 \langle D^{*\mu} \chi_+ D^{*\dagger}_\mu \rangle - \tilde{h}_2 \langle D^{*\mu} D^{*\dagger}_\mu \rangle \langle u^\nu u_\nu \rangle \\
- \tilde{h}_3 \langle D^{*\mu} u^\nu u_\nu D^{*\dagger}_\mu \rangle - \tilde{h}_4 \langle \nabla_\mu D^{*\alpha} \nabla_\nu D^{*\dagger}_\alpha \rangle \langle u^\mu u^\nu \rangle - \tilde{h}_5 \langle \nabla_\mu D^{*\alpha} \{u^\mu, u^\nu\} \nabla_\nu D^{*\dagger}_\alpha \rangle
\]

\[
\chi_+ = u^\dagger \chi u^\dagger + u \chi u \quad \chi = \text{diag}(m_\pi^2, m_\pi^2, 2m_K^2 - m_\pi^2) \quad \text{LECs: } h_0, \ldots, 5, \tilde{h}_0, \ldots, 5
\]

[Liu, Orginos, Guo, Hanhart and Meißner (2013)]
[Tolos and Torres-Rincon (2013)]
[Albaladejo, Fernandez-Soler, Guo and Nieves (2017)]
[Guo, Liu, Meißner, Oller and Rusetsky (2019)]
SCATTERING AMPLITUDE

\[\mathcal{L} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} \]

Tree-level scattering amplitude of \(D^{(*)}, D_s^{(*)} \) mesons with \(\pi, K, \bar{K}, \eta \) mesons:

\[
V^{ij}(s, t, u) = \frac{1}{f_\pi^2} \left[\frac{1}{4} C^{ij}_{LO} (s - u) - 4 C^{ij}_0 h_0 + 2 C^{ij}_1 h_1 \right. \\
- 2 C^{ij}_{24} \left(2 h_2 (p_2 \cdot p_4) + h_4 ((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3)) \right) \\
+ 2 C^{ij}_{35} \left(h_3 (p_2 \cdot p_4) + h_5 ((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3)) \right) \]

\(D_i(p_1) \quad D_j(p_3) \)

\(\Phi_i(p_2) \quad \Phi_j(p_4) \)
Tree-level scattering amplitude of $D^{(*)}$, $D_s^{(*)}$ mesons with π, K, \vec{K}, η mesons:

$$V^{ij}(s, t, u) = \frac{1}{f_\pi^2} \left[\frac{1}{4} C_{LO}^{ij} (s - u) - 4 C_{0}^{ij} h_0 + 2 C_{1}^{ij} h_1
ight. $$

$$- \left. 2 C_{24}^{ij} \left(2 h_2 (p_2 \cdot p_4) + h_4 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right) \right]$$

$$+ \left. 2 C_{35}^{ij} \left(h_3 (p_2 \cdot p_4) + h_5 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right) \right]$$

$C_{LO,0,1,24,35}^{ij}$: isospin coefficients for the transition $i \rightarrow j$
SCATTERING AMPLITUDE

\[\mathcal{L} = \mathcal{L}_{LO} + \mathcal{L}_{NLO} \]

Tree-level scattering amplitude of \(D^(*) \), \(D_s^(*) \) mesons with \(\pi, K, \bar{K}, \eta \) mesons:

\[
V^{ij}(s, t, u) = \frac{1}{f_\pi^2} \left[\frac{1}{4} C_{ij}^{LO} (s - u) - 4 C_{ij}^{0} h_0 + 2 C_{ij}^{1} h_1
- 2 C_{ij}^{24} \left(2 h_2 (p_2 \cdot p_4) + h_4 ((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3)) \right)
+ 2 C_{ij}^{35} \left(h_3 (p_2 \cdot p_4) + h_5 ((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3)) \right) \right]
\]

LECsfitted to LQCD data of scattering lengths

[Guo, Liu, Meißner, Oller Rusetsky (2019)]
UNITARIZATION

Bethe-Salpeter equation in coupled-channels:

\[D_i D_j = D_i D_j + D_i D_k D_j + D_i D_k D_l D_j + \ldots \]

\[T_{ij} = V_{ij} + V_{ik} G_k V_{kj} + V_{ik} G_k V_{kl} G_l V_{lj} + \ldots \]
UNITARIZATION

Bethe-Salpeter equation in coupled-channels:

\[
D_i D_j = D_i D_j + D_i D_k D_j + D_i D_k D_l D_j + \ldots
\]

\[
T_{ij} = V_{ij} + V_{ik} G_k V_{kj} + V_{ik} G_k V_{kl} G_l V_{lj} + \ldots
\]

\[
T_{ij} = T_{ij} + V_{ik} G_k T_{kj} \rightarrow T = (1 - VG)^{-1} V \quad \text{(On-shell factorization)}
\]
The two-meson propagator

\[G_k = i \int \frac{d^4 q}{(2\pi)^4} \frac{1}{q^2 - m_{D,k}^2 + i\varepsilon} \frac{1}{(P - q)^2 - m_{\Phi,k}^2 + i\varepsilon} \]

has to be regularized:

- Dimensional regularization: subtraction constants \(a_k(\mu) \)
- **Cutoff regularization** with \(|\vec{q}| < \Lambda \)

At threshold: \(\sqrt{s_{\text{thr}}} = m_1 + m_2 \)

\[G_{\text{DR}}(\sqrt{s_{\text{thr}}}, a_l(\mu)) = G_{\Lambda}(\sqrt{s_{\text{thr}}}, \Lambda) \]
Dynamically generated states

→ Identification of states in the unitarized scattering amplitudes
→ Analytical continuation and poles in the complex-energy plane
→ Bound states, resonances and virtual states in different Riemann sheets

• Mass \(M_R = \text{Re} \sqrt{s_R} \)
• Half-width \(\frac{\Gamma_R}{2} = \text{Im} \sqrt{s_R} \)
• Coupling constants \(|g_i| \)
• Compositeness \(X_i = \left| g_i^2 \frac{\partial G_i(z_p)}{\partial z} \right| \)
Results I: Dynamically generated states at $T = 0$
In isospin basis:

<table>
<thead>
<tr>
<th>(S, I)</th>
<th>Channels</th>
<th>Threshold (MeV)</th>
<th>(S, I)</th>
<th>Channels</th>
<th>Threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-1, 0)$</td>
<td>$D\bar{K}$</td>
<td>2364.88</td>
<td>$(-1, 0)$</td>
<td>$D^*\bar{K}$</td>
<td>2504.20</td>
</tr>
<tr>
<td>$(-1, 1)$</td>
<td>$D\bar{K}$</td>
<td>2364.88</td>
<td>$(-1, 1)$</td>
<td>$D^*\bar{K}$</td>
<td>2504.20</td>
</tr>
<tr>
<td>$0, \frac{1}{2}$</td>
<td>$D\pi$</td>
<td>2005.28</td>
<td>$(0, \frac{1}{2})$</td>
<td>$D^*\pi$</td>
<td>2146.59</td>
</tr>
<tr>
<td>$D\eta$</td>
<td>2415.10</td>
<td></td>
<td>$D^*\eta$</td>
<td>2556.42</td>
<td></td>
</tr>
<tr>
<td>$D_{s}\bar{K}$</td>
<td>2463.98</td>
<td></td>
<td>$D_{s}^*\bar{K}$</td>
<td>2607.84</td>
<td></td>
</tr>
<tr>
<td>$(0, \frac{3}{2})$</td>
<td>$D\pi$</td>
<td>2005.28</td>
<td>$(0, \frac{3}{2})$</td>
<td>$D^*\pi$</td>
<td>2146.59</td>
</tr>
<tr>
<td>$(1, 0)$</td>
<td>$D\bar{K}$</td>
<td>2364.88</td>
<td>$(1, 0)$</td>
<td>$D^*\bar{K}$</td>
<td>2504.20</td>
</tr>
<tr>
<td>$D_{s}\eta$</td>
<td>2516.20</td>
<td></td>
<td>$D_{s}^*\eta$</td>
<td>2660.06</td>
<td></td>
</tr>
<tr>
<td>$(1, 1)$</td>
<td>$D_{s}\pi$</td>
<td>2106.38</td>
<td>$(1, 1)$</td>
<td>$D_{s}^*\pi$</td>
<td>2250.24</td>
</tr>
<tr>
<td>DK</td>
<td>2364.88</td>
<td></td>
<td>D_{s}^*K</td>
<td>2504.20</td>
<td></td>
</tr>
<tr>
<td>$(2, \frac{1}{2})$</td>
<td>$D_{s}K$</td>
<td>2463.98</td>
<td>$(2, \frac{1}{2})$</td>
<td>D_{s}^*K</td>
<td>2607.84</td>
</tr>
</tbody>
</table>
COUPLED CHANNELS

In isospin basis:

<table>
<thead>
<tr>
<th>(S, I)</th>
<th>Channels</th>
<th>Threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J^P = 0^-$</td>
<td>$D\bar{K}$</td>
<td>2364.88</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D\bar{K}$</td>
<td>2364.88</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D\pi$</td>
<td>2005.28</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D\eta$</td>
<td>2415.10</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D_s\bar{K}$</td>
<td>2463.98</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D\pi$</td>
<td>2005.28</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D\eta$</td>
<td>2415.10</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D_s\eta$</td>
<td>2516.20</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D_s\pi$</td>
<td>2106.38</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D\bar{K}$</td>
<td>2364.88</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D_s\bar{K}$</td>
<td>2463.98</td>
</tr>
</tbody>
</table>

Results II

<table>
<thead>
<tr>
<th>(S, I)</th>
<th>Channels</th>
<th>Threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J^P = 0^-$</td>
<td>$D^*\bar{K}$</td>
<td>2504.20</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D^*\bar{K}$</td>
<td>2504.20</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D^*\pi$</td>
<td>2146.59</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D^*\eta$</td>
<td>2556.42</td>
</tr>
<tr>
<td>$J^P = 0^-$</td>
<td>$D_s^*\bar{K}$</td>
<td>2607.84</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D^*\pi$</td>
<td>2146.59</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D^*\eta$</td>
<td>2556.42</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D_s^*\eta$</td>
<td>2660.06</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D_s^*\pi$</td>
<td>2250.24</td>
</tr>
<tr>
<td>$J^P = 1^-$</td>
<td>$D_s^*\bar{K}$</td>
<td>2607.84</td>
</tr>
</tbody>
</table>
COUPLED CHANNELS

In isospin basis:

<table>
<thead>
<tr>
<th>((S, I))</th>
<th>Channels</th>
<th>Threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1, 0))</td>
<td>(D\bar{K})</td>
<td>2364.88</td>
</tr>
<tr>
<td>((-1, 1))</td>
<td>(D\bar{K})</td>
<td>2364.88</td>
</tr>
<tr>
<td>((0, \frac{1}{2}))</td>
<td>(D\pi)</td>
<td>2005.28</td>
</tr>
<tr>
<td></td>
<td>(D\eta)</td>
<td>2415.10</td>
</tr>
<tr>
<td></td>
<td>(D_s\bar{K})</td>
<td>2463.98</td>
</tr>
<tr>
<td>((0, \frac{3}{2}))</td>
<td>(D\pi)</td>
<td>2005.28</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>(D\bar{K})</td>
<td>2364.88</td>
</tr>
<tr>
<td></td>
<td>(D_s\eta)</td>
<td>2516.20</td>
</tr>
<tr>
<td>((1, 1))</td>
<td>(D_s\pi)</td>
<td>2106.38</td>
</tr>
<tr>
<td></td>
<td>(DK)</td>
<td>2364.88</td>
</tr>
<tr>
<td>((2, \frac{1}{2}))</td>
<td>(D_sK)</td>
<td>2463.98</td>
</tr>
</tbody>
</table>

Channels \(J^P = 1^- \oplus 0^-\)

<table>
<thead>
<tr>
<th>((S, I))</th>
<th>Channels</th>
<th>Threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1, 0))</td>
<td>(D^*\bar{K})</td>
<td>2504.20</td>
</tr>
<tr>
<td>((-1, 1))</td>
<td>(D^*\bar{K})</td>
<td>2504.20</td>
</tr>
<tr>
<td>((0, \frac{1}{2}))</td>
<td>(D^*\pi)</td>
<td>2146.59</td>
</tr>
<tr>
<td></td>
<td>(D^*\eta)</td>
<td>2556.42</td>
</tr>
<tr>
<td></td>
<td>(D_s^*\bar{K})</td>
<td>2607.84</td>
</tr>
<tr>
<td>((0, \frac{3}{2}))</td>
<td>(D^*\pi)</td>
<td>2146.59</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>(D^*\bar{K})</td>
<td>2504.20</td>
</tr>
<tr>
<td></td>
<td>(D_s^*\eta)</td>
<td>2660.06</td>
</tr>
<tr>
<td>((1, 1))</td>
<td>(D_s^*\pi)</td>
<td>2250.24</td>
</tr>
<tr>
<td></td>
<td>(D^*\bar{K})</td>
<td>2504.20</td>
</tr>
<tr>
<td>((2, \frac{1}{2}))</td>
<td>(D_s^*\bar{K})</td>
<td>2607.84</td>
</tr>
</tbody>
</table>
Dynamically generated states

Scalars ($J^P = 0^+$): $D_0^*(2300)$ and $D_{s0}^*(2317)$

(S, I)	RS	M_R	$\Gamma_R / 2$	$	g_i	$	χ_i		
$(0, \frac{1}{2})$	$(-, +, +)$	2081.9	86.0	$	g_{D\pi}	= 8.9$	$\chi_{D\pi} = 0.40$		
						$	g_{D\eta}	= 0.4$	$\chi_{D\eta} = 0.00$
						$	g_{DSK}	= 5.4$	$\chi_{DSK} = 0.05$
	$(-, -, +)$	2529.3	145.4	$	g_{D\pi}	= 6.7$	$\chi_{D\pi} = 0.10$		
						$	g_{D\eta}	= 9.9$	$\chi_{D\eta} = 0.40$
						$	g_{DSK}	= 19.4$	$\chi_{DSK} = 1.63$
$(1, 0)$	$(+, +)$	2252.5	0.0	$	g_{DK}	= 13.3$	$\chi_{DK} = 0.66$		
						$	g_{DS\eta}	= 9.2$	$\chi_{DS\eta} = 0.17$

Experimental values:

$M_R = 2300 \pm 19$ MeV, $\Gamma_R = 274 \pm 40$ MeV

$M_R = 2317.8 \pm 0.5$ MeV, $\Gamma_R < 3.8$ MeV
DYNAMICALLY GENERATED STATES

Axial vectors ($J^P = 1^+$): $D_1^*(2430)$ and $D_{s1}^*(2460)$

| (S, I) | RS | M_R | $\Gamma_R/2$ | $|g_i|$ | χ_i |
|---------|------|--------|--------------|--------|---------|
| $(0, \frac{1}{2})$ | $(-, +, +)$ | 2222.3 | 84.7 | $|g_D^*\pi| = 9.5$ | $\chi_D^*\pi = 0.40$ |
| | $(-, -, +)$ | 2654.6 | 117.3 | $|g_D^*\eta| = 0.4$ | $\chi_D^*\eta = 0.00$ |
| $(1, 0)$ | $(+, +)$ | 2393.3 | 0.0 | $|g_{D_s^*K}| = 5.7$ | $\chi_{D_s^*K} = 0.05$ |
| | | | | $|g_{D_s^*\eta}| = 6.5$ | $\chi_{D_s^*\eta} = 0.09$ |
| | | | | $|g_{D_s^*K}| = 10.0$ | $\chi_{D_s^*K} = 0.40$ |
| | | | | $|g_{D_s^*\eta}| = 18.5$ | $\chi_{D_s^*\eta} = 1.47$ |

Experimental values:

$M_R = 2427 \pm 40$ MeV, $\Gamma_R = 384_{-110}^{+130}$ MeV

$M_R = 2459.5 \pm 0.6$ MeV, $\Gamma_R < 3.5$ MeV
Finite temperature corrections
→ Mesonic matter at a temperature $0 < T < T_c$
→ Vanishing baryon density
→ Heavy mesons behave as Brownian particles
→ Modification of the properties of the D mesons
MESONIC BATH

→ Mesonic matter at a temperature $0 < T < T_c$
→ Vanishing baryon density
→ Heavy mesons behave as Brownian particles
→ Modification of the properties of the D mesons

Both production and absorption processes of heavy-light pairs are possible
MODIFICATION OF HEAVY MESONS IN A HOT MEDIUM

Imaginary time formalism

- Sum over Matsubara frequencies

\[q^0 \rightarrow \omega_n = \frac{i}{\beta} \frac{2\pi n}{2\pi^4}, \quad \int \frac{d^4 q}{(2\pi^4)} \rightarrow \frac{i}{\beta} \sum_n \int \frac{d^3 q}{(2\pi)^3} \quad \text{(bosons)} \]
MODIFICATION OF HEAVY MESONS IN A HOT MEDIUM

Imaginary time formalism

- Sum over Matsubara frequencies

\[q^0 \rightarrow \omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4 q}{(2\pi^4)} \rightarrow \frac{i}{\beta} \sum_n \int \frac{d^3 q}{(2\pi^3)} \quad (\text{bosons}) \]

Dressing the mesons in the loop function

- Self-energy corrections
- Pion mass slightly varies below \(T_c \) \(\rightarrow \) only heavy meson is dressed

\[D \quad = \quad D + \quad D \quad \quad \Phi \quad \quad \Phi \]

\[D \quad \quad \quad D \]
SELF-CONSISTENCY

\[G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T)S_{\Phi}(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} [1 + f(\omega, T) + f(\omega', T)] \]
SELF-CONSISTENCY

\[G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T)S_\Phi(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \left[1 + f(\omega, T) + f(\omega', T) \right] \]

Spectral functions: \(S_D, S_\Phi \rightarrow \frac{\omega_\Phi}{\omega} \delta(\omega'^2 - \omega_\Phi^2), \quad \omega_\Phi = \sqrt{q_\Phi^2 + m_\Phi^2} \)
\[G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T) S_\Phi(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \left[1 + f(\omega, T) + f(\omega', T) \right] \]

Spectral functions: \[S_D, \quad S_\Phi \rightarrow \frac{\omega_\Phi}{\omega} \delta(\omega' \omega_\Phi^2 - \omega_\Phi^2), \quad \omega_\Phi = \sqrt{q_\Phi^2 + m_\Phi^2} \]

Bose distribution function at T: \[f(\omega, T) = \frac{1}{e^{\omega/T} - 1} \]
SELF-CONSISTENCY

\[G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T) S_{\Phi}(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \left[1 + f(\omega, T) + f(\omega', T) \right] \]

Spectral functions: \(S_D, \quad S_{\Phi} \rightarrow \frac{\omega_{\Phi}^2}{\omega_{\Phi}} \delta(\omega r^2 - \omega_{\Phi}^2), \quad \omega_{\Phi} = \sqrt{q_{\Phi}^2 + m_{\Phi}^2} \)

Bose distribution function at T: \(f(\omega, T) = \frac{1}{e^{\omega/T} - 1} \)

Regularized with a cutoff \(|\vec{q}| < \Lambda\)
SELF-CONSISTENCY

\[T_{ij} = V_{ij} + V_{ik} G_k T_{kj} \]
\[\Pi_D(E, \vec{p}; T) = -\frac{1}{\pi} \int \frac{d^3 q}{(2\pi)^3} \int d\Omega \frac{E}{\omega_\Phi} \frac{f(\Omega, T) - f(\omega_\Phi, T)}{E^2 - (\omega_\Phi - \Omega)^2 + i\epsilon} \text{Im} T_{D\Phi}(\Omega, \vec{p} + \vec{q}; T) \]
SELF-CONSISTENCY

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \left(\mathcal{D}_D(\omega, \vec{q}; T) \right) = -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - m_D^2 - \Pi_D(\omega, \vec{q}; T)} \right) \]

\[D = D + D \]

Loop function \(G_{D\Phi} \) → Unitarized amplitude \(T_{D\Phi} \) → Self-energy \(\Pi_D \) → \(D \)-meson propagator \(\mathcal{D}_D \)
PHYSICAL INTERPRETATION OF THE THERMAL BATH

\[G_{D\Phi}(E, \vec{p}; T) \sim \left\{ \begin{array}{ll}
\text{bath} \to \text{bath} + D\Phi & \text{bath} + D\Phi \to \text{bath} \\
[1 + f(\omega_D, T)][1 + f(\omega_\Phi, T)] - f(\omega_D, T)f(\omega_\Phi, T) & \end{array} \right. \\
E - \omega_D - \omega_\Phi + i\varepsilon
\]

\[\begin{array}{ll}
\text{bath} + \overline{D\Phi} \to \text{bath} & \text{bath} \to \text{bath} + \overline{D\Phi} \\
[1 + f(\omega_D, T)][1 + f(\omega_\Phi, T)] - f(\omega_D, T)f(\omega_\Phi, T) & \\
E + \omega_D + \omega_\Phi + i\varepsilon
\end{array} \]

At zero temperature \(f(\omega, T = 0) = 0 \)
PHYSICAL INTERPRETATION OF THE THERMAL BATH

\[G_{D\Phi}(E, \vec{p}; T) \sim \left\{ \begin{array}{l}
\frac{[1 + f(\omega_D, T)][1 + f(\omega, T)] - f(\omega_D, T)f(\omega, T)}{E - \omega_D - \omega + i\varepsilon} \\
+ \frac{f(\omega_D, T)f(\omega, T) - [1 + f(\omega_D, T)][1 + f(\omega, T)]}{E + \omega_D + \omega + i\varepsilon} \\
+ \frac{f(\omega, T) [1 + f(\omega, T)] - f(\omega, T) [1 + f(\omega_D, T)]}{E + \omega_D - \omega + i\varepsilon} \\
+ \frac{f(\omega, T) [1 + f(\omega, T)] - f(\omega_D, T) [1 + f(\omega, T)]}{E - \omega_D + \omega + i\varepsilon}
\end{array} \right. \]

First branch cut
\((T = 0 \text{ unitary cut)}:\)
\[E \geq (m_D + m_\Phi) \]

Additional branch cut
\((\text{Landau cut)}:\)
\[E \leq (m_D - m_\Phi) \]

At zero temperature \(f(\omega, T = 0) = 0\)
Results II: Thermal modifications
LOOP FUNCTIONS

Pionic bath

\(D \) and \(D_s \) with light mesons

Unitary cut:
\[E \geq (m_D + m_\Phi) \]

Landau cut:
\[E \leq (m_D - m_\Phi) \]
Pionic bath

D^* and D_s^* with light mesons

Unitary cut:
$E \geq (m_{D^*} + m_\Phi)$

Landau cut:
$E \leq (m_{D^*} - m_\Phi)$
Open-charm \textbf{pseudoscalar mesons} in a pionic bath

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \mathcal{D}_D(\omega, \vec{q}; T) \]

Mass shift and width acquisition of the \textbf{D} and \textbf{D}_s mesons in a thermal bath
SPECTRAL FUNCTIONS

Open-charm vector mesons in a pionic bath

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \mathcal{D}_D(\omega, \vec{q}; T) \]

Mass shift and width acquisition of the \(D^* \) and \(D_s^* \) mesons in a thermal bath
Scalars ($J^P = 0^+$):

T-matrix in sector $(C, S, I) = (1, 0, 1/2)$
→ Two-pole structure of the $D_0^*(2300)$

Experimental values:
$M_R = 2300 \pm 19$ MeV, $\Gamma_R = 274 \pm 40$ MeV

T-matrix in sector $(C, S, I) = (1, 1, 0)$
→ $D_{s0}^*(2317)$

Experimental values:
$M_R = 2317.8 \pm 0.5$ MeV, $\Gamma_R < 3.8$ MeV
Axial vectors \((J^P = 1^+)\):

\[T\text{-matrix in sector } (C, S, I) = (1, 0, 1/2) \]

\[\rightarrow \text{ Two-pole structure of the } D_1^*(2430) \]

Experimental values:
\[M_R = 2427 \pm 40 \text{ MeV}, \quad \Gamma_R = 384^{+130}_{-110} \text{ MeV} \]

\[T\text{-matrix in sector } (C, S, I) = (1, 1, 0) \]

\[\rightarrow D_{s1}^*(2460) \]

Experimental values:
\[M_R = 2459.5 \pm 0.6 \text{ MeV}, \quad \Gamma_R < 3.5 \text{ MeV} \]
CHIRAL PARTNERS

Evolution of masses and widths of the open-charm mesons in a pionic
(or $\pi + K + \bar{K}$) bath

$I(J^P) = \frac{1}{2}(0^\pm), 0(0^\pm)$

Evolution of masses and widths of the open-charm mesons in a pionic (or $\pi + K + \bar{K}$) bath

$$I(J^P) = \frac{1}{2}(1^{\pm}), 0(1^{\pm})$$

Euclidean correlators: comparison with lattice QCD
FROM SPECTRAL FUNCTIONS TO EUCLIDEAN CORRELATORS

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$
FROM SPECTRAL FUNCTIONS TO EUCLIDEAN CORRELATORS

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$

Spectral function $\rho(\omega, \vec{p}; T)$
FROM SPECTRAL FUNCTIONS TO EUCLIDEAN CORRELATORS

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega K(\tau, \omega; T) \rho(\omega, \vec{p}; T)$$

Spectral function $\rho(\omega, \vec{p}; T)$

$$K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$
Spectral function \(\rightarrow \) **Euclidean correlator**

\[
G_E(\tau, \vec{p} \mid T) = \int_0^\infty d\omega \ K(\tau, \omega \mid T) \ \rho(\omega, \vec{p} \mid T)
\]

Spectral function \(\rho(\omega, \vec{p} \mid T) \)

\[
K(\tau, \omega \mid T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}
\]

Euclidean correlator \(\rightarrow \) **Spectral function** (ill-posed)

- Bayesian methods (e.g. MEM)
- Fitting Ansätze
FROM SPECTRAL FUNCTIONS TO EUCLIDEAN CORRELATORS

Spectral function \rightarrow **Euclidean correlator**

\[G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \, K(\tau, \omega; T) \, \rho(\omega, \vec{p}; T) \]

Spectral function $\rho(\omega, \vec{p}; T)$

\[K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})} \]

Euclidean correlator \rightarrow **Spectral function** (ill-posed)

- Bayesian methods (e.g. MEM)
- Fitting Ansätze

Reconstructed correlator

\[G^r_E(\tau; T, T_r) = \int_0^\infty d\omega K(\tau, \omega; T)\rho(\omega; T_r) \rightarrow \frac{G_E(\tau; T)}{G^r_E(\tau; T, T_r)} \]
EUCLIDEAN CORRELATORS WITH EFT

\[S_D(\omega, \bar{q}; T) = -\frac{1}{\pi} \text{Im} D_D(\omega, \bar{q}; T) \]
\[= -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \bar{q}^2 - M_D^2 - \Pi_D(\omega, \bar{q}; T)} \right) \]

at unphysical meson masses (used in the lattice)
EUCLIDEAN CORRELATORS WITH EFT

\[S_D(\omega, \bar{q}; T) = \frac{-1}{\pi} \text{Im} \, D_D(\omega, \bar{q}; T) \]
\[= \frac{-1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \bar{q}^2 - M_D^2 - \Pi_D(\omega, \bar{q}; T)} \right) \]

at unphysical meson masses (used in the lattice)

Ground-state: \[\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T) \]
EUCLIDEAN CORRELATORS WITH EFT

\[S_D(\omega, \bar{q}; T) = -\frac{1}{\pi} \text{Im} D_D(\omega, \bar{q}; T) \]
\[= -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \bar{q}^2 - M_D^2 - \Pi_D(\omega, \bar{q}; T)} \right) \]

at unphysical meson masses (used in the lattice)

Ground-state: \(\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T) \)

Full: \(\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{\text{cont}}(\omega; T) \)
EUCLIDEAN CORRELATORS WITH EFT

\[
S_D(\omega, \bar{q}; T) = -\frac{1}{\pi} \text{Im} D_D(\omega, \bar{q}; T) = -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \bar{q}^2 - M_D^2 - \Pi_D(\omega, \bar{q}; T)} \right)
\]

at unphysical meson masses (used in the lattice)

Ground-state: \(\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T) \)

Full: \(\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T) \)
EUCLIDEAN CORRELATORS WITH EFT

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \mathcal{D}_D(\omega, \vec{q}; T) \]

\[= -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right) \]

at unphysical meson masses (used in the lattice)

Ground-state: \(\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T) \)

Full: \(\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T) \)

\[\rho_{cont}(\omega; T) = \frac{3}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1 \right)^2 - 4m_2^2} \frac{\omega^2}{\omega^2} \]

\[\times 2 \left(1 - \frac{(m_1 - m_2)^2}{\omega^2} \right) \]

\[\times [n(-\omega_0, T) - n(\omega - \omega_0, T)] \theta(\omega - (m_1 + m_2)) \]
EUCLIDEAN CORRELATORS WITH EFT

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} D_D(\omega, \vec{q}; T) \]
\[= -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right) \]

at unphysical meson masses (used in the lattice)

Ground-state: \(\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T) \)

Full: \(\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{\text{cont}}(\omega; T) \)

\(\rho_{\text{cont}}(\omega; T) = \frac{3}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1 \right)^2 - \frac{4m_2^2}{\omega^2}} \omega^2 \)
\[\times 2 \left(1 - \frac{(m_1 - m_2)^2}{\omega^2} \right) \]
\[\times [n(-\omega_0, T) - n(\omega - \omega_0, T)] \theta(\omega - (m_1 + m_2)) \]

- \(m_1 = m_c = 1.5 \text{ GeV} \)
- \(m_2 = m_l = 0, m_2 = m_s = 100 \text{ MeV} \)
EUCLIDEAN CORRELATORS WITH EFT

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \ D_D(\omega, \vec{q}; T) \]

\[= -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right) \]

at unphysical meson masses (used in the lattice)

Ground-state: \(\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T) \)

Full: \(\rho(\omega; T) = \rho_{gs}(\omega; T) + a \ \rho_{\text{cont}}(\omega; T) \)

\[\rho_{\text{cont}}(\omega; T) = \frac{3}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1 \right)^2 - \frac{4m_2^2}{\omega^2}} \omega^2 \]

\[\times 2 \left(1 - \frac{(m_1 - m_2)^2}{\omega^2} \right) \]

\[\times [n(-\omega_0, T) - n(\omega - \omega_0, T)] \theta(\omega - (m_1 + m_2)) \]
Results III: Open-charm Euclidean correlators
EFT SPECTRAL FUNCTIONS AT UNPHYSICAL MASSES

\[m_\pi = 384 \text{ MeV} \]
\[m_K = 546 \text{ MeV} \]
\[m_\eta = 589 \text{ MeV} \]
\[m_D = 1880 \text{ MeV} \]
\[m_{D_s} = 1943 \text{ MeV} \]

[Kelly, Rothkopf, Skullerud (2018)]
EFT SPECTRAL FUNCTIONS AT UNPHYSICAL MASSES

- \(m_\pi = 384 \text{ MeV} \)
- \(m_K = 546 \text{ MeV} \)
- \(m_\eta = 589 \text{ MeV} \)
- \(m_D = 1880 \text{ MeV} \)
- \(m_{D_s} = 1943 \text{ MeV} \)

[Kelly, Rothkopf, Skullerud (2018)]
\(D \) meson

- Inclusion of the continuum improves the matching at small \(\tau \).
- Very good agreement at the lowest temperature. At larger temperatures: excited states?
- Close and above \(T_c \) the EFT breaks down.

Inclusion of the continuum improves the matching at small τ.

- Very good agreement at the lowest temperature. At larger temperatures: excited states?
- Close and above T_c the EFT breaks down.

Conclusions and Outlook
CONCLUSIONS AND OUTLOOK

→ We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
CONCLUSIONS AND OUTLOOK

→ We have introduced **finite-temperature corrections** to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
→ We have obtained **spectral functions** at various temperatures below T_c.
CONCLUSIONS AND OUTLOOK

→ We have introduced **finite-temperature corrections** to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
→ We have obtained **spectral functions** at various temperatures below T_c.
→ The **mass** of the charmed $D^{(*)}$- and $D_s^{(*)}$-mesons **decreases** with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at $T = 150$ MeV) while they **acquire a substantial width** (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at $T = 150$ MeV).
We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.

We have obtained spectral functions at various temperatures below T_c.

The mass of the charmed $D^{(*)}$- and $D_s^{(*)}$-mesons decreases with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at $T = 150$ MeV) while they acquire a substantial width (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at $T = 150$ MeV).

The dynamically generated resonances shift their mass and get wider as temperature increases. Still far from chiral degeneracy.
CONCLUSIONS AND OUTLOOK

→ We have introduced **finite-temperature corrections** to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.

→ We have obtained **spectral functions** at various temperatures below T_c.

→ The **mass** of the charmed $D^{(*)}$- and $D_s^{(*)}$-mesons **decreases** with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at $T = 150$ MeV) while they **acquire a substantial width** (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at $T = 150$ MeV).

→ The **dynamically generated resonances** shift their mass and get wider as temperature increases. Still far from chiral degeneracy.

→ The effect of the addition of **kaons in the bath** is mild.
CONCLUSIONS AND OUTLOOK

→ We have introduced **finite-temperature corrections** to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.

→ We have obtained **spectral functions** at various temperatures below T_c.

→ The **mass** of the charmed $D^{(*)}$- and $D_{s}^{(*)}$-mesons **decreases** with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_{s}^{(*)}$ at $T = 150$ MeV) while they **acquire a substantial width** (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_{s}^{(*)}$ at $T = 150$ MeV).

→ The **dynamically generated resonances** shift their mass and get wider as temperature increases. Still far from chiral degeneracy.

→ The effect of the addition of **kaons in the bath** is mild.

→ We have calculated **Euclidean correlators** from spectral functions at the unphysical masses used in the lattice. **Well below Tc there is a good agreement with LQCD results**, whereas close or above T_c the discrepancy indicates the missing contribution of higher-excited states.
In the near future we aim to:

→ Include thermal *modification of light mesons*
CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal *modification of light mesons*
→ Extend our calculations to the *bottom* sector
In the near future we aim to:

→ Include thermal *modification of light mesons*
→ Extend our calculations to the *bottom* sector
→ Explore the *hidden heavy-flavor* sector
In the near future we aim to:

→ Include thermal **modification of light mesons**
→ Extend our calculations to the **bottom** sector
→ Explore the **hidden heavy-flavor** sector
→ Study **transport properties** of heavy mesons at finite temperature
In the near future we aim to:

→ Include thermal *modification of light mesons*
→ Extend our calculations to the *bottom* sector
→ Explore the *hidden heavy-flavor* sector
→ Study *transport properties* of heavy mesons at finite temperature
→ Further test our results against *lattice QCD* calculations and make predictions at the physical point
Thank you!
Gràcies!
Backup slides
UNITARIZED T-MATRIX AT $T \neq 0$

$$T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$$

- Iteration 1: Undressed mesons

$$D_i D_j = D_i D_j + D_i D_k D_k D_j$$
UNITARIZED T-MATRIX AT $T \neq 0$

$$T_{ij} = V_{ij} + V_{ik}G_kT_{kj}$$

- Iteration 1: Undressed mesons

- Iteration > 1: Dressed heavy meson
LOOP FUNCTION AT $T > 0$

$$G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T)S_\Phi(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \cdot [1 + f(\omega, T) + f(\omega', T)]$$
LOOP FUNCTION AT $T > 0$

$$G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T) S_\Phi(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \cdot [1 + f(\omega, T) + f(\omega', T)]$$

Spectral functions:

$$S_D, \quad S_\Phi \rightarrow \frac{\omega_\Phi}{\omega'} \delta(\omega'^2 - \omega^2_\Phi), \quad \omega_\Phi = \sqrt{q^2_\Phi + m^2_\Phi}$$
LOOP FUNCTION AT $T > 0$

\[
G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T) S_\Phi(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \cdot [1 + f(\omega, T) + f(\omega', T)]
\]

Spectral functions:

\[
S_D, \quad S_\Phi \rightarrow \frac{\omega_\Phi}{\omega'} \delta(\omega'2 - \omega_\Phi^2), \quad \omega_\Phi = \sqrt{q_\Phi^2 + m_\Phi^2}
\]

Bose distribution function at T:

\[
f(\omega, T) = \frac{1}{e^{\omega/T} - 1}
\]
LOOP FUNCTION AT $T > 0$

$$G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3 q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T) S_{\Phi}(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} \cdot [1 + f(\omega, T) + f(\omega', T)]$$

Spectral functions:

$$S_D, \quad S_{\Phi} \rightarrow \frac{\omega_{\Phi}}{\omega'} \delta(\omega'^2 - \omega_{\Phi}^2), \quad \omega_{\Phi} = \sqrt{q_{\Phi}^2 + m_{\Phi}^2}$$

Bose distribution function at T:

$$f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$$

Regularized with a cutoff $|\vec{q}| < \Lambda$
SELF-ENERGY AT $T > 0$

$$\Pi_D(E, \vec{p}; T) = -\frac{1}{\pi} \int \frac{d^3 q}{(2\pi)^3} \int d\Omega \frac{E}{\omega_\Phi} \frac{f(\Omega, T) - f(\omega_\Phi, T)}{E^2 - (\omega_\Phi - \Omega)^2 + i\varepsilon} \text{Im} T_D(\Omega, \vec{p} + \vec{q}; T)$$
SPECTRAL FUNCTION

\[S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \ D_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - m_D^2 - \Pi_D(\omega, \vec{q}; T)} \right) \]

Iteration 1

\[D = D + D \]

Iteration > 1

\[D = D + D \]
SELF-CONSISTENCY

Loop function

\[G_{D\Phi} \]
SELF-CONSISTENCY

Loop function $G_{D\Phi}$ → Unitarized amplitude $T_{D\Phi}$
SELF-CONSISTENCY

Loop function $G_{D\Phi}$ → Unitarized amplitude $T_{D\Phi}$ → Self-energy Π_D
SELF-CONSISTENCY

Loop function $G_{D\Phi}$ → Unitarized amplitude $T_{D\Phi}$ → Self-energy Π_D → D-meson propagator \mathcal{D}_D

$$D = D + \Phi$$
Pionic bath

D and D_s with light mesons

First opening:
$E \geq (m_D - 2m_\pi)$

Second opening:
$E \leq (m_D + 2m_\pi)$
Pionic bath

D^* and D_s^* with light mesons

First opening:
$E \geq (m_D - 2m_\pi)$

Second opening:
$E \leq (m_D + 2m_\pi)$
LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size $N^3_\sigma \times N_\tau \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_\tau}, \quad a : \text{Lattice spacing}$$

Euclidean correlators of some operators \hat{O}:

$$\langle \hat{O}_1(\tau, \vec{x})\hat{O}_2(0, \vec{0}) \rangle = \frac{1}{Z} \int \mathcal{D}[U]\mathcal{D}[\bar{\psi}, \psi]\hat{O}_2[U, \bar{\psi}, \psi]\hat{O}_1[U, \bar{\psi}, \psi]e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$
LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size $N^3 \times N_t \rightarrow$ related to the temporal extent:

$$T = \frac{1}{a N_t}, \quad a : \text{Lattice spacing}$$

Euclidean correlators of some operators \hat{O}:

$$\langle \hat{O}_1(\tau, \vec{x}) \hat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \hat{O}_2[U, \bar{\psi}, \psi] \hat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

\mathcal{Z} : partition function
LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size $N^3 \times N_\tau \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_\tau}, \quad a: \text{ Lattice spacing}$$

Euclidean correlators of some operators \hat{O}:

$$\langle \hat{O}_1(\tau, \vec{x}) \hat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \hat{O}_2[U, \bar{\psi}, \psi] \hat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

$S_F[U, \bar{\psi}, \psi]$ and $S_G[U]$: fermion and gluon parts of the discretized QCD action
LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size $N^3 \times N_\tau \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_\tau}, \quad a : \text{Lattice spacing}$$

Euclidean correlators of some operators \hat{O}:

$$\langle \hat{O}_1(\tau, \vec{x}) \hat{O}_2(0, \vec{0}) \rangle = \frac{1}{Z} \int D[U] D[\bar{\psi}, \psi] \hat{O}_2[U, \bar{\psi}, \psi] \hat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Meson Euclidean temporal correlator:

$$\langle J(\tau, \vec{x}) J(0, \vec{0}) \rangle = -\frac{1}{Z} \int D[U] e^{-S_G[U]} \det[M] \text{Tr} [\Gamma_H \ M^{-1}(0, \vec{0}; \tau, \vec{x}) \ \Gamma_H \ M^{-1}(\tau, \vec{x}; 0, \vec{0})],$$
LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size $N^3 \times N_T \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_T}, \quad a : \text{Lattice spacing}$$

Euclidean correlators of some operators \hat{O}:

$$\langle \hat{O}_1(\tau, \vec{x}) \hat{O}_2(0, \vec{0}) \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \hat{O}_2[U, \bar{\psi}, \psi] \hat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Meson Euclidean temporal correlator:

$$\langle J(\tau, \vec{x}) J(0, \vec{0}) \rangle = -\frac{1}{Z} \int \mathcal{D}[U] e^{-S_G[U]} \det[M] \text{Tr} \left[\Gamma_H M^{-1}(0, \vec{0}; \tau, \vec{x}) \Gamma_H M^{-1}(\tau, \vec{x}; 0, \vec{0}) \right],$$

$\Gamma_H = 1, \gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu : \text{for scalar, pseudoscalar, vector and axial vector channels}$
LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size $N_\sigma^3 \times N_\tau \rightarrow$ related to the temporal extent:

$$T = \frac{1}{a N_\tau}, \quad a : \text{Lattice spacing}$$

Euclidean correlators of some operators \hat{O}:

$$\langle \hat{O}_1(\tau, \vec{x}) \hat{O}_2(0, \vec{0}) \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \hat{O}_2[U, \bar{\psi}, \psi] \hat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Meson Euclidean temporal correlator:

$$\langle J(\tau, \vec{x}) J(0, \vec{0}) \rangle = -\frac{1}{Z} \int \mathcal{D}[U] e^{-S_G[U]} \det[M] \text{Tr} \left[\Gamma_H M^{-1}(0, \vec{0}; \tau, \vec{x}) \right] \Gamma_H M^{-1}(\tau, \vec{x}; 0, \vec{0})$$

M^{-1} : fermion propagator