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MOTIVATION (I)

→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities
(RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under
extreme conditions of temperature and density.

→ Due to the large mass and relaxation time of the c quark, charmed mesons are a
powerful probe of the QGP.
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→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities
(RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under
extreme conditions of temperature and density.

→ Due to the large mass and relaxation time of the c quark, charmed mesons are a
powerful probe of the QGP.

Theoretical tools to study the matter at high temperatures:

• Perturbative theories

• Lattice QCD

• Non-perturbative effective hadronic theories
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→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities
(RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under
extreme conditions of temperature and density.

→ Due to the large mass and relaxation time of the c quark, charmed mesons are a
powerful probe of the QGP.

Start of the collision QGP Hadronization

Comover scattering

Quarkonia suppression

• Color screening

• Comover scattering
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MOTIVATION (II)

→ Properties of hadrons and their thermal modification are contained in their spectral
functions.

→ Spectral functions can be directly calculated using effective hadronic theories within a
unitarized approach.

→ We focus on finite-temperature mesonic matter to study the high temperature (< Tc)
and low density region of the QCD phase diagram (matter generated in HICs in RHIC and
LHC).

→ Ground-state heavy mesons (e.g. D, Ds , D∗, D∗
s ) modify their properties in hot matter.

→ Consequences in the behavior of excited mesonic states, such as the non-strange
D∗

0(2300) and D∗
1(2430) and the strange D∗

s0(2317) and D∗
s1(2460), dynamically generated

in a heavy-light molecular model at finite temperature.
→ Spectral functions can be obtained at unphysical meson masses and used to calculate

Euclidean correlators to compare with lattice QCD results.
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Hadronic molecular model:
Effective hadronic interaction & Unitarization
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QUARK MODEL

Although the basic constituents in QCD are quarks and gluons, the conventional quark model
(Gell-Mann, 1964; Zweig, 1964) has been very successful in describing hadron structure.

Baryon

p, n, Λ,∆, Ξc, ...

Meson

π, K, D, B, J/ψ, ...
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EXOTIC HADRONS

There are many (excited) hadrons that do not accommodate in the qqq or qq̄ picture.

Other configurations allowed by QCD, e.g., qq̄qq̄, qqqqq̄, etc., are called exotic.

Baryonic systems
Pentaquarks qqqqq̄

Compact pentaquark Meson-baryon molecule

Λ(1405), Λc(2595), Λc(2625), Pc(4380), Pc(4450), ...
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EXOTIC HADRONS

Mesonic systems
Tetraquarks qq̄qq̄

Compact
tetraquark

Meson-meson
molecule

D∗
0(2300), D∗

s (2317), X(3872), charged Z
states, ...

Hybrid Glueball
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EXOTIC HADRONS

Mesonic systems
Tetraquarks qq̄qq̄

Compact
tetraquark

Meson-meson
molecule

D∗
0(2300), D∗

s (2317), X(3872), charged Z
states, ...

A. Esposito et al. Int.J.Mod.Phys. A30 (2015) 1530002
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HADRONIC MOLECULES

Hadronic molecules are deuteron-like quasi-bound
states of two mesons (tetraquark), a meson and a
baryon (pentaquark) or two baryons (hexaquark).

→ Dynamically generated via multiple scattering of
their meson/baryon components.

→ Located near threshold m1 + m2

→ Studied using effective hadronic theories.

→ Mesons and baryons are the degrees of freedom. meson meson
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EFFECTIVE HADRONIC THEORY

The most general effective Lagrangian, up to a given order, consistent with the symmetries
of the underlying theory.

Heavy-light meson-meson interaction → Symmetries of QCD :
• Chiral symmetry in the limit mu, md, ms → 0

• Heavy-quark symmetry in the limit mc, mb → ∞
Mesons and baryons are the degrees of freedom.

Interaction mediated by the exchange of mesons.

Interaction of D(∗) and D(∗)
s with light mesons:

→ Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

L = LLO + LNLO

9
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INTERACTION LAGRANGIAN (LO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

L = LLO + LNLO

LLO = ⟨∇µD∇µD†⟩ − m2
D⟨DD†⟩ − ⟨∇µD∗ν∇µD∗†

ν ⟩+ m2
D⟨D∗νD∗†

ν ⟩

+ i g⟨D∗µuµD† − DuµD∗†
µ ⟩+ g

2mD
⟨D∗

µuα∇βD∗†
ν −∇βD∗

µuαD∗†
ν ⟩ϵµναβ

∇µD(∗) = ∂µD(∗) − D(∗)Γµ Γµ =
1

2
(u†∂µu + u∂µu†)

uµ = i (u†∂µu − u∂µu†) u =
√

U = exp
( iΦ√

2fπ

)
[Kolomeitsev and Lutz (2004)]

[Lutz and Soyeur (2008)]
[Guo, Hanhart and Meißner (2009)]

[Geng, Kaiser, Martin-Camalich and Weise (2010)]
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INTERACTION LAGRANGIAN (LO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

L = LLO + LNLO

LLO = ⟨∇µD∇µD†⟩ − m2
D⟨DD†⟩ − ⟨∇µD∗ν∇µD∗†

ν ⟩+ m2
D⟨D∗νD∗†

ν ⟩

+ i g⟨D∗µuµD† − DuµD∗†
µ ⟩+ g

2mD
⟨D∗

µuα∇βD∗†
ν −∇βD∗

µuαD∗†
ν ⟩ϵµναβ

D mesons:
D = (D0 D+ D+

s ) , D∗
µ = (D∗0 D∗+ D∗+

s )µ

Light mesons:

Φ =

 1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 −
√

2
3
η


Di Dj

ΦjΦi
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INTERACTION LAGRANGIAN (NLO)

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

L = LLO + LNLO

LNLO =− h0 ⟨DD†⟩⟨χ+⟩+ h1 ⟨Dχ+D†⟩+ h2 ⟨DD†⟩⟨uµuµ⟩

+ h3 ⟨DuµuµD†⟩+ h4 ⟨∇µD∇νD†⟩⟨uµuν⟩+ h5 ⟨∇µD{uµ, uν}∇νD†⟩

+ h̃0 ⟨D∗µD∗†
µ ⟩⟨χ+⟩ − h̃1 ⟨D∗µχ+D∗†

µ ⟩ − h̃2 ⟨D∗µD∗†
µ ⟩⟨uνuν⟩

− h̃3 ⟨D∗µuνuνD∗†
µ ⟩ − h̃4 ⟨∇µD∗α∇νD∗†

α ⟩⟨uµuν⟩ − h̃5 ⟨∇µD∗α{uµ, uν}∇νD∗†
α ⟩

χ+ = u†χu† + uχu χ = diag(m2
π,m2

π, 2m2
K − m2

π) LECs : h0,...,5, h̃0,...,5

[Liu, Orginos, Guo, Hanhart and Meißner (2013)]
[Tolos and Torres-Rincon (2013)]

[Albaladejo, Fernandez-Soler, Guo and Nieves (2017)]
[ Guo, Liu, Meißner, Oller and Rusetsky (2019)]
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SCATTERING AMPLITUDE

L = LLO + LNLO

Tree-level scattering amplitude of D(∗), D(∗)
s

mesons with π, K, K̄, η mesons:

Di (p1) Dj (p3)

Φj (p4)Φi (p2)

V ij(s, t, u) =
1

f 2π

[1
4

C ij
LO (s − u)− 4 C ij

0 h0 + 2 C ij
1 h1

− 2 C ij
24

(
2 h2 (p2 · p4) + h4

(
(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)

))
+ 2 C ij

35

(
h3 (p2 · p4) + h5

(
(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)

))]
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LO,0,1,24,35: isospin coefficients for the transition i → j
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LECs fitted to LQCD data of scattering lengths [Guo, Liu, Meißner, Oller Rusetsky (2019)]
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UNITARIZATION

Bethe-Salpeter equation in coupled-channels:

Di Dj

ΦjΦi

=

Di Dj

ΦjΦi

+

Di Dj

ΦjΦi

Dk

Φk

+

Di Dj

ΦjΦi

Dk

Φk

Dl

Φl

+ ...

Tij = Vij + VikGkVkj + VikGkVklGlVlj + ...

13
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Di Dj

ΦjΦi

=

Di Dj

ΦjΦi

+

Di Dj

ΦjΦi

Dk

Φk

Tij = Vij +VikGkTkj → T = (1−VG)−1V (On-shell factorization)
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LOOP FUNCTION

The two-meson propagator

Gk = i
∫ d4q

(2π)4
1

q2 − m2
D,k + iε

1

(P − q)2 − m2
Φ,k + iε

has to be regularized:

→ Dimensional regularization: subtraction constants ak(µ)

→ Cutoff regularization with |⃗q| < Λ

At threshold:
√sthr = m1 + m2

GDR(
√sthr, al(µ)) = GΛ(

√sthr,Λ)

14
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DYNAMICALLY GENERATED STATES

→ Identification of states in the unitarized scattering amplitudes

→ Analytical continuation and poles in the complex-energy plane

→ Bound states, resonances and virtual states in different Riemann sheets

• Mass MR = Re√sR

• Half-width ΓR
2

= Im√sR

• Coupling constants |gi|

• Compositeness Xi =
∣∣g2i ∂Gi(zp)

∂z

∣∣
ΓR2

/2
ΓR1

/2 MR1

MR2Im
√

s

Re
√

s

|Tii(
√

s)|

15



Results I:
Dynamically generated states at T = 0
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COUPLED CHANNELS

In isospin basis:

(S, I) Channels Threshold (MeV)
JP = 0− ⊕ 0−

(−1, 0) DK̄ 2364.88

(−1, 1) DK̄ 2364.88

(0, 1
2
) Dπ 2005.28

Dη 2415.10

DsK̄ 2463.98

(0, 3
2
) Dπ 2005.28

(1, 0) DK 2364.88

Dsη 2516.20

(1, 1) Dsπ 2106.38

DK 2364.88

(2, 1
2
) DsK 2463.98

(S, I) Channels Threshold (MeV)
JP = 1− ⊕ 0−

(−1, 0) D∗K̄ 2504.20

(−1, 1) D∗K̄ 2504.20

(0, 1
2
) D∗π 2146.59

D∗η 2556.42

D∗
s K̄ 2607.84

(0, 3
2
) D∗π 2146.59

(1, 0) D∗K 2504.20

D∗
s η 2660.06

(1, 1) D∗
sπ 2250.24

D∗K 2504.20

(2, 1
2
) D∗

s K 2607.84

16
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COUPLED CHANNELS
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DYNAMICALLY GENERATED STATES

Scalars (JP = 0+): D∗
0(2300) and D∗

s0(2317)

(S, I) RS MR ΓR/2 |gi| χi
(MeV) (MeV) (GeV)

(0, 1
2 ) (−,+,+) 2081.9 86.0 |gDπ| = 8.9 χDπ = 0.40

|gDη| = 0.4 χDη = 0.00

|gDsK̄| = 5.4 χDsK̄ = 0.05

(−,−,+) 2529.3 145.4 |gDπ| = 6.7 χDπ = 0.10

|gDη| = 9.9 χDη = 0.40

|gDsK̄| = 19.4 χDsK̄ = 1.63

(1, 0) (+,+) 2252.5 0.0 |gDK| = 13.3 χDK = 0.66

|gDsη| = 9.2 χDsη = 0.17

Experimental values:

MR = 2300± 19 MeV, ΓR = 274± 40 MeV

MR = 2317.8± 0.5 MeV, ΓR < 3.8 MeV

2000 2100 2200 2300 2400 2500 2600

E [MeV]

0.0

0.5

1.0

1.5

2.0

−I
m
T
ii

[M
eV

0
]

×102

TDπDπ
TDsK̄ DsK̄
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DYNAMICALLY GENERATED STATES

Axial vectors (JP = 1+): D∗
1(2430) and D∗

s1(2460)

(S, I) RS MR ΓR/2 |gi| χi
(MeV) (MeV) (GeV)

(0, 1
2 ) (−,+,+) 2222.3 84.7 |gD∗π| = 9.5 χD∗π = 0.40

|gD∗η| = 0.4 χD∗η = 0.00

|gD∗s K̄| = 5.7 χD∗s K̄ = 0.05

(−,−,+) 2654.6 117.3 |gD∗π| = 6.5 χD∗π = 0.09

|gD∗η| = 10.0 χD∗η = 0.40

|gD∗s K̄| = 18.5 χD∗s K̄ = 1.47

(1, 0) (+,+) 2393.3 0.0 |gD∗K| = 14.2 χD∗K = 0.68

|gD∗s η| = 9.7 χD∗s η = 0.17

Experimental values:

MR = 2427± 40 MeV, ΓR = 384+130
−110 MeV

MR = 2459.5± 0.6 MeV, ΓR < 3.5 MeV

2100 2200 2300 2400 2500 2600 2700

E [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

−I
m
T
ii

[M
eV

0
]

×102

TD∗πD∗π
TD∗sK̄ D∗sK̄
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Finite temperature corrections
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MESONIC BATH

→ Mesonic matter at a temperature 0 < T < Tc

→ Vanishing baryon density

→ Heavy mesons behave as Brownian particles

→ Modification of the properties of the D mesons

Both production and absorption processes of heavy-light pairs are possible

19
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MODIFICATION OF HEAVY MESONS IN A HOT MEDIUM

Imaginary time formalism

• Sum over Matsubara frequencies

q0 → ωn =
i
β
2πn,

∫ d4q
(2π4)

→ i
β

∑
n

∫ d3q
(2π)3

(bosons)

Dressing the mesons in the loop function

• Self-energy corrections
• Pion mass slightly varies below Tc → only heavy meson is dressed

D = D +

Φ

D D
D D

Φ

20
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i
β
2πn,

∫ d4q
(2π4)

→ i
β

∑
n

∫ d3q
(2π)3

(bosons)

Dressing the mesons in the loop function

• Self-energy corrections
• Pion mass slightly varies below Tc → only heavy meson is dressed

D = D +

Φ

D D
D D

Φ 20
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SELF-CONSISTENCY

Loop
function

GDΦ

GDΦ(E, p⃗;T) =

∫ d3q
(2π)3

∫
dω

∫
dω′

SD(ω, q⃗;T)SΦ(ω
′, p⃗ − q⃗;T)

E − ω − ω′ + iε [1 + f(ω,T) + f(ω′,T) ]

21
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Φ), ωΦ =
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q2Φ + m2
Φ
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SELF-CONSISTENCY

Loop
function

GDΦ

GDΦ(E, p⃗;T) =

∫ d3q
(2π)3

∫
dω

∫
dω′

SD(ω, q⃗;T)SΦ(ω
′, p⃗ − q⃗;T)

E − ω − ω′ + iε [1 + f(ω,T) + f(ω′,T) ]

Spectral functions: SD, SΦ → ωΦ

ω′ δ(ω
′2 − ω2

Φ), ωΦ =
√

q2Φ + m2
Φ

Bose distribution function at T: f(ω,T) = 1
eω/T−1

Regularized with a cutoff |⃗q| < Λ
21
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SELF-CONSISTENCY

Loop
function

GDΦ

Unitarized
amplitude

TDΦ

Tij = Vij + VikGkTkj

Di Dj

ΦjΦi

=

Di Dj

ΦjΦi

+

Di Dj

ΦjΦi

Dk

Φk

21
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SELF-CONSISTENCY

Loop
function

GDΦ

Unitarized
amplitude

TDΦ

Self-
energy
ΠD

ΠD(E, p⃗;T) = − 1

π

∫ d3q
(2π)3

∫
dΩ E

ωΦ

f(Ω,T) − f(ωΦ,T)

E 2 − (ωΦ − Ω)2 + iε Im TDΦ(Ω, p⃗ + q⃗;T)

D D

Φ 21
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SELF-CONSISTENCY

Loop
function

GDΦ

Unitarized
amplitude

TDΦ

Self-
energy
ΠD

D-meson
propagator

DD

SD(ω, q⃗;T) = − 1

π
Im DD(ω, q⃗;T) = − 1

π
Im

( 1

ω2 − q⃗2 − m2
D −ΠD(ω, q⃗;T)

)
D = D +

Φ

D D

21
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PHYSICAL INTERPRETATION OF THE THERMAL BATH

bath → bath + DΦ bath + DΦ → bath

GDΦ(E, p⃗;T) ∼
{ [1 + f(ωD,T)][1 + f(ωΦ,T)] − f(ωD,T)f(ωΦ,T)

E − ωD − ωΦ + iε

bath + D̄Φ̄ → bath bath → bath + D̄Φ̄

+
f(ωD,T)f(ωΦ,T) − [1 + f(ωD,T)][1 + f(ωΦ,T)]

E + ωD + ωΦ + iε

bath + D̄ → bath + Φ bath + Φ → bath + D̄

+
f(ωD,T) [1 + f(ωΦ,T)] − f(ωΦ,T) [1 + f(ωD,T)]

E + ωD − ωΦ + iε

bath + Φ̄ → bath + D bath + D → bath + Φ̄

+
f(ωΦ,T) [1 + f(ωD,T)] − f(ωD,T) [1 + f(ωΦ,T)]

E − ωD + ωΦ + iε

}

D

Φ

D

Φ

D̄

Φ̄

D̄

Φ̄

D̄

Φ Φ

D̄

D

Φ̄

D

Φ̄

At zero temperature f (ω, T = 0) = 0 22
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PHYSICAL INTERPRETATION OF THE THERMAL BATH

GDΦ(E, p⃗;T) ∼
{ [1 + f(ωD,T)][1 + f(ωΦ,T)] − f(ωD,T)f(ωΦ,T)

E − ωD − ωΦ + iε

+
f(ωD,T)f(ωΦ,T) − [1 + f(ωD,T)][1 + f(ωΦ,T)]

E + ωD + ωΦ + iε

+
f(ωD,T) [1 + f(ωΦ,T)] − f(ωΦ,T) [1 + f(ωD,T)]

E + ωD − ωΦ + iε

+
f(ωΦ,T) [1 + f(ωD,T)] − f(ωD,T) [1 + f(ωΦ,T)]

E − ωD + ωΦ + iε

}

First branch cut
(T = 0 unitary cut):
E ≥ (mD + mΦ)

Additional branch cut
(Landau cut):
E ≤ (mD − mΦ)

At zero temperature f (ω, T = 0) = 0 22



Results II: Thermal modifications
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LOOP FUNCTIONS

Pionic bath

D and Ds with
light mesons

Unitary cut:
E ≥ (mD + mΦ)

Landau cut:
E ≤ (mD − mΦ) 1500 2000 2500

E [MeV]

−0.005

0.000

0.005
ReGDπ
ImGDπ

1500 2000 2500

E [MeV]

−0.005

0.000

0.005

T = 0 MeV T = 80 MeV T = 120 MeV T = 150 MeV

ReGDsπ

ImGDsπ
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LOOP FUNCTIONS

Pionic bath

D∗ and D∗
s with

light mesons

Unitary cut:
E ≥ (mD∗ + mΦ)

Landau cut:
E ≤ (mD∗ − mΦ) 1500 2000 2500

E [MeV]

−0.005

0.000

0.005
ReGD∗π
ImGD∗π

1500 2000 2500

E [MeV]

−0.005

0.000

0.005

T = 0 MeV T = 80 MeV T = 120 MeV T = 150 MeV

ReGD∗sπ

ImGD∗sπ
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SPECTRAL FUNCTIONS

Open-charm
pseudoscalar
mesons
in a pionic bath

SD(ω, q⃗;T) =

−
1

π
ImDD(ω, q⃗;T)

1700 1800 1900 2000

E [MeV]

10−7

10−6

10−5

10−4

10−3

S
[M

eV
−2

]

D

T = 0 MeV T = 80 MeV T = 120 MeV T = 150 MeV

1900 1920 1940 1960 1980 2000

E [MeV]

10−7

10−6

10−5

10−4

10−3 Ds

Mass shift and width acquisition of the D and Ds mesons in a thermal bath
24
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SPECTRAL FUNCTIONS

Open-charm
vector mesons
in a pionic bath

SD(ω, q⃗;T) =

−
1

π
ImDD(ω, q⃗;T)

1900 2000 2100

E [MeV]

10−7

10−6

10−5

10−4

10−3

S
[M

eV
−2

]

D∗

T = 0 MeV T = 80 MeV T = 120 MeV T = 150 MeV

2060 2080 2100 2120 2140

E [MeV]

10−7

10−6

10−5

10−4

10−3 D∗s

Mass shift and width acquisition of the D∗ and D∗
s mesons in a thermal bath
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DYNAMICALLY GENERATED STATES

Scalars (JP = 0+):

T-matrix in sector (C,S, I) = (1, 0, 1/2)

→ Two-pole structure of the D∗
0(2300)

Experimental values:

MR = 2300± 19 MeV, ΓR = 274± 40 MeV

T-matrix in sector (C,S, I) = (1, 1, 0)

→ D∗
s0(2317)

Experimental values:

MR = 2317.8± 0.5 MeV, ΓR < 3.8 MeV

2000 2100 2200 2300 2400 2500 2600
0.0

0.5

1.0

1.5

2.0

−I
m
T
ii

[M
eV

0
]

×102

TDπDπ
TDsK̄ DsK̄

2150 2175 2200 2225 2250 2275 2300 2325 2350

E [MeV]

101

103

105

107

−I
m
T
ii

[M
eV

0
]

T = 0 MeV T = 80 MeV T = 120 MeV T = 150 MeV

TDKDK

25
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DYNAMICALLY GENERATED STATES

Axial vectors (JP = 1+):

T-matrix in sector (C,S, I) = (1, 0, 1/2)

→ Two-pole structure of the D∗
1(2430)

Experimental values:

MR = 2427± 40 MeV, ΓR = 384+130
−110 MeV

T-matrix in sector (C,S, I) = (1, 1, 0)

→ D∗
s1(2460)

Experimental values:

MR = 2459.5± 0.6 MeV, ΓR < 3.5 MeV

2100 2200 2300 2400 2500 2600 2700
0.0

0.5

1.0

1.5

2.0

2.5

−I
m
T
ii

[M
eV

0
]

×102

TD∗πD∗π
TD∗sK̄ D∗sK̄

2300 2325 2350 2375 2400 2425 2450 2475 2500

E [MeV]

101

103

105

107

−I
m
T
ii

[M
eV

0
]

T = 0 MeV T = 80 MeV T = 120 MeV T = 150 MeV

TD∗KD∗K
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CHIRAL PARTNERS

Evolution of masses and
widths of the open-charm
mesons in a pionic
(or π + K + K̄) bath

I(JP) =
1

2
(0±), 0(0±)

[GM, A. Ramos, L. Tolos, J. Torres-Rincon,
arXiv:2007.12601]

0 25 50 75 100 125 150

T [MeV]

1820
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1
/
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(0
±

)
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)
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]
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D
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DsM

0
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)
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]
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Γ
0
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±

)
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]

D∗s0(2317)±

Ds

π bath

π +K + K̄ bath
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CHIRAL PARTNERS

Evolution of masses and
widths of the open-charm
mesons in a pionic
(or π + K + K̄) bath
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Euclidean correlators: comparison with lattice QCD
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FROM SPECTRAL FUNCTIONS TO EUCLIDEAN CORRELATORS

Spectral function → Euclidean correlator

GE(τ, p⃗;T) =

∫ ∞

0

dω K(τ, ω;T) ρ(ω, p⃗;T)

28
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FROM SPECTRAL FUNCTIONS TO EUCLIDEAN CORRELATORS

Spectral function → Euclidean correlator

GE(τ, p⃗;T) =

∫ ∞

0

dω K(τ, ω;T) ρ(ω, p⃗;T)

Spectral function ρ(ω, p⃗;T)

K(τ, ω;T) =
cosh[ω(τ − 1

2T )]

sinh( ω
2T )

Euclidean correlator → Spectral function (ill-posed)
• Bayesian methods (e.g. MEM)
• Fitting Ansätze

Reconstructed
correlator G r

E(τ ;T,Tr) =

∫ ∞

0

dωK(τ, ω;T)ρ(ω;Tr) → GE(τ ;T)

G r
E(τ ;T,Tr) 28
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EUCLIDEAN CORRELATORS WITH EFT

ω

ρ
/ω

2

T = 0

T > 0

SD(ω, q⃗;T) = − 1

π
ImDD(ω, q⃗;T)

= − 1

π
Im

( 1

ω2 − q⃗2 − M2
D −ΠD(ω, q⃗;T)

)
at unphysical meson masses (used in the lattice)
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T > 0

SD(ω, q⃗;T) = − 1

π
ImDD(ω, q⃗;T)

= − 1

π
Im

( 1

ω2 − q⃗2 − M2
D −ΠD(ω, q⃗;T)

)
at unphysical meson masses (used in the lattice)

Ground-state: ρgs(ω;T) = M4
DSD(ω;T)
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Results III: Open-charm Euclidean correlators
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EFT SPECTRAL FUNCTIONS AT UNPHYSICAL MASSES

mπ = 384 MeV

mK = 546 MeV

mη = 589 MeV

mD = 1880 MeV

mDs = 1943 MeV

[Kelly, Rothkopf, Skullerud
(2018)]

1800 1900 2000

E [MeV]

0.2

0.4

0.6

0.8

1.0

S
D

[M
eV
−2

]

×10−5 D-meson

1800 1900 2000

E [MeV]

0.5

1.0

1.5

2.0

S
D
s
[M

eV
−2

]

×10−5 Ds-meson

Tr = 44

141

156

176
Tc = 185
201

235

T
[M

eV
]

Tr = 44

141

156

176
Tc = 185
201

235

T
[M

eV
]

30



Outline Motivation Molecular model Results I Finite temperature Results II Euclidean correlators Results III Conclusions

EFT SPECTRAL FUNCTIONS AT UNPHYSICAL MASSES

mπ = 384 MeV

mK = 546 MeV

mη = 589 MeV

mD = 1880 MeV

mDs = 1943 MeV

[Kelly, Rothkopf, Skullerud
(2018)]

1800 1900 2000

E [MeV]

0.2

0.4

0.6

0.8

1.0

S
D

[M
eV
−2

]

×10−5 D-meson

1800 1900 2000

E [MeV]

0.5

1.0

1.5

2.0

S
D
s
[M

eV
−2

]

×10−5 Ds-meson

Tr = 44

141

156

176
Tc = 185
201

235

T
[M

eV
]

Tr = 44

141

156

176
Tc = 185
201

235

T
[M

eV
]

1 2 3 4 5 6 7 8

ω [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

ρ
D

(ω
;T

)+
a
ρ
c
(ω

;T
)

ω
2

D-meson

a = 0

a = 1

a = 10

1 2 3 4 5 6 7 8

ω [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

ρ
D
s
(ω

;T
)+
a
ρ
c
(ω

;T
)

ω
2

Ds-meson

a = 0

a = 1

a = 10

Tr = 44

141

156

176
Tc = 185
201

235

T
[M

eV
]

Tr = 44

141

156

176
Tc = 185
201

235

T
[M

eV
]

30



Outline Motivation Molecular model Results I Finite temperature Results II Euclidean correlators Results III Conclusions

COMPARISON WITH LQCD
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→ Inclusion of the continuum improves the matching at small τ

→ Very good agreement at the lowest temperature. At larger temperatures: excited states?

→ Close and above Tc the EFT breaks down. [GM, O. Kaczmarek, L. Tolos, A. Ramos, arXiv:2007.15690]
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CONCLUSIONS AND OUTLOOK

→ We have introduced finite-temperature corrections to the description of the interaction
of open charm mesons with light mesons in a self-consistent manner.

→ We have obtained spectral functions at various temperatures below Tc.

→ The mass of the charmed D(∗)- and D(∗)
s -mesons decreases with temperature (∼ 40

MeV for the D(∗) and ∼ 20 MeV for the D(∗)
s at T = 150MeV) while they acquire a

substantial width (∼ 70MeV for the D(∗) and ∼ 20MeV for the D(∗)
s at T = 150MeV).

→ The dynamically generated resonances shift their mass and get wider as temperature
increases. Still far from chiral degeneracy.

→ The effect of the addition of kaons in the bath is mild.
→ We have calculated Euclidean correlators from spectral functions at the unphysical

masses used in the lattice. Well below Tc there is a good agreement with LQCD
results, whereas close or above Tc the discrepancy indicates the missing contribution of
higher-excited states.
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CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal modification of light mesons

→ Extend our calculations to the bottom sector
→ Explore the hidden heavy-flavor sector
→ Study transport properties of heavy mesons at finite temperature
→ Further test our results against lattice QCD calculations and make predictions at the

physical point

33



Outline Motivation Molecular model Results I Finite temperature Results II Euclidean correlators Results III Conclusions

CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal modification of light mesons
→ Extend our calculations to the bottom sector

→ Explore the hidden heavy-flavor sector
→ Study transport properties of heavy mesons at finite temperature
→ Further test our results against lattice QCD calculations and make predictions at the

physical point

33



Outline Motivation Molecular model Results I Finite temperature Results II Euclidean correlators Results III Conclusions

CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal modification of light mesons
→ Extend our calculations to the bottom sector
→ Explore the hidden heavy-flavor sector

→ Study transport properties of heavy mesons at finite temperature
→ Further test our results against lattice QCD calculations and make predictions at the

physical point

33



Outline Motivation Molecular model Results I Finite temperature Results II Euclidean correlators Results III Conclusions

CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal modification of light mesons
→ Extend our calculations to the bottom sector
→ Explore the hidden heavy-flavor sector
→ Study transport properties of heavy mesons at finite temperature

→ Further test our results against lattice QCD calculations and make predictions at the
physical point

33



Outline Motivation Molecular model Results I Finite temperature Results II Euclidean correlators Results III Conclusions

CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal modification of light mesons
→ Extend our calculations to the bottom sector
→ Explore the hidden heavy-flavor sector
→ Study transport properties of heavy mesons at finite temperature
→ Further test our results against lattice QCD calculations and make predictions at the

physical point

33



Thank you!
Gràcies!



Backup slides



Backup slides

UNITARIZED T-MATRIX AT T ̸= 0
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Backup slides

LOOP FUNCTION AT T > 0

GDΦ(E, p⃗;T) =

∫ d3q
(2π)3

∫
dω

∫
dω′

SD(ω, q⃗;T)SΦ(ω
′, p⃗ − q⃗;T)

E − ω − ω′ + iε · [1 + f(ω,T) + f(ω′,T) ]

Spectral functions:

SD, SΦ → ωΦ

ω′ δ(ω
′2 − ω2

Φ), ωΦ =
√

q2Φ + m2
Φ

Bose distribution function at T:

f(ω,T) =
1

eω/T − 1

Regularized with a cutoff |⃗q| < Λ
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SPECTRAL FUNCTION
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SELF-ENERGY
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LATTICE EUCLIDEAN CORRELATORS

Temperature of the system on a lattice of size N3
σ × Nτ → related to the temporal extent:

T =
1

aNτ
, a : Lattice spacing

Euclidean correlators of some operators Ô :

⟨Ô1(τ, x⃗)Ô2(0, 0⃗)⟩ =
1

Z

∫
D[U]D[ψ̄, ψ]Ô2[U, ψ̄, ψ]Ô1[U, ψ̄, ψ]e

− SF[U, ψ̄, ψ] − SG[U]
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