

Thermal modification of open-charm mesons from an effective hadronic theory

Glòria Montaña

University of Barcelona Institute of Cosmos Sciences

[GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, Phys.Lett.B 806 (2020)] [GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, arXiv:2007.12601] [GM, Olaf Kaczmarek, Laura Tolos, Angels Ramos, arXiv:2007.15690]

Theory Seminar - Jefferson Lab September 14, 2020

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
●	00	00000000000	000		00000	OO	00	00
OUTL	INE							

1. Motivation

2. Hadronic molecular model: Effective hadronic interaction & Unitarization

3. Results I: Dynamically generated states at $T=0\,$

- 4. Finite temperature corrections
- 5. Results II: Thermal modifications
- 6. Euclidean correlators: comparison with lattice QCD
- 7. Results III: Open-charm Euclidean correlators
- 8. Conclusions and Outlook

Motivation

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	●O	00000000000	000		00000	00	00	OO
MC	TIVATION (I)						

→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under extreme conditions of temperature and density.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	●O	00000000000	000		00000	OO	00	OO
MOTI	JATION (I)						

→ Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under extreme conditions of temperature and density.

Theoretical tools to study the matter at high temperatures:

- · Perturbative theories
- Lattice QCD
- · Non-perturbative effective hadronic theories

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	●O	00000000000	000	0000	00000	OO	OO	00
MOTIV	ATION (I)							

- → Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under extreme conditions of temperature and density.
- → Due to the large mass and relaxation time of the c quark, **charmed mesons are a powerful probe of the QGP**.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	●O	00000000000	000		00000	OO	00	00
MOTIN	VATION (I)						

- → Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under extreme conditions of temperature and density.
- → Due to the large mass and relaxation time of the c quark, **charmed mesons are a powerful probe of the QGP**.

Quarkonia suppression

- Color screening
- Comover scattering

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	⊙●	00000000000	000		00000	OO	00	00
MOTIV	ATION (II)						

→ Properties of hadrons and their thermal modification are contained in their spectral functions.

Outline O	Motivation ⊙●	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators OO	Results III 00	Conclusions OO
ΜΟΤΙ\	/ATION (I	I)						

- → Properties of hadrons and their thermal modification are contained in their spectral functions.
- → Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	⊙●	00000000000	000		00000	OO	00	OO
MOTI	VATION (I	I)						

- → Properties of hadrons and their thermal modification are contained in their spectral functions.
- → Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.
- → We focus on **finite-temperature mesonic matter** to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	⊙●	00000000000	000		00000	OO	00	OO
MOTI	VATION (I	I)						

- → Properties of hadrons and their thermal modification are contained in their spectral functions.
- → Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.
- → We focus on **finite-temperature mesonic matter** to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).
- → **Ground-state heavy mesons** (e.g. D, D_s , D^* , D_s^*) modify their properties in hot matter.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	⊙●	00000000000	000		00000	OO	00	OO
MOTI	VATION (I	I)						

- → Properties of hadrons and their thermal modification are contained in their spectral functions.
- → Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.
- → We focus on **finite-temperature mesonic matter** to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).
- → **Ground-state heavy mesons** (e.g. D, D_s , D^* , D_s^*) modify their properties in hot matter.
- → Consequences in the behavior of **excited mesonic states**, such as the non-strange $D_0^*(2300)$ and $D_1^*(2430)$ and the strange $D_{s0}^*(2317)$ and $D_{s1}^*(2460)$, dynamically generated in a heavy-light molecular model at finite temperature.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	⊙●	00000000000	000		00000	OO	00	00
MOTI	VATION (II)						

- → Properties of hadrons and their thermal modification are contained in their spectral functions.
- → Spectral functions can be directly calculated using effective hadronic theories within a unitarized approach.
- → We focus on **finite-temperature mesonic matter** to study the high temperature ($< T_c$) and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).
- → **Ground-state heavy mesons** (e.g. D, D_s , D^* , D_s^*) modify their properties in hot matter.
- → Consequences in the behavior of **excited mesonic states**, such as the non-strange $D_0^*(2300)$ and $D_1^*(2430)$ and the strange $D_{s0}^*(2317)$ and $D_{s1}^*(2460)$, dynamically generated in a heavy-light molecular model at finite temperature.
- → Spectral functions can be obtained at unphysical meson masses and used to calculate Euclidean correlators to compare with lattice QCD results.

Hadronic molecular model: Effective hadronic interaction & Unitarization

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	OO	•0000000000	000		00000	00	00	00

Although the basic constituents in QCD are quarks and gluons, the **conventional quark model** (Gell-Mann, 1964; Zweig, 1964) has been very successful in describing hadron structure.

Baryon

p, n, Λ , Δ , Ξ_c , ...

Meson

 π , K, D, B, J/ψ , ...

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions 00
EXOT	IC HADR	ONS						

There are many (excited) hadrons that do not accommodate in the qqq or $q\bar{q}$ picture.

Other configurations allowed by QCD, e.g., $q\bar{q}q\bar{q}$, $qqqq\bar{q}$, etc., are called **exotic**.

Baryonic systems

Pentaquarks $qqqq\bar{q}$

Compact pentaquark

Meson-baryon molecule

 $\Lambda(1405), \Lambda_c(2595), \Lambda_c(2625), P_c(4380), P_c(4450), \dots$

 $D^{\ast}_{0}(2300),$ $D^{\ast}_{s}(2317),$ X(3872), charged Z states, ...

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	00	00●00000000	000	0000	00000	OO	00	OO

EXOTIC HADRONS

Mesonic systems

Tetraquarks $q\bar{q}q\bar{q}$

A. Esposito et al. Int.J.Mod.Phys. A30 (2015) 1530002

 $D^{\ast}_{0}(2300)$, $D^{\ast}_{s}(2317)$, X(3872) , charged Z states, ...

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

HADRONIC MOLECULES

Hadronic molecules are deuteron-like **quasi-bound states** of two mesons (tetraquark), a meson and a baryon (pentaquark) or two baryons (hexaquark).

- → Dynamically generated via multiple scattering of their meson/baryon components.
- \rightarrow Located near threshold $m_1 + m_2$
- \rightarrow Studied using effective hadronic theories.
- $\rightarrow\,$ Mesons and baryons are the degrees of freedom.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

EFFECTIVE HADRONIC THEORY

The most general effective Lagrangian, up to a given order, **consistent with the symmetries** of the underlying theory.

Outline O	Motivation 00	Molecular model 0000€000000	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions OO

EFFECTIVE HADRONIC THEORY

The most general effective Lagrangian, up to a given order, **consistent with the symmetries** of the underlying theory.

Heavy-light meson-meson interaction \rightarrow Symmetries of QCD :

- Chiral symmetry in the limit $m_u, m_d, m_s \rightarrow 0$
- Heavy-quark symmetry in the limit $m_c, m_b \rightarrow \infty$

Mesons and baryons are the degrees of freedom.

Interaction mediated by the exchange of mesons.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

EFFECTIVE HADRONIC THEORY

The most general effective Lagrangian, up to a given order, **consistent with the symmetries** of the underlying theory.

Heavy-light meson-meson interaction \rightarrow Symmetries of QCD :

- Chiral symmetry in the limit $m_u, m_d, m_s \rightarrow 0$
- Heavy-quark symmetry in the limit $m_c, m_b \rightarrow \infty$

Mesons and baryons are the degrees of freedom.

Interaction mediated by the exchange of mesons.

Interaction of $D^{(*)}$ and $D^{(*)}_s$ with light mesons:

ightarrow Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

$$\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\mathcal{L}_{\rm LO} = \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_D^2 \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_D^2 \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle$$

$$+ i g \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_D} \langle D_{\mu}^* u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^* u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta}$$

$$\nabla_{\mu} D^{(*)} = \partial_{\mu} D^{(*)} - D^{(*)} \Gamma^{\mu} \qquad \Gamma_{\mu} = \frac{1}{2} (u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger})$$
$$u_{\mu} = i (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger}) \qquad u = \sqrt{U} = \exp\left(\frac{i \Phi}{\sqrt{2} f_{\pi}}\right)$$

[Kolomeitsev and Lutz (2004)] [Lutz and Soyeur (2008)] [Guo, Hanhart and Meißner (2009)] [Geng, Kaiser, Martin-Camalich and Weise (2010)]

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\mathcal{L}_{\rm LO} = \left\langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \right\rangle - m_D^2 \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_D^2 \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle$$

$$+ i g \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_D} \langle D_{\mu}^* u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^* u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta}$$

$$\nabla_{\mu} D^{(*)} = \partial_{\mu} D^{(*)} - D^{(*)} \Gamma^{\mu} \qquad \Gamma_{\mu} = \frac{1}{2} (u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger})$$
$$u_{\mu} = i (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger}) \qquad u = \sqrt{U} = \exp\left(\frac{i \Phi}{\sqrt{2} f_{\pi}}\right)$$

[Kolomeitsev and Lutz (2004)] [Lutz and Soyeur (2008)] [Guo, Hanhart and Meißner (2009)] [Geng, Kaiser, Martin-Camalich and Weise (2010)]

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\mathcal{L}_{\text{LO}} = \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_{D}^{2} \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_{D}^{2} \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle$$

$$+ i g \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_{D}} \langle D_{\mu}^{*} u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^{*} u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta}$$

$$\nabla_{\mu} D^{(*)} = \partial_{\mu} D^{(*)} - D^{(*)} \Gamma^{\mu} \qquad \Gamma_{\mu} = \frac{1}{2} (u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger})$$
$$u_{\mu} = i (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger}) \qquad u = \sqrt{U} = \exp\left(\frac{i \Phi}{\sqrt{2} f_{\pi}}\right)$$

.4

[Kolomeitsev and Lutz (2004)] [Lutz and Soyeur (2008)] [Guo, Hanhart and Meißner (2009)] [Geng, Kaiser, Martin-Camalich and Weise (2010)]

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\mathcal{L}_{\mathrm{LO}} = \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_{D}^{2} \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_{D}^{2} \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle$$

$$+ i g \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_{D}} \langle D_{\mu}^{*} u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^{*} u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta}$$

D mesons:

$$D = \begin{pmatrix} D^0 & D^+ & D_s^+ \end{pmatrix}, \quad D_{\mu}^* = \begin{pmatrix} D^{*0} & D^{*+} & D_s^{*+} \end{pmatrix}_{\mu}$$

Light mesons:

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\mathcal{L}_{\mathrm{NLO}} = - h_0 \langle DD^{\dagger} \rangle \langle \chi_+ \rangle + h_1 \langle D\chi_+ D^{\dagger} \rangle + h_2 \langle DD^{\dagger} \rangle \langle u^{\mu} u_{\mu} \rangle$$

$$+ h_3 \langle Du^{\mu} u_{\mu} D^{\dagger} \rangle + h_4 \langle \nabla_{\mu} D \nabla_{\nu} D^{\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle + h_5 \langle \nabla_{\mu} D \{ u^{\mu}, u^{\nu} \} \nabla_{\nu} D^{\dagger} \rangle$$

$$+ \tilde{h}_0 \langle D^{*\mu} D^{*\dagger}_{\mu} \rangle \langle \chi_+ \rangle - \tilde{h}_1 \langle D^{*\mu} \chi_+ D^{*\dagger}_{\mu} \rangle - \tilde{h}_2 \langle D^{*\mu} D^{*\dagger}_{\mu} \rangle \langle u^{\nu} u_{\nu} \rangle$$

$$- \tilde{h}_3 \langle D^{*\mu} u^{\nu} u_{\nu} D^{*\dagger}_{\mu} \rangle - \tilde{h}_4 \langle \nabla_{\mu} D^{*\alpha} \nabla_{\nu} D^{*\dagger}_{\alpha} \rangle \langle u^{\mu} u^{\nu} \rangle - \tilde{h}_5 \langle \nabla_{\mu} D^{*\alpha} \{ u^{\mu}, u^{\nu} \} \nabla_{\nu} D^{*\dagger}_{\alpha} \rangle$$

$$\chi_{+} = u^{\dagger} \chi u^{\dagger} + u \chi u \qquad \chi = \text{diag}(m_{\pi}^{2}, m_{\pi}^{2}, 2m_{K}^{2} - m_{\pi}^{2}) \qquad \text{LECs}: \ h_{0,...,5}, \ \tilde{h}_{0,...,5}$$

[Liu, Orginos, Guo, Hanhart and Meißner (2013)] [Tolos and Torres-Rincon (2013)] [Albaladejo, Fernandez-Soler, Guo and Nieves (2017)] [Guo, Liu, Meißner, Oller and Rusetsky (2019)]

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\begin{aligned} \mathcal{L}_{\mathrm{NLO}} &= - \begin{array}{|c|c|c|} h_0 & \langle DD^{\dagger} \rangle \langle \chi_+ \rangle + \begin{array}{|c|c|} h_1 & \langle D\chi_+ D^{\dagger} \rangle + \begin{array}{|c|} h_2 & \langle DD^{\dagger} \rangle \langle u^{\mu} u_{\mu} \rangle \\ &+ \begin{array}{|c|c|} h_3 & \langle Du^{\mu} u_{\mu} D^{\dagger} \rangle + \begin{array}{|c|} h_4 & \langle \nabla_{\mu} D\nabla_{\nu} D^{\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle + \begin{array}{|c|} h_5 & \langle \nabla_{\mu} D\{u^{\mu}, u^{\nu}\} \nabla_{\nu} D^{\dagger} \rangle \\ &+ \begin{array}{|c|} \tilde{h}_0 & \langle D^{*\mu} D^{*\dagger}_{\mu} \rangle \langle \chi_+ \rangle - \begin{array}{|c|} \tilde{h}_1 & \langle D^{*\mu} \chi_+ D^{*\dagger}_{\mu} \rangle - \begin{array}{|c|} \tilde{h}_2 & \langle D^{*\mu} D^{*\dagger}_{\mu} \rangle \langle u^{\nu} u_{\nu} \rangle \\ &- \begin{array}{|c|} \tilde{h}_3 & \langle D^{*\mu} u^{\nu} u_{\nu} D^{*\dagger}_{\mu} \rangle - \begin{array}{|c|} \tilde{h}_4 & \langle \nabla_{\mu} D^{*\alpha} \nabla_{\nu} D^{*\dagger}_{\alpha} \rangle \langle u^{\mu} u^{\nu} \rangle - \begin{array}{|c|} \tilde{h}_5 & \langle \nabla_{\mu} D^{*\alpha} \{u^{\mu}, u^{\nu}\} \nabla_{\nu} D^{*\dagger}_{\alpha} \rangle \end{aligned} \end{aligned}$$

$$\chi_{+} = u^{\dagger} \chi u^{\dagger} + u \chi u \qquad \chi = \text{diag}(m_{\pi}^{2}, m_{\pi}^{2}, 2m_{K}^{2} - m_{\pi}^{2}) \qquad \text{LECs:} \ h_{0,...,5}, \ \tilde{h}_{0,...,5}$$

[Liu, Orginos, Guo, Hanhart and Meißner (2013)] [Tolos and Torres-Rincon (2013)] [Albaladejo, Fernandez-Soler, Guo and Nieves (2017)] [Guo, Liu, Meißner, Oller and Rusetsky (2019)]

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions 00
							i ,	

SCATTERING AMPLITUDE

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

 $D_i(p_1)$ $D_j(p_3)$ $\Phi_i(p_2)$ $\Phi_j(p_4)$

Tree-level scattering amplitude of $D^{(*)}$, $D^{(*)}_s$ mesons with π , K , \bar{K} , η mesons:

$$V^{ij}(s,t,u) = \frac{1}{f_{\pi}^2} \Big[\frac{1}{4} \ C_{\rm LO}^{ij} \ (s-u) - 4 \ C_0^{ij} \ h_0 \ + 2 \ C_1^{ij} \ h_1 \\ - 2 \ C_{24}^{ij} \ \Big(2 \ h_2 \ (p_2 \cdot p_4) + \ h_4 \ \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \Big) \\ + 2 \ C_{35}^{ij} \ \Big(\ h_3 \ (p_2 \cdot p_4) + \ h_5 \ \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \big) \Big]$$

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators OO	Results III 00	Conclusions 00
							i j	

SCATTERING AMPLITUDE

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

 $D_i(p_1)$ $D_j(p_3)$ $\Phi_i(p_2)$ $\Phi_j(p_4)$

Tree-level scattering amplitude of $D^{(*)}$, $D_s^{(*)}$ mesons with π , K, \bar{K} , η mesons:

 $C_{\mathrm{LO},0,1,24,35}^{ij}$: isospin coefficients for the transition $i \to j$

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions 00
							i ,	

SCATTERING AMPLITUDE

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

 $D_{i}(p_{1}) \qquad D_{j}(p_{3})$ $\Phi_{i}(p_{2}) \qquad \Phi_{j}(p_{4})$

Tree-level scattering amplitude of $D^{(*)}$, $D_s^{(*)}$ mesons with π , K, \bar{K} , η mesons:

LECs fitted to LQCD data of scattering lengths

[Guo, Liu, Meißner, Oller Rusetsky (2019)]

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators OO	Results III 00	Conclusions OO
UNIT	ARIZATIO	N						

Bethe-Salpeter equation in coupled-channels:

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators OO	Results III 00	Conclusions OO
UNIT	ARIZATIO	N						

Bethe-Salpeter equation in coupled-channels:

Outline O	Motivation OO	Molecular model	Results I 000	Finite temperature 0000	Results II 00000	Euclidean correlators	Results III 00	Conclusions OO
LOOP	FUNCTIO	ON						

The two-meson propagator

$$G_k = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_{D,k}^2 + i\varepsilon} \frac{1}{(P-q)^2 - m_{\Phi,k}^2 + i\varepsilon}$$

has to be regularized:

- \rightarrow Dimensional regularization: subtraction constants $a_k(\mu)$
- \rightarrow **Cutoff regularization** with $|\vec{q}| < \Lambda$

At threshold: $\sqrt{s_{
m thr}}=m_1+m_2$

$$G_{\rm DR}(\sqrt{s_{\rm thr}}, a_l(\mu)) = G_{\Lambda}(\sqrt{s_{\rm thr}}, \Lambda)$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

DYNAMICALLY GENERATED STATES

- \rightarrow Identification of **states** in the unitarized scattering amplitudes
- \rightarrow Analytical continuation and poles in the complex-energy plane
- $\rightarrow~$ Bound states, resonances and virtual states in different **Riemann sheets**

- Mass $M_R = \operatorname{Re} \sqrt{s_R}$
- Half-width $\frac{\Gamma_R}{2} = \operatorname{Im} \sqrt{s_R}$
- Coupling constants $|g_i|$
- Compositeness $X_i = \left|g_i^2 \frac{\partial G_i(z_p)}{\partial z}\right|$

Results I: Dynamically generated states at T = 0
Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00
							/	

COUPLED CHANNELS

In isospin basis:

(S, I)	Channels	Threshold (MeV)
	$J^P = 0^- \oplus 0^-$	
(-1,0)	$D\bar{K}$	2364.88
(-1, 1)	$D\bar{K}$	2364.88
$(0, \frac{1}{2})$	$D\pi$	2005.28
	$D\eta$	2415.10
	$D_s \overline{K}$	2463.98
$(0, \frac{3}{2})$	$D\pi$	2005.28
(1, 0)	DK	2364.88
	$D_s\eta$	2516.20
(1, 1)	$D_s\pi$	2106.38
	DK	2364.88
$(2, \frac{1}{2})$	$D_s K$	2463.98

(S, I)	Channels	Threshold (MeV)
	$J^P = 1^- \oplus 0^-$	
(-1,0)	$D^* \bar{K}$	2504.20
(-1, 1)	$D^* \bar{K}$	2504.20
$(0, \frac{1}{2})$	$D^*\pi$	2146.59
-	$D^*\eta$	2556.42
	$D_s^* \bar{K}$	2607.84
$(0, \frac{3}{2})$	$D^*\pi$	2146.59
(1, 0)	D^*K	2504.20
	$D_s^*\eta$	2660.06
(1, 1)	$D_s^*\pi$	2250.24
	D^*K	2504.20
$(2, \frac{1}{2})$	$D_s^* K$	2607.84

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

COUPLED CHANNELS

In isospin basis:

(S, I)	Channels	Threshold (MeV)
	$J^P = 0^- \oplus 0^-$	
(-1,0)	$D\bar{K}$	2364.88
(-1, 1)	$D\bar{K}$	2364.88
$(0, \frac{1}{2})$	$D\pi$	2005.28
-	$D\eta$	2415.10
	$D_s \bar{K}$	2463.98
$(0, \frac{3}{2})$	$D\pi$	2005.28
(1, 0)	DK	2364.88
	$D_s\eta$	2516.20
(1, 1)	$D_s\pi$	2106.38
	DK	2364.88
$(2, \frac{1}{2})$	$D_s K$	2463.98

(S, I)	Channels	Threshold (MeV)
	$J^P = 1^- \oplus 0^-$	
(-1,0)	$D^* \bar{K}$	2504.20
(-1, 1)	$D^* \bar{K}$	2504.20
$(0, \frac{1}{2})$	$D^*\pi$	2146.59
-	$D^*\eta$	2556.42
	$D_s^* \bar{K}$	2607.84
$(0, \frac{3}{2})$	$D^*\pi$	2146.59
(1, 0)	D^*K	2504.20
	$D_s^*\eta$	2660.06
(1, 1)	$D_s^*\pi$	2250.24
	D^*K	2504.20
$(2, \frac{1}{2})$	$D_s^* K$	2607.84

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00
							/	

COUPLED CHANNELS

In isospin basis:

(S, I)	Channels	Threshold (MeV)
	$J^P = 0^- \oplus 0^-$	
(-1,0)	$D\bar{K}$	2364.88
(-1, 1)	$D\bar{K}$	2364.88
$(0, \frac{1}{2})$	$D\pi$	2005.28
	$D\eta$	2415.10
	$D_s \overline{K}$	2463.98
$(0, \frac{3}{2})$	$D\pi$	2005.28
(1, 0)	DK	2364.88
	$D_s\eta$	2516.20
(1, 1)	$D_s\pi$	2106.38
	DK	2364.88
$(2, \frac{1}{2})$	$D_s K$	2463.98

(S, I)	Channels	Threshold (MeV)
	$J^P = 1^- \oplus 0^-$	
(-1,0)	$D^* \bar{K}$	2504.20
(-1, 1)	$D^* \bar{K}$	2504.20
$(0, \frac{1}{2})$	$D^*\pi$	2146.59
	$D^*\eta$	2556.42
	$D_s^* \bar{K}$	2607.84
$(0, \frac{3}{2})$	$D^*\pi$	2146.59
(1, 0)	D^*K	2504.20
	$D_s^*\eta$	2660.06
(1, 1)	$D_s^*\pi$	2250.24
	D^*K	2504.20
$(2, \frac{1}{2})$	$D_s^* K$	2607.84

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

DYNAMICALLY GENERATED STATES

Scalars $(J^P = 0^+)$: $D_0^*(2300)$ and $D_{s0}^*(2317)$

(S, I)	RS	M_R	$\Gamma_R/2$	$ g_i $	χ_i
		(MeV)	(MeV)	(GeV)	
$(0, \frac{1}{2})$	(-, +, +)	2081.9	86.0	$ g_{D\pi} = 8.9$	$\chi_{D\pi} = 0.40$
				$ g_{D\eta} = 0.4$	$\chi_{D\eta}=0.00$
				$ g_{D_s\bar{K}} = 5.4$	$\chi_{D_s\bar{K}} = 0.05$
	(-, -, +)	2529.3	145.4	$ g_{D\pi} = 6.7$	$\chi_{D\pi} = 0.10$
				$ g_{D\eta} = 9.9$	$\chi_{D\eta} = 0.40$
				$ g_{D_s\bar{K}} = 19.4$	$\chi_{D_s\bar{K}} = 1.63$
(1, 0)	(+, +)	2252.5	0.0	$ g_{DK} = 13.3$	$\chi_{DK} = 0.66$
				$ g_{D_s\eta} = 9.2$	$\chi_{D_s\eta}=0.17$

Experimental values:

 $M_R = 2300 \pm 19$ MeV, $\Gamma_R = 274 \pm 40$ MeV

 $M_R = 2317.8 \pm 0.5 \text{ MeV}, \quad \Gamma_R < 3.8 \text{ MeV}$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

DYNAMICALLY GENERATED STATES

Axial vectors $(J^P = 1^+)$: $D_1^*(2430)$ and $D_{s1}^*(2460)$

(S, I)	RS	M _R (MeV)	$\Gamma_R/2$ (MeV)	$ g_i $ (GeV)	χ_i
$(0, \frac{1}{2})$	(-, +, +)	2222.3	84.7	$ g_{D^*\pi} = 9.5$ $ g_{D^*\eta} = 0.4$	$\chi_{D^*\pi} = 0.40$ $\chi_{D^*\eta} = 0.00$
	(-, -, +)	2654.6	117.3	$ g_{D_s^*K} = 5.7$ $ g_{D^*\pi} = 6.5$ $ g_{D^*\pi} = 10.0$	$\chi_{D_s^*K} = 0.03$ $\chi_{D^*\pi} = 0.09$ $\chi_{D^*\eta} = 0.40$
				$ g_{D_s^*\bar{K}} = 18.5$	$\chi_{D_s^*\bar{K}} = 1.47$
(1, 0)	(+, +)	2393.3	0.0	$ g_{D^*K} = 14.2$	$\chi_{D^*K} = 0.68$
				$ g_{D_s^* \eta} = 9.7$	$\chi_{D_s^*\eta} = 0.17$

Experimental values:

$$\begin{split} M_R &= 2427 \pm 40 \; {\rm MeV}, \quad \Gamma_R &= 384^{+130}_{-110} \; {\rm MeV} \\ M_R &= 2459.5 \pm 0.6 \; {\rm MeV}, \quad \Gamma_R < 3.5 \; {\rm MeV} \end{split}$$

Finite temperature corrections

Outline O	Motivation 00	Molecular model 00000000000	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions OO

MESONIC BATH

- $\rightarrow~{\rm Mesonic}$ matter at a temperature $0 < \, T < \, T_c$
- \rightarrow Vanishing baryon density
- \rightarrow Heavy mesons behave as Brownian particles
- \rightarrow Modification of the properties of the *D* mesons

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	00	00000000000	000		00000	OO	00	OO

MESONIC BATH

- $\rightarrow~{\rm Mesonic}$ matter at a temperature $0 < \, T < \, T_c$
- \rightarrow Vanishing baryon density
- \rightarrow Heavy mesons behave as Brownian particles
- \rightarrow Modification of the properties of the *D* mesons

Both production and absorption processes of heavy-light pairs are possible

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

MODIFICATION OF HEAVY MESONS IN A HOT MEDIUM

Imaginary time formalism

• Sum over Matsubara frequencies

$$q^0 \to \omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4 q}{(2\pi^4)} \to \frac{i}{\beta} \sum_n \int \frac{d^3 q}{(2\pi)^3} \quad \text{(bosons)}$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

MODIFICATION OF HEAVY MESONS IN A HOT MEDIUM

Imaginary time formalism

Sum over Matsubara frequencies

$$q^0 \to \omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4 q}{(2\pi^4)} \to \frac{i}{\beta} \sum_n \int \frac{d^3 q}{(2\pi)^3} \quad (\text{bosons})$$

Dressing the mesons in the loop function

- Self-energy corrections
- + Pion mass slightly varies below $T_c \rightarrow$ only heavy meson is dressed

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} [1 + f(\omega,T) + f(\omega',T)]$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} [1 + f(\omega,T) + f(\omega',T)]$$

Spectral functions: $S_D, \quad S_{\Phi} \to \frac{\omega_{\Phi}}{\omega'} \delta(\omega'^2 - \omega_{\Phi}^2), \quad \omega_{\Phi} = \sqrt{q_{\Phi}^2 + m_{\Phi}^2}$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} [1 + f(\omega,T) + f(\omega',T)]$$

Spectral functions: $S_D, \quad S_{\Phi} \to \frac{\omega_{\Phi}}{\omega'}\delta(\omega'^2 - \omega_{\Phi}^2), \quad \omega_{\Phi} = \sqrt{q_{\Phi}^2 + m_{\Phi}^2}$
Bose distribution function at T: $f(\omega,T) = \frac{1}{e^{\omega/T}-1}$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

$$\begin{split} G_{D\Phi}(E,\vec{p};T) &= \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} [1 + f(\omega,T) + f(\omega',T)] \\ \text{Spectral functions:} \quad S_D, \quad S_{\Phi} \to \frac{\omega_{\Phi}}{\omega'}\delta(\omega'^2 - \omega_{\Phi}^2), \quad \omega_{\Phi} = \sqrt{q_{\Phi}^2 + m_{\Phi}^2} \\ \text{Bose distribution function at T:} \quad f(\omega,T) = \frac{1}{e^{\omega/T}-1} \\ \text{Regularized with a cutoff } |\vec{q}| < \Lambda \end{split}$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

$$T_{ij} = V_{ij} + V_{ik}G_kT_{kj}$$

$$D_i \qquad D_j \qquad D_i \qquad D_j + D_i \qquad D_k \qquad D_j$$

$$\Phi_i \qquad \Phi_j \qquad \Phi_i \qquad \Phi_j \qquad \Phi_i \qquad \Phi_k \qquad \Phi_j$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators OO	Results III 00	Conclusions 00
PHYS	ICAL INT	ERPRETATIO	N OF TH	HE THERMAI	_ BATH			
$G_{D\Phi}($	$(E, \vec{p}; T) \sim C$	bath \rightarrow bath $-$ $\left\{\begin{array}{c} [1+f(\omega_D, T)][1+f(\omega_D, T)]] \\ E\end{array}\right\}$	$+ D\Phi \\- f(\omega_{\Phi}, T)] \\- \omega_D - \omega$	bath + $D\Phi \rightarrow$ - $f(\omega_D, T)f(\omega_\Phi)$ $\Phi + i\varepsilon$	bath, T)			
		$bath + \overline{D}\overline{\Phi} \to ba$ $+ \frac{f(\omega_D, T)f(\omega_{\Phi}, T)}{f(\omega_D, T)f(\omega_{\Phi}, T)} + \frac{f(\omega_D, T)f(\omega_D, T)}{f(\omega_D, T)f(\omega_D, T)} + f(\omega_D, T)f(\omega_D, T)$	$\begin{array}{c} \text{ath} & \text{ba}\\ \hline T \end{pmatrix} - \begin{bmatrix} 1 \\ - \end{bmatrix} \\ E + \omega_D + \end{array}$	ath \rightarrow bath $+$ $\overline{D}\overline{\Phi}$ + $f(\omega_D, T)][1 + f(\omega_D, T)][1 + i\varepsilon$	$[v_{\Phi}, T)]$	\bar{D} $\bar{\Phi}$	\bar{D}	
		$bath + \frac{\bar{D}}{D} \rightarrow bat$ $+ \frac{f(\omega_D, T)}{I} [1 + 1]$	$\begin{array}{c} \mathbf{h} + \Phi \\ f(\omega_{\Phi}, T)] \\ \hline E + \omega_D \end{array}$	$bath + \Phi \rightarrow I$ $- f(\omega_{\Phi}, T) [1 + \omega_{\Phi} + i\varepsilon]$	$path + \overline{D}$ $f(\omega_D, T)]$	D	Φ, , , , , , , , , , , , , , , , , , ,	
		$bath + \overline{\Phi} \rightarrow batl$ $+ \frac{f(\omega_{\Phi}, T) [1 +]}{f(\omega_{\Phi}, T)} [1 +]$	$\frac{h + D}{f(\omega_D, T)]}$ $E - \omega_D$	bath + $D \rightarrow 1$ - $f(\omega_D, T)$ [1 + $\omega_{\Phi} + i\varepsilon$	$\frac{1}{\Phi} \left\{ \frac{1}{\Phi} \left\{ \frac{1}{\Phi} \left\{ \omega_{\Phi}, T \right\} \right\} \right\}$	D D	D $\bar{\Phi}$	

At zero temperature $f(\omega, T = 0) = 0$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

PHYSICAL INTERPRETATION OF THE THERMAL BATH

$$G_{D\Phi}(E,\vec{p};T) \sim \left\{ \frac{[1+f(\omega_D,T)][1+f(\omega_\Phi,T)] - f(\omega_D,T)f(\omega_\Phi,T)}{E - \omega_D - \omega_\Phi + i\varepsilon} \right\}$$

First branch cut (T = 0 unitary cut): $E \ge (m_D + m_{\Phi})$

+
$$\frac{f(\omega_D, T)f(\omega_\Phi, T) - [1 + f(\omega_D, T)][1 + f(\omega_\Phi, T)]}{E + \omega_D + \omega_\Phi + i\varepsilon}$$

+
$$\frac{f(\omega_D, T) [1 + f(\omega_\Phi, T)] - f(\omega_\Phi, T) [1 + f(\omega_D, T)]}{E + \omega_D - \omega_\Phi + i\varepsilon}$$

$$+ \frac{f(\omega_{\Phi}, T) [1 + f(\omega_D, T)] - f(\omega_D, T) [1 + f(\omega_{\Phi}, T)]}{E - \omega_D + \omega_{\Phi} + i\varepsilon}$$

Additional branch cut (Landau cut):

 $E \leq (m_D - m_\Phi)$

At zero temperature $f(\omega, T = 0) = 0$

Results II: Thermal modifications

Mass shift and width acquisition of the D and D_s mesons in a thermal bath

Mass shift and width acquisition of the D^* and D^*_s mesons in a thermal bath

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	00000000000	000	0000	00000	00	00	00

DYNAMICALLY GENERATED STATES

Scalars $(J^P = 0^+)$:

T-matrix in sector (C, S, I) = (1, 0, 1/2)

→ Two-pole structure of the $D_0^*(2300)$

Experimental values:

 $M_R = 2300 \pm 19 \; {\rm MeV}, \quad \Gamma_R = 274 \pm 40 \; {\rm MeV}$

T-matrix in sector (C, S, I) = (1, 1, 0)

 $\rightarrow D_{s0}^{*}(2317)$

Experimental values:

 $M_R = 2317.8 \pm 0.5 \text{ MeV}, \quad \Gamma_R < 3.8 \text{ MeV}$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	OO	00000000000	000		00000	OO	OO	00

DYNAMICALLY GENERATED STATES

Axial vectors $(J^P = 1^+)$:

T-matrix in sector (C, S, I) = (1, 0, 1/2)

→ Two-pole structure of the $D_1^*(2430)$

Experimental values:

 $M_R = 2427 \pm 40$ MeV, $\Gamma_R = 384^{+130}_{-110}$ MeV

T-matrix in sector (C, S, I) = (1, 1, 0)

 $\rightarrow D_{s1}^*(2460)$

Experimental values:

 $M_R = 2459.5 \pm 0.6 \text{ MeV}, \quad \Gamma_R < 3.5 \text{ MeV}$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

CHIRAL PARTNERS

Evolution of masses and widths of the open-charm mesons in a pionic (or $\pi + K + \overline{K}$) bath

$$I(J^P) = \frac{1}{2}(0^{\pm}), \ 0(0^{\pm})$$

[GM, A. Ramos, L. Tolos, J. Torres-Rincon, arXiv:2007.12601]

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

CHIRAL PARTNERS

Evolution of masses and widths of the open-charm mesons in a pionic (or $\pi + K + \overline{K}$) bath

$$I(J^P) = \frac{1}{2}(1^{\pm}), \ 0(1^{\pm})$$

[GM, A. Ramos, L. Tolos, J. Torres-Rincon, arXiv:2007.12601]

Euclidean correlators: comparison with lattice QCD

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	•0	00	00

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	•0	00	00

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$

Spectral function $\rho(\omega, \vec{p}; T)$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	•0	00	00

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$

Spectral function $\rho(\omega, \vec{p}; T)$

$$K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	•0	00	00

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$

Spectral function $\rho(\omega, \vec{p}; T)$

$$K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

- Bayesian methods (e.g. MEM)
- Fitting Ansätze

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	•0	00	00

Spectral function \rightarrow Euclidean correlator

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T)$$

Spectral function $\rho(\omega, \vec{p}; T)$

$$K(\tau,\omega;T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

- Bayesian methods (e.g. MEM)
- Fitting Ansätze

$$G_E^r(\tau; T, T_r) = \int_0^\infty d\omega K(\tau, \omega; T) \rho(\omega; T_r) \quad \to \quad \frac{G_E(\tau; T)}{G_E^r(\tau; T, T_r)}$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

EUCLIDEAN CORRELATORS WITH EFT

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice)

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	0•	00	00

EUCLIDEAN CORRELATORS WITH EFT

 $\begin{array}{c} T = 0 \\ \hline T > 0 \\ \hline T > 0 \\ \hline \end{array}$

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice)

Ground-state: $\rho_{\rm gs}(\omega; T) = M_D^4 S_D(\omega; T)$
Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	0●	00	00

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice) Ground-state: $ho_{\rm gs}(\omega;\,T)=M_D^4S_D(\omega;\,T)$

Full:
$$\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T)$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	0●	00	00

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice) Ground-state: $ho_{\rm gs}(\omega;\,T)=M_D^4S_D(\omega;\,T)$

Full:
$$\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T)$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	00	00

 $\begin{array}{c} T = 0 \\ \hline T > 0 \\ \hline T > 0 \\ \hline \end{array}$

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice) Ground-state: $\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T)$ Full: $\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T)$

$$\rho_{\text{cont}}(\omega; T) = \frac{3}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1\right)^2 - \frac{4m_2^2}{\omega^2}} \omega^2 \\ \times 2\left(1 - \frac{(m_1 - m_2)^2}{\omega^2}\right) \\ \times \left[n(-\omega_0, T) - n(\omega - \omega_0, T)\right] \theta(\omega - (m_1 + m_2))$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	0•	00	00

 $\begin{array}{c} - & T = 0 \\ - & - & T > 0 \end{array}$

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice) Ground-state: $\rho_{gs}(\omega; T) = M_D^4 S_D(\omega; T)$ Full: $\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T)$

 $\begin{array}{l} m_1 = m_c = 1.5 \; {\rm GeV} \\ m_2 = m_l = 0, \, m_2 = m_s = 100 \; {\rm MeV} \end{array}$

$$\rho_{\text{cont}}(\omega; T) = \frac{3}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1\right)^2 - \frac{4m_2^2}{\omega^2}\omega^2} \\ \times 2\left(1 - \frac{(m_1 - m_2)^2}{\omega^2}\right) \\ \times [n(-\omega_0, T) - n(\omega - \omega_0, T)] \theta(\omega - (m_1 + m_2))$$

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	0●	00	00

a: weight factor

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T)$$
$$= -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice) Ground-state: $\rho_{\rm gs}(\omega; T) = M_D^4 S_D(\omega; T)$ Full: $\rho(\omega; T) = \rho_{\rm gs}(\omega; T) + a \rho_{\rm cont}(\omega; T)$

$$\rho_{\text{cont}}(\omega; T) = \frac{3}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1\right)^2 - \frac{4m_2^2}{\omega^2}} \omega^2 \\ \times 2\left(1 - \frac{(m_1 - m_2)^2}{\omega^2}\right) \\ \times \left[n(-\omega_0, T) - n(\omega - \omega_0, T)\right] \theta(\omega - (m_1 + m_2))$$

Results III: Open-charm Euclidean correlators

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	•0	00

EFT SPECTRAL FUNCTIONS AT UNPHYSICAL MASSES

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
0	00	0000000000	000	0000	00000	00	•0	00

EFT SPECTRAL FUNCTIONS AT UNPHYSICAL MASSES

COMPARISON WITH LQCD

- $\rightarrow~$ Inclusion of the continuum improves the matching at small τ
- \rightarrow Very good agreement at the lowest temperature. At larger temperatures: excited states?
- → Close and above T_c the EFT breaks down.

[GM, O. Kaczmarek, L. Tolos, A. Ramos, arXiv:2007.15690]

COMPARISON WITH LQCD

- $\rightarrow~$ Inclusion of the continuum improves the matching at small τ
- \rightarrow Very good agreement at the lowest temperature. At larger temperatures: excited states?
- → Close and above T_c the EFT breaks down.

[GM, O. Kaczmarek, L. Tolos, A. Ramos, arXiv:2007.15690]

Conclusions and Outlook

Outline O	Motivation 00	Molecular model 00000000000	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions ●O
CONC	LUSION	ς ανή ουτι (JUK					

→ We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	00	00000000000	000		00000	OO	00	●O
CONC	USION	S AND OUTI (JOK					

- → We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
- \rightarrow We have obtained **spectral functions** at various temperatures below T_c .

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions ●O
CONC		ς ανή ουτι (JUK					

- → We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
- \rightarrow We have obtained **spectral functions** at various temperatures below T_c .
- → The mass of the charmed $D^{(*)}$ and $D_s^{(*)}$ -mesons decreases with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV) while they acquire a substantial width (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV).

Outline O	Motivation OO	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III OO	Conclusions ●O
	יאטוצו ו וי		ากห					

- → We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
- \rightarrow We have obtained **spectral functions** at various temperatures below T_c .
- → The mass of the charmed $D^{(*)}$ and $D_s^{(*)}$ -mesons decreases with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV) while they acquire a substantial width (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV).
- → The dynamically generated resonances shift their mass and get wider as temperature increases. Still far from chiral degeneracy.

Outline O	Motivation 00	Molecular model	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions ●O
			רא∩א					

- → We have introduced **finite-temperature corrections** to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
- \rightarrow We have obtained **spectral functions** at various temperatures below T_c .
- → The mass of the charmed $D^{(*)}$ and $D_s^{(*)}$ -mesons decreases with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV) while they acquire a substantial width (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV).
- → The dynamically generated resonances shift their mass and get wider as temperature increases. Still far from chiral degeneracy.
- \rightarrow The effect of the addition of **kaons in the bath** is mild.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	OO	00000000000	000		00000	OO	00	●O
			ากผ					

- → We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
- \rightarrow We have obtained **spectral functions** at various temperatures below T_c .
- → The mass of the charmed $D^{(*)}$ and $D_s^{(*)}$ -mesons decreases with temperature (~ 40 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV) while they acquire a substantial width (~ 70 MeV for the $D^{(*)}$ and ~ 20 MeV for the $D_s^{(*)}$ at T = 150 MeV).
- → The dynamically generated resonances shift their mass and get wider as temperature increases. Still far from chiral degeneracy.
- \rightarrow The effect of the addition of **kaons in the bath** is mild.
- → We have calculated **Euclidean correlators** from spectral functions at the unphysical masses used in the lattice. Well below Tc there is a good agreement with LQCD results, whereas close or above T_c the discrepancy indicates the missing contribution of higher-excited states.

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	OO	00000000000	000		00000	OO	00	O•

CONCLUSIONS AND OUTLOOK

In the near future we aim to:

→ Include thermal modification of light mesons

Outline	Motivation	Molecular model	Results I	Finite temperature	Results II	Euclidean correlators	Results III	Conclusions
O	00	00000000000	000		00000	OO	00	O•
CONC	LUSION	S AND OUTL	DOK					

- → Include thermal modification of light mesons
- \rightarrow Extend our calculations to the **bottom** sector

Outline O	Motivation 00	Molecular model 00000000000	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions O•
CONC	LUSION	S AND OUTL	DOK					

- → Include thermal modification of light mesons
- \rightarrow Extend our calculations to the **bottom** sector
- → Explore the hidden heavy-flavor sector

Outline O	Motivation OO	Molecular model 00000000000	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions O•
			n∩k –					

- → Include thermal modification of light mesons
- → Extend our calculations to the **bottom** sector
- → Explore the hidden heavy-flavor sector
- → Study **transport properties** of heavy mesons at finite temperature

Outline O	Motivation OO	Molecular model 00000000000	Results I 000	Finite temperature	Results II 00000	Euclidean correlators	Results III 00	Conclusions O•
CONC	USION	ς ανη ουτι (JUK					

- → Include thermal modification of light mesons
- → Extend our calculations to the **bottom** sector
- → Explore the hidden heavy-flavor sector
- → Study **transport properties** of heavy mesons at finite temperature
- → Further test our results against lattice QCD calculations and make predictions at the physical point

UNITARIZED T-MATRIX AT $T \neq 0$

$$T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$$

- Iteration 1: Undressed mesons

UNITARIZED T-MATRIX AT $T \neq 0$

$$T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$$

- Iteration 1: Undressed mesons

- Iteration > 1: Dressed heavy meson

LOOP FUNCTION AT T > 0

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \cdot \left[1 + f(\omega,T) + f(\omega',T)\right]$$

LOOP FUNCTION AT T > 0

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \cdot [1+f(\omega,T)+f(\omega',T)]$$

Spectral functions:

$$S_D, \quad S_\Phi \to \frac{\omega_\Phi}{\omega'} \delta(\omega'^2 - \omega_\Phi^2), \quad \omega_\Phi = \sqrt{q_\Phi^2 + m_\Phi^2}$$

LOOP FUNCTION AT T > 0

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \cdot \left[1 + f(\omega,T) + f(\omega',T)\right]$$

Spectral functions:

$$S_D, \quad S_\Phi \to \frac{\omega_\Phi}{\omega'} \delta(\omega'^2 - \omega_\Phi^2), \quad \omega_\Phi = \sqrt{q_\Phi^2 + m_\Phi^2}$$

Bose distribution function at T:

$$f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$$

LOOP FUNCTION AT T > 0

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \cdot \left[1 + f(\omega,T) + f(\omega',T)\right]$$

Spectral functions:

$$S_D, \quad S_\Phi \to \frac{\omega_\Phi}{\omega'} \delta(\omega'^2 - \omega_\Phi^2), \quad \omega_\Phi = \sqrt{q_\Phi^2 + m_\Phi^2}$$

Bose distribution function at T:

$$f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$$

Regularized with a cutoff $|\vec{q}| < \Lambda$

SELF-ENERGY AT T > 0

$$\Pi_D(E,\vec{p};T) = -\frac{1}{\pi} \int \frac{d^3q}{(2\pi)^3} \int d\Omega \frac{E}{\omega_\Phi} \frac{f(\Omega,T) - f(\omega_\Phi,T)}{E^2 - (\omega_\Phi - \Omega)^2 + i\varepsilon} \operatorname{Im} T_{D\Phi}(\Omega,\vec{p}+\vec{q};T)$$

SPECTRAL FUNCTION

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \text{Im} \left[\mathcal{D}_D(\omega, \vec{q}; T) \right] = -\frac{1}{\pi} \text{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - m_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

SELF-ENERGY

SELF-ENERGY

Temperature of the system on a lattice of size $N_{\sigma}^3 \times N_{\tau} \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_{\tau}}, \quad a: \text{Lattice spacing}$$

Euclidean correlators of some operators \widehat{O} :

$$\langle \widehat{O}_1(\tau, \vec{x}) \widehat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \widehat{O}_2[U, \bar{\psi}, \psi] \widehat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Temperature of the system on a lattice of size $N_{\sigma}^3 \times N_{\tau} \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_{\tau}}, \quad a: \text{Lattice spacing}$$

Euclidean correlators of some operators \widehat{O} :

$$\langle \widehat{O}_1(\tau, \vec{x}) \widehat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \widehat{O}_2[U, \bar{\psi}, \psi] \widehat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

 \mathcal{Z} : partition function

Temperature of the system on a lattice of size $N_{\sigma}^3 \times N_{\tau} \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_{\tau}}, \quad a: \text{Lattice spacing}$$

Euclidean correlators of some operators \widehat{O} :

$$\langle \widehat{O}_1(\tau, \vec{x}) \widehat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \widehat{O}_2[U, \bar{\psi}, \psi] \widehat{O}_1[U, \bar{\psi}, \psi] e^{-\frac{1}{\mathcal{S}_F[U, \bar{\psi}, \psi]} - \frac{1}{\mathcal{S}_G[U]}}$$

 $S_F[U,\bar\psi,\psi]$ and $S_G[U]$: fermion and gluon parts of the discritized QCD action

Temperature of the system on a lattice of size $N_{\sigma}^3 \times N_{\tau} \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_{\tau}}, \quad a: \text{Lattice spacing}$$

Euclidean correlators of some operators \widehat{O} :

$$\langle \widehat{O}_1(\tau, \vec{x}) \widehat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \widehat{O}_2[U, \bar{\psi}, \psi] \widehat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Meson Euclidean temporal correlator:

$$\langle J(\tau, \vec{x}) J(0, \vec{0}) \rangle = -\frac{1}{\mathcal{Z}} \int \mathcal{D}[U] e^{-S_G[U]} \det[M] \mathrm{Tr} \left[\Gamma_H \ M^{-1}(0, \vec{0}; \tau, \vec{x}) \ \Gamma_H \ M^{-1}(\tau, \vec{x}; 0, \vec{0}) \right],$$

Temperature of the system on a lattice of size $N_{\sigma}^3 \times N_{\tau} \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_{\tau}}, \quad a: \text{Lattice spacing}$$

Euclidean correlators of some operators \widehat{O} :

$$\langle \widehat{O}_1(\tau, \vec{x}) \widehat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \widehat{O}_2[U, \bar{\psi}, \psi] \widehat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Meson Euclidean temporal correlator:

$$\langle J(\tau, \vec{x}) J(0, \vec{0}) \rangle = -\frac{1}{\mathcal{Z}} \int \mathcal{D}[U] e^{-S_G[U]} \det[M] \mathrm{Tr} \left[\Gamma_H \ M^{-1}(0, \vec{0}; \tau, \vec{x}) \ \Gamma_H \ M^{-1}(\tau, \vec{x}; 0, \vec{0}) \right],$$

 $\Gamma_H=1,\gamma_5,\gamma_\mu,\gamma_5\gamma_\mu$: for scalar, pseudoscalar, vector and axial vector channels

Temperature of the system on a lattice of size $N_{\sigma}^3 \times N_{\tau} \rightarrow$ related to the temporal extent:

$$T = \frac{1}{aN_{\tau}}, \quad a: \text{Lattice spacing}$$

Euclidean correlators of some operators \widehat{O} :

$$\langle \widehat{O}_1(\tau, \vec{x}) \widehat{O}_2(0, \vec{0}) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \widehat{O}_2[U, \bar{\psi}, \psi] \widehat{O}_1[U, \bar{\psi}, \psi] e^{-S_F[U, \bar{\psi}, \psi] - S_G[U]}$$

Meson Euclidean temporal correlator:

$$\langle J(\tau, \vec{x}) J(0, \vec{0}) \rangle = -\frac{1}{\mathcal{Z}} \int \mathcal{D}[U] e^{-S_G[U]} \det[M] \mathrm{Tr} \left[\Gamma_H M^{-1}(0, \vec{0}; \tau, \vec{x}) | \Gamma_H M^{-1}(\tau, \vec{x}; 0, \vec{0}) \right],$$

 M^{-1} : fermion propagator