$\begin{array}{c} {\sf Light-Cone \ Distribution \ Amplitude} \\ {\tt 000000} \end{array}$

Numerical Implementation

Analysis 000000000000 Fourth Moment

Moments of the Pion Light-Cone Distribution Amplitude from the Heavy-Quark Operator Product Expansion

Fermilab

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

William Detmold, **Anthony Grebe**, Issaku Kanamori, David Lin, Santanu Mondal, Robert Perry, Yong Zhao

October 2, 2023

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Outline					

2 Lattice QCD

3 Light-Cone Distribution Amplitude

4 Numerical Implementation

6 Fourth Moment

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

Light-Cone Distribution Amplitude

Numerical Implementation

alysis

Fourth Moment

Standard Model of Particle Physics

Lattice QCD

Figure credit: *Symmetry*

◇>◇ 単則 ▲田▼▲田▼▲日▼

Motivation 0●00000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
	latrix				

- Free parameters in the Standard Model
- Control overlap among six quark flavors (and therefore decay rates)
- Complex phase affects violation of symmetries
- Best experimental measurements of magnitudes

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.01 & 0.04 & 0.999 \end{pmatrix}$$

Motivation 00●0000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Unitarity	[,] Triangle				

Figure credit: CKMFitter

Motivation 000€000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Pion De	ecav				

$$\Gamma\left(\pi^{+} \to \mu^{+} \nu_{\mu}\right) = \frac{G_{F} f_{\pi}^{2} |V_{ud}|^{2}}{8\pi} m_{\pi} m_{\mu}^{2} \left(1 - \frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{2}$$

- Decay rate depends on
 - Kinematic factors (m_{μ}, m_{π})
 - CKM matrix element (V_{ud})
 - Pion structure (f_{π})
- Need to disentangle pion structure from weak interactions to extract V_{ud} from experimental lifetime $\tau=1/\Gamma$
- Simple decay single parameter encodes pion structure

Motivation 0000●00	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
$B \to \pi \pi$	Decay				

• Rate depends on CKM matrix elements and terms such as

$$f^+(0)\int_0^1 dx \ T'_i(x)\varphi_\pi(x) + \int_0^1 d\xi \ dx \ dy \ T''_i(\xi,x,y)\varphi_B(\xi)\varphi_\pi(x)\varphi_\pi(y)$$

where $T_i^{I,II}$ are known functions and φ_B, φ_π are structure functions

- Complicated decay form (various ways to subdivide quark energies) require convolution of functions to capture structure
- Sensitive to symmetry violation and thus complex phase of CKM matrix

Motivation Lat 0000000 00 Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Fourth Moment

Light-Cone Distribution Amplitude

$$\langle 0|\bar{\psi}(z)\gamma^{\mu}\gamma^{5}W[z,-z]\psi(-z)|M(\mathbf{p})
angle=if_{M}p^{\mu}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}\varphi_{M}(\xi)$$

- Represents overlap between meson and q ar q pair with momenta $(1\pm\xi)/2$
- Relates quark-level process (weak interactions) to hadron-level interactions (decay rates)
- Universal (relates to multiple different processes)

Motivation 000000● Light-Cone Distribution Amplitude

Numerical Implementation

nalysis

Fourth Moment

◆ E ▶ ★ E ▶ E = ♥ ♥ € ▶

Pion Electromagnetic Form Factor

Lattice QCD

Figure credit: L. Chang et al., nucl-th/1307.0026, PRL 111, 141802

Motivation 0000000	Lattice QCD ●000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Running	Coupling				

Figure credit: Particle Data Group

Motivation 0000000	Lattice QCD 0●00000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
What is	attice (2002			

- Non-perturbative method to perform QCD calculations
- Based on Feynman path integral discretized in 4-D Euclidean space-time

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 00000000000 Fourth Moment

What is Lattice QCD?

Lattice QCD

- Non-perturbative method to perform QCD calculations
- Based on Feynman path integral discretized in 4-D Euclidean space-time
- Finite lattice spacing *a* (UV regulator)
- Need to take $a \rightarrow 0$ to match to continuum theory

Source: JICFuS, Tsukuba

Motivation 0000000	Lattice QCD 00●0000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Monte (Carlo Integ	gration			

$$\langle \mathcal{O} \rangle = rac{1}{Z} \int \mathcal{D}A \, e^{-S[A]} \mathcal{O}[A]$$

- A = gluon field (ignore sea quarks for now quenched approximation)
- $\bullet\,$ For a $64^3\times128$ lattice, integral is $\sim10^9$ dimensional
 - Trapezoid rule requires $> 2^{10^9}$ points

Motivation 0000000	Lattice QCD 00●0000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Monte (Carlo Integ	gration			

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]} \mathcal{O}[A]$$

- A = gluon field (ignore sea quarks for now quenched approximation)
- $\bullet\,$ For a $64^3\times128$ lattice, integral is $\sim10^9$ dimensional
 - Trapezoid rule requires $> 2^{10^9}$ points
- Instead evaluate integral using Monte Carlo (sample points at random)

Motivation 0000000	Lattice QCD 00●0000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Monte (Carlo Integ	gration			

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]} \mathcal{O}[A]$$

- A = gluon field (ignore sea quarks for now quenched approximation)
- $\bullet\,$ For a $64^3\times128$ lattice, integral is $\sim10^9$ dimensional
 - Trapezoid rule requires $> 2^{10^9}$ points
- Instead evaluate integral using Monte Carlo (sample points at random)
- Exponential varies by many orders of magnitude \Rightarrow need importance sampling

$$\langle \mathcal{O} \rangle = \underbrace{\frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]}}_{\text{I} \to \text{I}} \underbrace{\mathcal{O}[A]}_{\text{I} \to \text{I}}$$

probability measure observable

Motivation 0000000	Lattice QCD 00●0000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Monte (Carlo Integ	gration			

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]} \mathcal{O}[A]$$

- A = gluon field (ignore sea quarks for now quenched approximation)
- $\bullet\,$ For a $64^3\times128$ lattice, integral is $\sim10^9$ dimensional
 - Trapezoid rule requires $> 2^{10^9}$ points
- Instead evaluate integral using Monte Carlo (sample points at random)
- Exponential varies by many orders of magnitude \Rightarrow need importance sampling

$$\langle \mathcal{O} \rangle = \underbrace{\frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]}}_{N \text{ integral}} \underbrace{\mathcal{O}[A]}_{N \text{ integral}} \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[A]$$

probability measure observable

Motivation 0000000	Lattice QCD 00●0000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Monte (Carlo Integ	gration			

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]} \mathcal{O}[A]$$

- A = gluon field (ignore sea quarks for now quenched approximation)
- $\bullet\,$ For a $64^3\times128$ lattice, integral is $\sim10^9$ dimensional
 - Trapezoid rule requires $> 2^{10^9}$ points
- Instead evaluate integral using Monte Carlo (sample points at random)
- Exponential varies by many orders of magnitude \Rightarrow need importance sampling

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \, e^{-S[A]} \underbrace{\mathcal{O}[A]}_{\text{restability measure showships}} \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[A]$$

probability measure observable

• Generate gauge fields once, use for many observables

Motivation 0000000	Lattice QCD 000●000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment

Objects Calculable on Lattice

- Quark propagator

 - For interacting theory, replace p
 ightarrow i D
 - Determined by inverting Dirac operator $D(m|n)^{lphaeta}_{ab}=i{D\!\!\!/}+m$
 - Here, $D(m|n)_{ab}^{\alpha\beta}$ is finite $(12L^3T \times 12L^3T)$ square matrix

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 000000000000 Fourth Moment

Objects Calculable on Lattice

Lattice QCD

0000000

- Quark propagator

C

- For interacting theory, replace p
 ightarrow i D
- Here, $D(m|n)^{lphaeta}_{ab}$ is finite $(12L^3T imes 12L^3T)$ square matrix

• Create correlation functions by combining quark propagators

$$egin{aligned} &\mathcal{D}_2^\pi(t) = \langle \mathcal{O}_\pi(t) \mathcal{O}_\pi^\dagger(0)
angle \ &= \langle \left(ar{\psi}_d \gamma_5 \psi_u
ight)(t) \left(ar{\psi}_u \gamma_5 \psi_d
ight)(0)
angle \ &= \mathsf{Tr}[D_u^{-1}(t|0) \gamma_5 D_d^{-1}(0|t) \gamma_5] \end{aligned}$$

Figure credit: Gattringer and Lang (2010)

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 000000000000 Fourth Moment

Objects Calculable on Lattice

Lattice QCD

0000000

- Quark propagator
 - In free field theory, $S \sim rac{1}{p+m}$
 - For interacting theory, replace p
 ightarrow i D

 - Here, $D(m|n)^{lphaeta}_{ab}$ is finite $(12L^3T imes 12L^3T)$ square matrix

• Create correlation functions by combining quark propagators

$$egin{aligned} &\mathcal{D}_2^\pi(t) = \langle \mathcal{O}_\pi(t) \mathcal{O}_\pi^\dagger(0)
angle \ &= \langle \left(ar{\psi}_d \gamma_5 \psi_u
ight)(t) \left(ar{\psi}_u \gamma_5 \psi_d
ight)(0)
angle \ &= \mathsf{Tr}[D_u^{-1}(t|0) \gamma_5 D_d^{-1}(0|t) \gamma_5] \end{aligned}$$

• Can also create 3-point functions

 $C_3^\mu(t, au) = \langle \mathcal{O}_\pi(t) V^\mu(au) \mathcal{O}_\pi^\dagger(0)
angle$

Figure credit: Gattringer and Lang

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Behavior	r of Correl	ators			

$$C_2(t) = \sum Z_n e^{-E_n t} \to Z_0 e^{-E_0 t}$$

うせん 川田 エル・エット 山下 しょう

Motivation 0000000	Lattice QCD 00000●0	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Effectiv	e Mass				

$$m_{
m eff}(t) = \ln\left(rac{C_2(t)}{C_2(t+1)}
ight)
ightarrow E_0$$

◆□ > ◆□ > ◆ = > ◆ = > 三日 のへで

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Computational Cost

Lattice QCD

000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Image credit: Wikimedia Commons

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Computational Cost

Lattice QCD

000000

L=3fm QCD with N_=2+1 dynamical quarks Tflops*year 10 8 6 4 2 0 200 300 400 500 600 800 0 100 700 m_(MeV)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Figure credit: A. Ukawa @ CERN 2010

Image credit: Wikimedia Commons

Light-Cone Distribution Amplitude

Numerical Implementation

alysis

Fourth Moment

Computational Cost

Lattice QCD

000000

Figure credit: A. Ukawa @ CERN 2010

◇>◇ 単則 ▲田▼▲田▼▲日▼

Motivation	Lattice QCD	Light-Cone Distribution Amplitude
		●00000

Numerical Implementation

Analysis 000000000000 Fourth Moment

Lattice Determination of LCDA

$$\langle 0|ar{d}(-z)\gamma_{\mu}\gamma_{5}\mathcal{W}[-z,z]u(z)|\pi^{+}(p)
angle=ip_{\mu}f_{\pi}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}arphi_{\pi}(\xi)$$

- z is light-like separation $(z^2 = 0)$
- $\bullet~\mbox{Euclidean}$ space $\Rightarrow~\mbox{light-cone}$ is single point
- Need indirect methods
 - Quasi-PDF [Ji, 1305.1539, PRL 110, 262002]
 - Pseudo-PDF [Radyushkin, 1705.01488, PRD 96 034025; Radyushkin, 1909.08474, PRD 100 116011]
 - Expansion into moments

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment	
Lattice Determination of LCDA						

• Expansion of LCDA into Mellin moments

$$\langle \xi^n
angle = \int_{-1}^1 d\xi \, \xi^n arphi_\pi(\xi)$$

- Moments can be written in terms of local derivative operators
- Second moment computed with this approach [Bali et al., 1903.08038, JHEP **2020**, 37]
- For n > 2, mix with lower-dimensional lattice operators diverge instead of converging as a → 0
- Alternative approach to compute moments needed

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Hadron	c Tensor				

$$V^{\mu
u}(q,p) = \int d^4x \, e^{iq\cdot x} \langle 0 | T \left[A^{\mu}(x/2) A^{
u}(-x/2)
ight] | \pi^+(p)
angle$$

- Transition between pion and two axial current insertions
- Amenable to lattice calculations

W. Detmold (MIT) C.-J. D. Lin (NYCU)

Source: arXiv:hep-lat/0507007, PRD **73**, 014501

<ロト < 個 ト < 目 ト < 目 ト 三 目 の Q ()</p>

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Hadron	ic Tensor				

$$V^{\mu
u}(q,p) = \int d^4x \, e^{iq\cdot x} \langle 0| \, T \left[A^{\mu}(x/2) A^{
u}(-x/2)
ight] |\pi^+(p)
angle$$

- Transition between pion and two axial current insertions
- Amenable to lattice calculations
- Free to make currents flavor changing (and intermediate quark heavy)

W. Detmold (MIT)

C.-J. D. Lin (NYCU)

Source: arXiv:hep-lat/0507007, PRD **73**, 014501

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Operator Product Expansion (OPE)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Operator Product Expansion (OPE)

Lattice QCD

$$\pi \underbrace{\Psi_l}_{\psi_l} \sim \sum_n C_n(m_{\Psi}) \pi \underbrace{\mathcal{O}_n}_{\psi_l} + \mathcal{O}\left(\frac{1}{m_{\Psi}^{\tau}}, \frac{1}{Q^{\tau}}\right)$$

$$\left\langle 0 \left| \gamma^{\mu} \frac{-i(i\not\!D + \not\!q) + m_{\Psi}}{(iD+q)^2 + m_{\Psi}^2} \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle = \left\langle 0 \left| \gamma^{\mu} \frac{i(i\not\!D + \not\!q) + m_{\Psi}}{q^2 + (iD)^2 + m_{\Psi}^2} \sum_{n=0}^{\infty} \left(\frac{2iq \cdot D}{q^2 + (iD)^2 + m_{\Psi}^2} \right)^n \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle$$

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 000000000000 Fourth Moment

Operator Product Expansion (OPE)

$$\pi \underbrace{\Psi}_{\psi_l} \sim \sum_n C_n(m_{\Psi}) \pi \underbrace{\mathcal{O}_n}_{\psi_l} + \mathcal{O}\left(\frac{1}{m_{\Psi}^{\tau}}, \frac{1}{Q^{\tau}}\right)$$

$$\left\langle 0 \left| \gamma^{\mu} \frac{-i(i\not\!D + \not\!q) + m_{\Psi}}{(iD+q)^2 + m_{\Psi}^2} \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle = \left\langle 0 \left| \gamma^{\mu} \frac{i(i\not\!D + \not\!q) + m_{\Psi}}{q^2 + (iD)^2 + m_{\Psi}^2} \sum_{n=0}^{\infty} \left(\frac{2iq \cdot D}{q^2 + (iD)^2 + m_{\Psi}^2} \right)^n \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle$$

$$= \left\langle 0 \left| \gamma^{\mu} \frac{i(i\not\!D + \not\!q) + m_{\Psi}}{q^2 + m_{\Psi}^2} \sum_{n=0}^{\infty} \left(\frac{2p \cdot q}{q^2 + m_{\Psi}^2} \right)^n \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle \langle \xi^n \rangle + O\left(\frac{\Lambda_{\text{QCD}}}{(q^2 + m_{\Psi}^2)^{1/2}} \right)$$

using $D|\pi^+(\mathbf{p})
angle o \xi p|\pi^+(\mathbf{p})
angle$, $D^2 \sim O(\Lambda^2_{QCD})$

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis

Fourth Moment

Heavy Quark Operator Product Expansion (HOPE)

$$V^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

$$ilde{Q}^2 = -q^2 - m_\Psi^2\,, \qquad ilde{\omega} = rac{p\cdot q}{ ilde{Q}^2}\,,$$

• Odd moments vanish by isospin symmetry

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 000000000000 Fourth Moment

Heavy Quark Operator Product Expansion (HOPE)

$$\mathcal{W}^{\mu
u}(p,q) = rac{2if_{\pi}arepsilon^{\mu
u
ho\sigma}q_{
ho}p_{\sigma}}{ ilde{Q}^{2}}\sum_{\substack{n=0\ ext{even}}}^{\infty}rac{ ilde{\omega}^{n}}{2^{n}(n+1)}C^{(n)}_{W}(ilde{Q},m_{\Psi},\mu)\langle\xi^{n}
angle(\mu) + O\left(rac{\Lambda_{ ext{QCD}}}{ ilde{Q}}
ight)$$

$$ilde{Q}^2 = -q^2 - m_\Psi^2\,, \qquad ilde{\omega} = rac{p\cdot q}{ ilde{Q}^2}\,.$$

- Odd moments vanish by isospin symmetry
- Need to suppress $\Lambda_{
 m QCD}/ ilde{Q}$ corrections \Rightarrow need either q or m_{Ψ} large
- Large-q (short-distance) studied in [Braun and Müller, 0709.1348, EPJC 55, 349; Bali et al., 1807.06671, PRD 98 094507]
- This talk will discuss large- m_{Ψ} approach

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis Doooooooooooo Fourth Moment

Wilson Coefficients

Lattice QCD

Lattice QCD

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis

Fourth Moment

Heavy-Quark Operator Product Expansion (HOPE)

・ 三日 のへで

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Hadron	ic Tensor				

$$V^{\mu\nu}(q,p) = \int d^{4}x \, e^{iq \cdot x} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{x}{2} \right) A^{\nu} \left(-\frac{x}{2} \right) \right] \right| \pi^{+}(p) \right\rangle$$
$$\int dq_{4} e^{-iq_{4}\tau} V^{\mu\nu}(q,p) = \int d^{3}x \, e^{iq \cdot x} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{x}{2}, \frac{\tau}{2} \right) A^{\nu} \left(-\frac{x}{2}, -\frac{\tau}{2} \right) \right] \right| \pi^{+}(\mathbf{p}) \right\rangle$$

• Inverse FT of $V^{\mu\nu}$ calculable on lattice in terms of 2-point and 3-point functions

$$egin{aligned} \mathcal{C}_2(au) &= \langle \mathcal{O}_\pi(au) \mathcal{O}_\pi^\dagger(0)
angle \ \mathcal{C}_3(au_e, au_m) &= \langle \mathcal{A}^\mu(au_e) \mathcal{A}^
u(au_m) \mathcal{O}_\pi^\dagger(0)
angle \end{aligned}$$

• Isolation of ground state relies on sufficiently large separation between 0 and min $\{\tau_e, \tau_m\}$

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Excited S	States				

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\tau_m - \tau_e$ fixed at 0.06 fm

ullet Excited state contamination becomes $\sim 1\%$ by $\tau_e=0.7$ fm

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Ensembles Used

Lattice QCD

◆ E ▶ < E ▶ E = の Q ()

Ensembles Used						
Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment	

$L^3 \times T$	<i>a</i> (fm)	N _{cfg}	N _{src}	Nψ	N _{prop}
$24^3 \times 48$	0.0813	650	12	2	312,000
$32^3 \times 64$	0.0600	450	10	3	270,000
$40^3 \times 80$	0.0502	250	6	4	120,000
$48^3 \times 96$	0.0407	341	10	5	341,000

• Quenched approximation with $m_\pi=550$ MeV

- Fine dynamical ensembles prohibitively expensive
- Total compute time: $O(10^7)$ CPU-hours
- Wilson-clover fermions with non-perturbatively tuned $c_{\rm SW}$
- With clover term, results fully O(a) improved
 - Axial current renormalizes multiplicatively: $A^\mu o A^\mu Z_A (1 + ilde b_A a ilde m_q)$
 - This only affects overall normalization (not $\langle\xi^2\rangle)$

Motivation Lattic

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 000000000000 Fourth Moment

Software Used

- Calculations performed using Chroma library for lattice QCD
- Accelerated using QPhiX library (with AVX-512 intrinsics)
- Dynamical calculation ported to Bridge++ for use on the supercomputer Fugaku (ARM-based)
- Currently working on custom multi-mass solver for

heavy quarks

S. Mondal I. Kanamori (MSU) (RIKEN)

ション・西方・(山)・(日)・(日)・

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Choice	of Kinem	atics			

$$V^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

- Wilson coefficients $C_W^{(n)}(\mu=2 \text{ GeV})$ calculated to 1-loop
- Fit parameters: f_{π} , m_{Ψ} , $\langle \xi^2 \rangle$
- $\bullet\,$ Contribution of second moment $\langle\xi^2\rangle$ suppressed by

$$rac{ ilde{\omega}^2}{2^2 imes 3} = rac{1}{3}\left(rac{p\cdot q}{ ilde{Q}^2}
ight)^2 \lesssim 10^{-2}$$

シック 単則 スポッスポッスロッ

 Motivation
 Lattice QCD
 Light-Cone Distribution Amplitude
 Numerical Implementation
 Analysis
 Fourth Moment

 0000000
 0000000
 0000000
 0000000
 0000000000
 0000000000

Choice of Kinematics

Light-Cone Distribution Amplitude

Numerical Implementation

alysis

Fourth Moment

Noise Reduction

Lattice QCD

▲ Ξ ► ▲ Ξ ► ④ Q Q

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Noise F	eduction				

By γ_5 -hermiticity of quark propagators,

$$C_3^{\mu
u}(au_e, au_m;\mathbf{p}_e,\mathbf{p}_m)^*=C_3^{
u\mu}(au_m, au_e;\mathbf{p}_m,\mathbf{p}_e)$$

As a result,

$$\begin{aligned} \mathsf{Re}[V^{\mu\nu}(\mathbf{p},q)] &= \int_0^\infty d\tau \; [R^{\mu\nu}(\tau;\mathbf{p},\mathbf{q}) - R^{\mu\nu}(-\tau;\mathbf{p},\mathbf{q})] \sin(q_4\tau) \\ &= \int_0^\infty d\tau \; [R^{\mu\nu}(\tau;\mathbf{p},\mathbf{q}) + R^{\mu\nu}(\tau;-\mathbf{p},\mathbf{q})] \sin(q_4\tau) \end{aligned}$$

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Noise Reduction

Etation.	L La aluca da la	Τ			
Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis ●00000000000	Fourth Moment 0000000

• Fit ratio of 2- and 3-point correlators to inverse FT of OPE

Motivation	Lattice QCD	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis	Fourth N
				00000000000	

Fits to Various Ensembles

Masses are (left to right) $\{1.8, 2.5, 3.3, 3.9, 4.6\}$ GeV

◆□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶

otivation Lattice QCD Light-Cone Distribution Amplitu

Numerical Implementation

Analysis 00000000000 Fourth Moment

Continuum Extrapolation

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 00000000000 Fourth Moment

Uncertainty in Continuum Extrapolation

• Original fit restricted am_{Ψ} to < 1.05

◇□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

 Introduction
 Lattice
 QCD
 Light-Cone
 Distribution

 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000

Numerical Implementation

Analysis 000000000000 Fourth Moment

Uncertainty in Higher-Twist Effects

Could add twist-4 term to fit: data = $\langle \xi^2 \rangle + Am_{\Psi}^{-1} + Bm_{\Psi}^{-2} + Ca^2 + Da^2 m_{\Psi} + Ea^2 m_{\Psi}^2$

Combin	ed Uncert				
Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000●000000	Fourth Moment

 $\langle \xi^2 \rangle = 0.210 \pm 0.013$ (statistical) \pm 0.016 (continuum) \pm 0.025 (higher twist) \pm 0.002 (excited states) \pm 0.0002 (finite volume) ± 0.014 (unphysically heavy pion) ± 0.002 (fit range) ± 0.008 (running coupling) $\langle \xi^2 \rangle = 0.210 \pm 0.036$ (total, exc. quenching)

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000●00000	Fourth Moment
Compari	son to Lite	erature			

Detmold, AVG, Kanamori, Lin, Mondal, Perry, Zhao, 2109.15241, PRD 105, 034506

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 0000000000000	Fourth Moment
Quench	ed Appro»	kimation			

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp(-\bar{\psi} \not\!\!\!D\psi) \mathcal{O}[A] \exp(-S[A])}{\int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp(-\bar{\psi} \not\!\!\!D\psi) \exp(-S[A])}$$

0000000	0000000	000000	0000000000	00000000000000	000000
Ouench	hed Annro	vimation			

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp(-\bar{\psi}\overline{\mathcal{D}}\psi) \mathcal{O}[A] \exp(-S[A])}{\int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp(-\bar{\psi}\overline{\mathcal{D}}\psi) \exp(-S[A])}$$

• Neglect of sea quarks in calculation

Motivation Lattice QCD 0000000 0000000 Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 00000000000000 Fourth Moment

Quenched Approximation

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp(-\bar{\psi}\overline{\mathcal{D}}\psi) \mathcal{O}[A] \exp(-S[A])}{\int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp(-\bar{\psi}\overline{\mathcal{D}}\psi) \exp(-S[A])}$$

- Neglect of sea quarks in calculation
- Omits sea quark loops (including those in bottom two diagrams)
- Dramatically reduces cost of ensemble generation
- Usually relatively mild effects but formally uncontrolled (breaks unitarity)

Figure credit: Gattringer and Lang (2010)

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis oooooooooooo	Fourth Moment
Dynamic	al Ensemb	oles			

- Dynamical quarks only affect background gluon fields factors from rest of calculation
- Configurations reused by different collaborations for different calculations
- Redoing quenched calculations with dynamical ensembles from CLS collaboration

 Motivation
 Lattice QCD
 Light-Cone Distribution Amplitud

 0000000
 0000000
 0000000

Numerical Implementation

Analysis 000000000<u>000</u> Fourth Moment

Excited State Contamination

Light-Cone Distribution Amplitude

Numerical Implementation

Analysis 000000000000 Fourth Moment

Pion Mass Dependence (Preliminary)

Lattice QCD

tion Lattice QCD Light-Cone Dis

Distribution Amplitude

Numerical Implementation

Analysis 0000000000 Fourth Moment

Lattice Spacing Dependence (Very Preliminary)

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment
Suppress	ion of Sig	nal			

$$V^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

- $\langle \xi^n
 angle$ suppressed by $(ilde{\omega}/2)^n \sim 0.1^n$
- Splitting signal into real/imaginary parts facilitates extraction of $\langle\xi^2\rangle$
- Trick works best for n = 2 (only 2 channels available)

Light-Cone Distribution Amplitude

Numerical Implementation

nalysis 00000000000 Fourth Moment

Higher Momentum

< E ▶ < E ▶ 王目= のQ@

 Motivation
 Lattice QCD
 Light-Cone Distribution Amplitude

 0000000
 0000000
 0000000

Numerical Implementation

nalysis 00000000000 Fourth Moment

Signal-to-Noise Problem

0000000	0000000	000000	0000000000	000000000000000000000000000000000000000	0000000
Variation	al Motho	4			

- Excited state contamination more severe at larger **p**
- Also steeper penalty for extending Euclidean time
- Solution better interpolating operator to create pion
- Pion can be created with $\bar\psi\gamma_5\psi$ or $\bar\psi\gamma_4\gamma_5\psi$
- Use both and take optimal linear combination to reduce excited state contamination

Motivation	0000000	Clight-Cone Distribution Amplitude	Numerical Implementation	Analysis	Fourth Moment
× / · · ·					

Variational Method

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 00000000000	Fourth Moment 00000€0
Prelimina	ary Results	5			

 $\langle \xi^2
angle = 0.245 \pm 0.014$ (stat.)

 $\langle \xi^4
angle = 0.075 \pm 0.050$ (stat.)

0.0075

Motivation 0000000	Lattice QCD 0000000	Light-Cone Distribution Amplitude	Numerical Implementation	Analysis 000000000000	Fourth Moment
Conclusion					

- Pion LCDA important but challenging good to have complementary methods
- $\langle \xi^2
 angle (\mu=2 \text{ GeV}) = 0.210 \pm 0.036$ (quenched) compatible with other methods
- Moving to dynamical ensembles with lighter masses
- $\bullet\,$ Preliminary extraction of $\langle\xi^4\rangle$ working to increase statistics

Thank you to R. Edwards, B. Joó, S. Ueda and others for software development (Chroma, QPhiX, Bridge++) and to ASRock, Barcelona Supercomputing Center, and RIKEN for computational resources!

Multi-Mass Solver

- Need to invert Dirac operator $D =
 ot\!\!/ \, + m$ for quark propagators
- Can write $D = 1 \kappa H$ with $\kappa = \frac{1}{2(m+4)}$ and

$$H(n|m) = \sum_{\mu} (1 - \gamma_{\mu}) U_{\mu} \delta_{n+\hat{\mu},m}$$

• Can expand D^{-1} as hopping expansion

$$D^{-1}\psi = \sum_{j=0}^{\infty} \kappa^j H^j \psi$$

- *H* is independent of m can reuse $H^{j}\psi$ for all masses
- More expensive for single mass but can be competitive with enough masses

Pion Electromagnetic Form Factor

Adapted from L. Chang et al., nucl-th/1307.0026

Reconstruction of LCDA

Comparison of LCDA Models

Figure credit: Bali et al., 1807.06671, PRD 98, 094507