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° Eq uation of Sta-te of QCD, transport Not calculable from first-principles due to sign problem

| Macroscopic/
* QCD Phase Diagram thermodynamic/emergent

properties of QCD
 Key goal; locate the critical point in T-u plane

 Anomalies in QCD - Chiral Magnetic Effect, Chiral Vortical Effect,..
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Heavy-ion collisions at varying center of mass energies can scan the phase
diagram ,eg. Beam Energy Scan Program at RHIC



“Standard Model” of Heavy-lon Collisions °
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o QGP thermalizes in a relatively short amount of time ~ 1fm/c
O Freeze-out at about 10 fm/c
O [he event by event distribution of the particle multiplicities are fixed at freeze-out

O Freeze-out points move to lower values of baryon chemical potential as center of mass energy
IS INnCreased



Sighatures of the critical point o
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Non-monotonic dependence of cumulants of baryon multiplicities as a function of
collision energy Is an indication of the presence of a critical point

Higher cumulants of baryon multiplicities show more prominent enhancements stephanov, g



Relevant Observables
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BES-I| results with better precision

Particle Distribution
Functions get frozen at

(For net proton multiplicity) Freeze-out

anticipated in near future

2 ~ TR (0 O ) 50 100 200

* |ndications of a nhon-monotonic behavior? — signaling a Critical Point?

Require theoretical models for systematic exp-theory comparison

 How are the hydro fluctuations translated into the measured cumulants of
particle multiplicities at freeze-out?



Freeze-out In heavy-ion collisions

* Evolution of fireball in the r-t plane in the center of mass frame

 Assume there is a hyper-surface in space-time where both the descriptions are valid



Freeze-out : Transition from hydrodynamics to hadron gg

t
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Fluctuating particle

distribution function

Conserved energy, momentum and
charge densities and their correlations

Hydrodynamic

correlations \Ija7 <5\Ija’5\:[jb> — [{ab7 o Habc...

Particle distribution

function at freeze-out <fA> — fA, <5fA5fB> — GAB ; <5fA5fB5f(;> — GABC

/4 Is the phase space distribution function for species A



Matching conditions at freeze-out°

<€u“>:Z/ fapl, <n>:ZQA/ i q’“z%jprfAPz
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be... b
Habe = / Gapc. PiPLPS ...
A B,C,..." PAPBPC---

o Matching conditions for averages of conserved densities
O |nfinitely many sets of distribution functions that satisfy these matching conditions

O Freeze-out prescription corresponds to choosing one of these sets - How to choose”



Maximum entropy approach to freeze-out

Given only the information about the hydrodynamic densities on the freeze-

out hypersurface, what is the the least biased ensemble of free streaming
particles after freeze-out that obeys the conservation laws?

Hydro HRG
e EOS  Masses, degeneracies
e Conserved Densities and/or their e Quantum numbers of

Higher Point Correlations the hadrons



Maximum entropy freeze-out of ordinary
nydrodynamics

<eu“>=§Aj/pA Iavhs =3 u / i

SA [fA] — fA [1 — lOg fA] (Classical statistics)
Maximize thermodynamic entropy subject to conservation equations

Solution - well known Cooper-Frye freeze-out (74) fa ~ e WPumaans)/T

Hydrodynamic system freezes out into ideal hadron-resonance gas with the
same values of conserved densities



COOper'Frye freeze OUt Cooper,Frye, 74
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Averages of conserved densities are matched



Maximum entropy approach to freeze-out
hydrodynamic fluctuations

MP, Stephanov, 23

More entropy = Less information(assumptions) we have(make) about the system

® Generalization to Cooper-Frye freeze-out to include fluctuations
¢ Maximum entropy principle gives the least biased ensemble of hadron resonance gas
® Matches all the information about the conserved densities and their correlations

e Can be employed to freeze-out non-Gaussian correlations of all kinds of hydrodynamic densities



Matching correlations of conserved densities

Hydrodynamic a a b\ __ ab abc...
e, (W) = H, .. H

RAShSOde b (1) = fa, (6fadfB) = Gap, (0fadfpdfc) = Gagc - ..

P's
H e — / Gapc. PYPRPS ... Py =
PAPBDC---

A B,C,...

More degrees of freedom on the kinetic side
Infinitely many solutions for the conservation equations



Equilibrium Generalized 0
S [f] Which entropy to maximize? S [P ( f)]

SIP() = So[7) + [ P(7)log 500

\ G s are the correlation

_ functions in the Hadron

S-JF, GQ, Gg, . e e Gas description

SO[f] — _/fPeq(f) 1OgPeq(f)

 Maximize the relative entropy when correlations are out of equilibrium

* Constraints from matching conditions



Entropy to describe out-of equilibrium two-point correlations in ideal HRG

1 _ _
SQ — 5; | ZTI' [lOg GG_l — GG_l -+ 1] :
Equilién /
e | Similar 2-Pl action

Berges, 04, Stephanov, Yin, 17...

2-Pl entropy

Log [xX]-x+1

~10.

Strictly non-positive
—15L.




Upon maximizing the 2Pl entropy, subject to constraints of conservation

Gap=Gap+(H ' —H )"(H " PG)4(H PG)p

When all but two-point correlations are in equilibrium, the solution given above is exact.

Linearizing,
_ . i
Gap.. = Gap +AH.,(H 'PG)Y(H ' PQ)} ,
Self
CorreIZtions Contribution of self

v correlations to

L / hydrodynamics
Contribution of ? ) o
self correlations AH® — fab _ fab Hap = Z/GABPAPB

A,B

to hydrodynamics
IS subtracted



Generalization to Non-Gaussian ©
Correlations

IRC IRC

D T
AGapc.. = F(H,G) AHABC

For classical gas, irreducible relative cumulants (IRCs) reduce to so called “factorial
cumulants”.

Total IRC

\ \ / Self correlations
¢ pr— ¢ + +
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Irreducible relative cumulants

For classical gas, irreducible relative cumulants (IRCs) reduce to so called “factorial
cumulants”.

Total IRC

\ \ / Self correlations
¢ pr— # + +

A = & +3-ed+ &
\‘\ — % + 6o e re-etizpedr K

® [or gases obeying different statistics, IRCs quantifty the non-trivial correlations
® Non-trivial correlations relative to any specitfied baseline distribution
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Returning to the bigger picture : Is there a critical e
point in the QCD phase”dlaaram’?
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—

If there is a CP in the QCD phase diagram,

Build a theoretical framework for describing fluctuations in HICs.
* How large are the cumulants of particle multiplicities in equilibrium??

* |n a realistic evolution in HICs, how large can they grow??



Crucial elements of a theoretical
description of thermodynamic
fluctuations for BES program

 QCD EoS
* Evolve the hydrodynamic fluctuations - until freeze-out —Hydro+

* Freeze-out procedure



Hydrodynamic correlation functions in equilibrium

QCD EoS is unknown from first principles universal
r Parotto et al, 18 o A N
Pocp(p, T) = Pog(p, T) + A G(r, h)

("“7 h) N (,MB, T) Class of QCD EoS with a CP

r and h are linear functions of ;4 and T

r
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Kahingarwe et al, 24
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Karthein, MP, Stephanov, Rajagopal, Yin (In preparation)



Realistic scenario
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Cumulants out of equilibrium
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* The fluctuations are reduced relative to equilibrium value (conservation laws)

* Fluctuations increase with D, (faster diffusion)

* Compared to the equilibrium scenario, the fluctuations are less sensitive to freeze-out temperature

Numerical Implementation of Maximum Entropy Freezeout of semi-realistic cumulants of proton multiplicity

Karthein, MP, Stephanov, Rajagopal, Yin (In preparation)




Summary @

O Fluctuations are inevitable in any realistic system, enhanced near CP

O Dynamics of fluctuations have important consequences for their magnitude at
freeze-out, 1t also reduces the sensitivity to the freeze-out location

O We have developed a general prescription for freezing out hydrodynamic
fluctuations- Maximum entropy approach

Ongoing... BEST EoS Future....
Test in simplified scenarios l
|dentify the most consequential .  Simulate realistic scenarios
parameters/time scales in the Hydro+ evolution . Bayesian analysis to make
paradigm l comparisons to experiment
|dentify possible challenges

Make estimates ME freezeout Thank you!



Fluctuations are key observables In critical point
search
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 Thermodynamic fluctuations are enhanced near the critical point equilibrium

e Evolution of fluctuations as the fireball expands and cools

* Does the enhancement in the thermodynamic fluctuations survive till freeze-out?



Freeze-out In cosmology
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* Particle distribution functions in phase space get fixed at freeze-out

 Obseved CMB reveals the relic density of photons at the instant of last
scattering
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Cumulants out of equilibrium @
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Replace with Newer Pictures using BEST EoS

— AT=5MeV
— AT=10 MeV

Mg (In MeV)

AT = Ty (pic)

g = 0.44fm™*
- AT=5MeV

B AT=10 MeV
250 300 350 400
T e (in MeV)

Karthein, MP, Stephanov, Rajagopal, Yin (in preparation)



Maximum entropy freeze-out of two point
fluctuations

GAB — GAB + AGAB

H® = / GapPiPp = H® + AH®
PA;PB---

A,B,... ) )
Hyp, = Z/GABPng
A B

Entropy to describe out-of equilibrium two-point correlations in ideal HRG

1 _ _ o .
Sy =G+ 5Tr[logGG™ — GG +1] . Similar 2-PI action

Berges, 04, Stephanov, Yin, 17...

2-Pl entropy



