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Loop-String-Hadron on a 
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A tale of gauge invariance and flowers
Based on work with Christian Bauer
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Introduction
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Why am I here?
To learn about “classical” lattice QCD!

Jozef J. Dudek, Robert G. Edwards, and Christopher E. 
Thomas 1212.0830.

Maxwell T. Hansen, Raul A. Briceño, Robert G. Edwards, 
Christopher E. Thomas, and David J. Wilson. 2009.04931.
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https://arxiv.org/abs/1212.0830
https://arxiv.org/abs/2009.04931


Why Quantum Computers?
Because doing scattering on Euclidean time is getting hard

e

N

π
N

π
We could do this at arbitrarily high energies if we could compute: 

⟨ ⃗pf | jM(t)j(0) | ⃗pi⟩

In Minkowski space!

Raul A. Briceño, Marco A. Carrillo, Juan V. Guerrero, 
Maxwell T. Hansen, and Alexandru M. Sturzu, 

2112.01968.
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http://arxiv.org/abs/2112.01968


Or we can be more literal…
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Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, and Martin J. Savage 2401.08044.

Spreading of a wavepacket in the Schwinger model

Classical Tensor Networks Quantum computer (112 Qubits)

http://arxiv.org/abs/2401.08044


∫ 𝒟ϕeiS(ϕ) = ⟨φf |e−iHt |φi⟩

Lattice QCD on Quantum Computers
Real Time Evolution

∫ 𝒟ϕe−SE(ϕ) = ⟨φf |e−βH |φi⟩

Classical

Quantum
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Primer on Quantum Computation
Shut up and evolve!

Prepare

|ψ⟩

Time evolve

e−iHt
Measure

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩
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Difficulty: Gauge Symmetry

ℋ

Gauge invariant 
space:


𝔥

|ψ⟩

e−iHt

Due to errors inherent in the current 
available chips, even starting with a 
gauge invariant state we can drift into the 
unphysical sector of the Hilbert space.
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Comparison Between Formulations
Everything here comes with caveats!

9

electric Kogut-
Susskind prepotentials Loop-String-

Hadron
magnetic 

maximal-tree

Loop-String-
Hadron on 

flower

gauge Invariant Non-Abelian per 
vertex Abelian per link Abelian per link Non-Abelian on 

a single vertex 

low coupling

discrete 
quantum 
numbers

local dynamics

( )



Why do we need gauge “symmetry”?
Proposal: because of locality

Fμν

𝒞 ∫𝒞
A = ∫Σ

F

Redundancy

Σ

Let’s give it up!
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Yang-Mills Background
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Hamiltonian Lattice Yang-Mills
Kogut-Susskind: Classical kinematics

Space

U = P exp∫e
A ∈ G = U(1), SU(2), SU(3), SU(N), …h ∈ G

g ∈ G

Gauge Transformation: U ⟼ gUh−1

For me link = edge
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Hamiltonian Lattice Yang-Mills
Kogut-Susskind: Quantum kinematics

U
E

Electric Operators: 
E = EaTa

⟨U, … |e−iωaEa |ψ⟩ = ⟨g−1U, … |ψ⟩

g = eωaTa Magnetic basis: (analogous to traditional lattice QCD)


States  are wavefunctions that assign to each 
configuration of Wilson lines  a probability amplitude 
density  

|ψ⟩
U, …

⟨U, … |ψ⟩
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Gauss’ Law: 0 = E1 + E2 + E3 + E4 ⟷ ∫S2

d ⃗S ⋅ ⃗E
E1

E2
E3

E4



Hamiltonian  Yang-MillsSU(2)
Electric Basis

Peter-Weyl Theorem: The space of wavefunctions is spanned by the matrix elements of every 
representation.

⟨U |ψ⟩ := (−1) j−m1 2j + 1⟨j, − m1 |R( j)(U) | j, m2⟩

| j1, m1⟩ | j2, m2⟩

New way of thinking of states:

+ Abelian Gauss’ Law: j1 = j2
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Conclusions
Spoiler alert!
1. We can (almost) fully gauge fix using a maximal tree into a flower

S

2. We can split the flower into a branch to avoid Mandelstam constraints

g−1g g gg−1 g−1
eiωJz

eiωJz eiωJz

eiωJz

Christian W. Bauer, Irian D’Andrea, Marat Freytsis, and Dorota M. 
Grabowska 2307.11829.
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http://arxiv.org/abs/2307.11829


Conclusions
3. Leafs induce special functions that translate between electric and magnetic bases

n
N

2 4 6 8 10 12 ω

-6

-4

-2

2

4

6

e-iωJz2,7

# of peaks

how localized

4. The system can be described through  quantum numbers3((# of plaquettes) − 1)

l r l r l r

d

n n n

nn

A single constraint:

d > max{ − , − + − }lr l rlr
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Hamiltonian  Yang-MillsSU(2)
Prepotential Formulation

| j, m⟩ ∝ (a†
↑)

j+m

(a†
↓)

j−m
|0⟩

Let us think of the spin 1/2 states as different bosonic species

a†
↑ |0⟩ a†

↓ |0⟩

Can recover all other states in any representation
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Hamiltonian  Yang-MillsSU(2)
What have we gained?

Gauge invariance  No free indices!⟷

a†
A = (

a†
↑

a†
↓) ϵABψAϕB = ψAϕA = ψϕ

Indices 😀  
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Hamiltonian  Yang-MillsSU(2)
Crazy Repackaging

AA
B = {aA B = −

a†A B = +

Physical

Unphysical

Properties:

[AA
B, AC

D] = ϵACϵBD (A†)A
B = AB

A AA† = N + 1
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Hamiltonian  Yang-MillsSU(2)
Loop-String-Hadron (LSH) formulation

Loop operators:

ℒAB(h1, h2) = ACA(h2)AC
B(h1)

h1

h2

Creation: A = B = +

Number:  , , A = + B = − h1 = h2

Indrakshi Raychowdhury, and Jesse R. Stryker 1912.06133.
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https://arxiv.org/abs/1912.06133


Dynamics

H = HE + HB

HE =
g2

4 ∑
half edges h

E(h)2 HB =
1

2g2 ∑
plaquettes γ

tr(U(γ))

These are the plaquettes with a 
timelike direction

strong coupling weak coupling
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These can be written in LSH terms

Ea = a†σaa E(h)2 =
ℒ+−(h, h)

2 ( ℒ+−(h, h)
2

+ 1)

U =
1

N + 1
A UA

B(h1, h2) = UA
C(h2)(σx)C

DUB
D(h1)

22



Manipulating Graphs
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Virtual Point-Splitting
Mandelstam Constraints
In the presence of vertices with valency higher than 4, the LSH creation operators don’t create 
linearly independent states.

= +
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Virtual Point-Splitting
Solution u v

w

uw vw

This is not an equivalence at face value!

u v

1

u v

S

ι
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Virtual Point-Splitting
Equivalence up to gauge invariance

u v

w

uw vw

uw vw

1 g = w

S

ι
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Virtual Point-Splitting
Electric behavior

uw uwg−1

h

⃗E (h)

S S

u

w

uwg−1w−1

w
h W−1 ⃗E (h)W

Parallel Transport
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Coarsening of a graph

S

Theorem: The theories are equivalent (even at the quantum level) as long as

I)  is surjective (which almost always happens) and

II)all configurations with the same coarsening are gauge equivalent to one another

S

The example above is not an equivalence (think about the orbit of any configuration with the identity at the 
loop).
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Maximal Tree Gauge-Fixing

u

v−1u−1

1

v

…

Only one single gauge degree of freedom remaining29



Enter Flowers
Coarse graining through maximal trees

S
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Flower Hamiltonian
Christian W. Bauer, Irian D’Andrea, Marat 
Freytsis, and Dorota M. Grabowska 
2307.11829.

U = UU−1

Magnetic Hamiltonian

Electric Hamiltonian

⃗E 2 ⟹ ( + − − )
2⃗E ( f ) ⃗E ( f ) ⃗E (i) ⃗E (i)

Parallel Transport to 

31

http://arxiv.org/abs/2307.11829


Point-Splitting Flowers
Correcting for high-valency vertices

SS

SSS
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Yang-Mills on the Flower
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Magnetic Degrees of Freedom

e ⃗ω ⋅ ⃗X g

e∥ ⃗ω∥Xz

g
U(1)

Orientation of ⃗ω

Localized at low coupling (i.e. near the continuum limit)

Delocalized at low coupling

Christian W. Bauer, Irian D’Andrea, Marat 
Freytsis, and Dorota M. Grabowska 

2307.11829.

g−1g g gg−1 g−1
eiωJz

eiωJz eiωJz

eiωJz
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http://arxiv.org/abs/2307.11829


LSH on a Leaf

r s

t

ℓ

ℒ

ℓ = a†(r)a†(s) ℒ = (a†(s)a†(t))(a†(r)a†(t))

|n, N⟩ ∝ ℓnℒN |0⟩

⟨e−iωJz |n, N⟩ = N + n + 1
n + N

2

∑
m=− n + N

2

e−iωm⟨N,0 |( n + N
2

, − m⟩ ⊗
n + N

2
, m⟩)
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Special Function

36

2 4 6 8 10 12 ω

-3

-2

-1

1

2

3

Ree-iωJz1,2

2 4 6 8 10 12 ω
-5

5

Ree-iωJz1,10

2 4 6 8 10 12 ω

-4

-2

2

Ree-iωJz4,2

2 4 6 8 10 12 ω
-5

5

Ime-iωJz4,11



LSH Degrees of Freedom

l r l r l r

d

n n n

nn

A single constraint: d > max{ − , − + − }lr l rlr
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Conclusions

magnetic 
Kogut-

Susskind

electric 
Kogut-

Susskind
prepotentials Loop-String-

Hadron
magnetic 

maximal-tree

Loop-String-
Hadron on 

flower

gauge 
Invariant

Non-Abelian 
per vertex

Non-Abelian 
per vertex

Abelian per 
link

Abelian per 
link

Non-Abelian 
on a single 

vertex 

low coupling

discrete 
quantum 
numbers

local 
dynamics

( )
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Thanks!

Christian BauerRaúl Briceño André Walker-LoudDorota Grabowska

Dimitra Pefkou Jesse Stryker Anthony Ciavarella Irian D’Andrea Marco Carrillo
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My other work… 
Recovering Scattering Amplitudes 
from Monte Carlo Simulations
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O(3) Model Primer

x

⃗ϕ (x)

Spacetime or some material

String Theory

S =
1

2g2 ∫ d2 x (∂ ⃗ϕ )
2

Properties:

1.Asymptotic freedom: at  the theory has two free particles.

2.Confinement: at any finite  the two particles above are confined 

into an  vector multiplet of particles.

3.Dynamical mass generation: classical conformal invariance is 

broken at the quantum level.

4.Integrable

E = ∞
E

O(3)

A very interesting model to study Yang-Mills and QCD!
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One Particle

⟨ ⃗ϕ (0, − p) ⋅ ⃗ϕ (t, p)⟩ = ⟨0 | ⃗ϕ (t, − p) ⋅ ⃗ϕ (0,p) |0⟩ = ∑
n

e−Ent |⟨0 | ⃗ϕ (0, − p) |n⟩ |2

We can recover the one-particle spectrum from the two-point function
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Generalized Eigenvalue Problem
Problem: Given a state  and a list of operators , which linear combination  
best approximates ?

|n⟩ {Oa} |ψ⟩ = vaOa |0⟩
|n⟩

Idea: Two point functions give us

∑
a,b

vavb*⟨Oa(t)O*b (0)⟩ = ⟨ψ |e−tH |ψ⟩ = ∑
n

e−tEn |⟨ψ |n⟩ |2

Minimize keeping  constant ⟨ψ |e−t0H |ψ⟩

⟨Oa(t)O*b (0)⟩vb = λ⟨Oa(t0)O*b (0)⟩vb

e−tEn “Dual to ”⟨0 |Oa |n⟩
43



Two Particle

{OA(t, P, p) = PA
abϕ

a(t, P + p/2)ϕb(t, P − p/2)}p

Operator list:
Scalar, vector or symmetric traceless index

44



Lüscher Quantization Condition
Recovering scattering from finite-volume spectrum

det(ℳ + F−1) = 0

In 1+1 D

δ + γLk* = (2n + η)π
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One Particle Form Factor

⟨p, a |Jb
μ(0) |q, c⟩ = ϵabc(p + q)μF(Q2)

LSZ-like arguments

|F(Q2) |2 =
EpEq

(p + k)2
μ

|ϵabc⟨ϕa(T, p)Jb
μ(t, − p − q)ϕb(0,q)⟩ |2

⟨ ⃗ϕ (2T, p) ⋅ ⃗ϕ (2t, − p)⟩⟨ ⃗ϕ (2t, q) ⋅ ⃗ϕ (0, − q)⟩
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