

Loop-String-Hadron on a **Maximal Tree**

A tale of gauge invariance and flowers

Based on work with Christian Bauer

Iván Mauricio Burbano Aldana **Advised by Christian Bauer and Raúl Briceño**

Introduction

Why am I here? To learn about "classical" lattice QCD!

Jozef J. Dudek, Robert G. Edwards, and Christopher E. Thomas <u>1212.0830</u>.

Maxwell T. Hansen, Raul A. Briceño, Robert G. Edwards, Christopher E. Thomas, and David J. Wilson. <u>2009.04931</u>.

Why Quantum Computers? Because doing scattering on Euclidean time is getting hard

We could do this at arbitrarily high energies if we could compute:

Raul A. Briceño, Marco A. Carrillo, Juan V. Guerrero, Maxwell T. Hansen, and Alexandru M. Sturzu, <u>2112.01968</u>.

$$\langle \vec{p}_f | j_M(t) j(0) | \vec{p}_i \rangle$$

In Minkowski space!

Or we can be more literal...

Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, and Martin J. Savage 2401.08044.

Spreading of a wavepacket in the Schwinger model

Quantum computer (112 Qubits)

Lattice QCD on Quantum Computers Real Time Evolution

 $\int \mathcal{D}\phi e^{iS(\phi)} = \langle \varphi_f | e^{-iHt} | \varphi_i \rangle$

Primer on Quantum Computation Shut up and evolve!

Difficulty: Gauge Symmetry

Gauge invariant space: \mathfrak{h}

> Due to errors inherent in the current available chips, even starting with a gauge invariant state we can drift into the unphysical sector of the Hilbert space.

Comparison Between Formulations Everything here comes with caveats!

	electric Kogut- Susskind	prepotentials	Loop-String- Hadron	magnetic maximal-tree	Loop-String- Hadron on flower
gauge Invariant	Non-Abelian per vertex	Abelian per link	Abelian per link	Non-Abelian on a single vertex	
low coupling					
discrete quantum numbers					
local dynamics					

Why do we need gauge "symmetry"? Proposal: because of locality

Redundancy

Yang-Mills Background

Hamiltonian Lattice Yang-Mills Kogut-Susskind: Classical kinematics

Space

→ $U = P \exp \left[A \in G = U(1), \frac{SU(2)}{SU(3)}, SU(3), SU(N), \dots \right]$

Gauge Transformation: $U \longmapsto gUh^{-1}$

Hamiltonian Lattice Yang-Mills **Kogut-Susskind: Quantum kinematics**

Magnetic basis: (analogous to traditional lattice QCD)

 $\langle U, \ldots |$

Gauss'

States $|\psi\rangle$ are wavefunctions that assign to each configuration of Wilson lines U, \ldots a probability amplitude density $\langle U, \dots | \psi \rangle$

Electric Operators: $E = E_a T^a$

$$e^{-i\omega^{a}E_{a}}|\psi\rangle = \langle g^{-1}U, \dots |\psi\rangle$$

Law:
$$0 = E_1 + E_2 + E_3 + E_4 \leftrightarrow \int_{S^2} \mathrm{d}\,\vec{S}\cdot\vec{E}$$

Hamiltonian SU(2) **Yang-Mills** Electric Basis

Peter-Weyl Theorem: The space of wavefunctions is spanned by the matrix elements of every representation.

 $\langle U|\psi\rangle := (-1)^{j-m_1}\sqrt{2j}$

New way of thinking of states:

 $|j_1, m_1\rangle \mid |j_2, m_2\rangle$

$$+1\langle j, -m_1 | R^{(j)}(U) | j, m_2 \rangle$$

Abelian Gauss' Law: $j_1 = j_2$

Conclusions **Spoiler alert!**

2. We can split the flower into a branch to avoid Mandelstam constraints

 $e^{i\omega J_{\tau}}$ $e^{i\omega J_z}$

Conclusions

3. Leafs induce special functions that translate between electric and magnetic bases

4. The system can be described through 3((# of plaquettes) - 1) quantum numbers

A single constraint:

 $d > \max\{r - l, r - l + l - r\}$

Hamiltonian SU(2) Yang-Mills **Prepotential Formulation**

Let us think of the spin 1/2 states as different bosonic species

Can recover all other states in any representation

$$^{j+m}\left(a_{\downarrow}^{\dagger}\right)^{j-m}\left|0\right\rangle$$

Hamiltonian SU(2) **Yang-Mills** What have we gained?

Gauge invariance \leftrightarrow No free indices!

 $\epsilon^{AB}\psi_A\phi_B = \psi_A\phi^A = \psi\phi$

Hamiltonian SU(2) Yang-Mills **Crazy Repackaging**

Properties:

 $[A^{A}{}_{B}, A^{C}{}_{D}] = \epsilon^{AC} \epsilon_{BD}$

$$a^A \quad B = -$$

 $a^{\dagger A} \quad B = +$

$$(A^{\dagger})^A_{\ B} = A_B^A$$

$$AA^{\dagger} = N + 1$$

Hamiltonian SU(2) **Yang-Mills** Loop-String-Hadron (LSH) formulation

Loop operators:

$$\mathcal{L}_{AB}(h_1, h_2) = A_{CA}(h_2)A^C_B(h_1)$$

Creation: A = B = +

Number: $A = +, B = -, h_1 = h_2$

Indrakshi Raychowdhury, and Jesse R. Stryker <u>1912.06133</u>.

 h_2 h_1

Dynamics

These can be written in LSH terms

$$E_a = a^{\dagger} \sigma_a a \qquad \longrightarrow \qquad E$$

$$U = \frac{1}{\sqrt{N+1}}A$$

$$E(h)^{2} = \frac{\mathscr{L}_{+-}(h,h)}{2} \left(\frac{\mathscr{L}_{+-}(h,h)}{2} + 1\right)$$

• $U^{A}_{B}(h_{1},h_{2}) = U^{A}_{C}(h_{2})(\sigma_{x})^{C}_{D}U^{D}_{B}(h_{1})$

Manipulating Graphs

Virtual Point-Splitting **Mandelstam Constraints**

linearly independent states.

In the presence of vertices with valency higher than 4, the LSH creation operators don't create

Virtual Point-Splitting Solution

This is not an equivalence at face value!

Virtual Point-Splitting Equivalence up to gauge invariance

Virtual Point-Splitting Electric behavior

Parallel Transport

Coarsening of a graph

Theorem: The theories are equivalent (even at the quantum level) as long as I) S is surjective (which almost always happens) and II) all configurations with the same coarsening are gauge equivalent to one another

loop).

- The example above is **not** an equivalence (think about the orbit of any configuration with the identity at the

Maximal Tree Gauge-Fixing

Only one single gauge degree of freedom remaining

Enter Flowers Coarse graining through maximal trees

Flower Hamiltonian

Magnetic Hamiltonian

Electric Hamiltonian

Christian W. Bauer, Irian D'Andrea, Marat Freytsis, and Dorota M. Grabowska <u>2307.11829</u>.

 $\boldsymbol{U} = \boldsymbol{U}^{-1} \boldsymbol{U}$

$-\overrightarrow{E}^{2} \Longrightarrow \left(\overrightarrow{E}(f) + \overrightarrow{E}(f) - \overrightarrow{E}(i) - \overrightarrow{E}(i)\right)^{2}$

Parallel Transport to

Point-Splitting Flowers

Yang-Mills on the Flower

LSH on a Leaf

 $\ell = a^{\dagger}(r)a^{\dagger}(s)$

$$\mathscr{L} = (a^{\dagger}(s)a^{\dagger}(t))(a^{\dagger}(r)a^{\dagger}(t))$$

$$(n, N) \propto \ell^{n} \mathscr{L}^{N} | 0 \rangle$$

$$e^{-i\omega m}\langle N,0 | \left(\left| \frac{n+N}{2}, -m \right\rangle \otimes \left| \frac{n+N}{2}, m \right\rangle \right)$$

LSH Degrees of Freedom

A single constraint: $d > \max\{r-l, r-l+l-r\}$

Conclusions

	magnetic Kogut- Susskind	electric Kogut- Susskind	prepotentials	Loop-String- Hadron	magnetic maximal-tree	Loop-String- Hadron on flower
gauge Invariant	Non-Abelian per vertex	Non-Abelian per vertex	Abelian per link	Abelian per link	Non-Abelian on a single vertex	
low coupling		×	×			(<
discrete quantum numbers						
local dynamics						

Thanks!

Raúl Briceño

Christian Bauer

Dimitra Pefkou

Jesse Stryker

Dorota Grabowska

André Walker-Loud

Anthony Ciavarella 39

Irian D'Andrea

Marco Carrillo

My other work... **Recovering Scattering Amplitudes** from Monte Carlo Simulations

O(3) Model Primer

Spacetime or some material

String Theory

Properties:

- 4.Integrable

A very interesting model to study Yang-Mills and QCD!

$$S = \frac{1}{2g^2} \int d^2 x \left(\partial \vec{\phi} \right)^2$$

1.Asymptotic freedom: at $E = \infty$ the theory has two free particles. 2.Confinement: at any finite E the two particles above are confined into an O(3) vector multiplet of particles.

3. Dynamical mass generation: classical conformal invariance is broken at the quantum level.

One Particle

We can recover the one-particle spectrum from the two-point function

$$\left\langle \vec{\phi}(0,-p)\cdot\vec{\phi}(t,p)\right\rangle = \left\langle 0 \mid \vec{\phi}(t,-p)\cdot\vec{\phi}(0,p)\mid 0 \right\rangle = \sum_{n} e^{-E_{n}t} \left| \left\langle 0 \mid \vec{\phi}(0,-p)\mid n \right\rangle \right|^{2}$$

Generalized Eigenvalue Problem

Problem: Given a state $|n\rangle$ and a list of operators $\{O_a\}$, which linear combination $|\psi\rangle = v^a O_a |0\rangle$ best approximates $|n\rangle$?

Idea: Two point functions give us

 $\sum v^a v^{b*} \langle O_a(t) O_b^*(0) \rangle$ a,b $\langle O_a(t)O_h^*(0)$

$$= \langle \psi | e^{-tH} | \psi \rangle = \sum_{n} e^{-tE_{n}} | \langle \psi | n \rangle |^{2}$$

Minimize keeping $\langle \psi | e^{-t_{0}H} | \psi \rangle$ constant
$$= \lambda \langle O_{a}(t_{0})O_{b}^{*}(0) \rangle v^{b} - \langle e^{-tE_{n}} \rangle$$

"Dual to $\langle 0 | O_{a} | n \rangle$ "

Two Particle

Operator list:

 $\{O^A(t, P, p) = P^{\dot{A}}_{ab}\phi^a$

→ Scalar, vector or symmetric traceless index

$${}^{n}(t, P + p/2)\phi^{b}(t, P - p/2)\}_{p}$$

t = 1

Lüscher Quantization Condition Recovering scattering from finite-volume spectrum

One Particle Form Factor

$$\langle p, a | J^b_\mu(0) | q, c \rangle = \epsilon^{abc} (p+q)_\mu F(Q^2)$$

LSZ-like arguments

 $|F(Q^{2})|^{2} = \frac{E_{p}E_{q}}{(p+k)_{\mu}^{2}} \frac{|\epsilon_{abc}\langle\phi^{a}(T,p)J_{\mu}^{b}(t,-p-q)\phi^{b}(0,q)\rangle|^{2}}{\langle\vec{\phi}(2T,p)\cdot\vec{\phi}(2t,-p)\rangle\langle\vec{\phi}(2t,q)\cdot\vec{\phi}(0,-q)\rangle}$

