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Scattering!
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Can we touch the stars™?
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By Scott Aaronson

Quantum computers would be exceptionally fast
at a few specific tasks, but it appears that for most
problems they would outclass today’s computers
only modestly. This realization may lead to a new
fundamental physical principle

in the satirical weekly the Onion. By exploiting a bizarre

“Schrodinger’s Pants” duality, the article explained, these
non-Newtonian pants could paradoxically behave like formal wear and
casual wear at the same time. Onion writers were apparently spoofing
the breathless articles about quantum computing that have filled the
popular science press for a decade.

A common mistake—see for instance the February 15,2007, issue of
the Economist—is to claim that, in principle, quantum computers could
rapidly solve a particularly difficult set of mathematical challenges
called NP-complete problems, which even the best existing computers
cannot solve quickly (so far as anyone knows). Quantum computers
would supposedly achieve this feat not by being formal and casual at
the same time but by having hardware capable of processing every pos-
sible answer simultaneously.

If we really could build a magic computer capable of solving an NP-
complete problem in a snap, the world would be a very different place:
we could ask our magic computer to look for whatever patterns might
exist in stock-market data or in recordings of the weather or brain activ-
ity. Unlike with today’s computers, finding these patterns would be com-
pletely routine and require no detailed understanding of the subject of the
problem. The magic computer could also automate mathematical creativ-

/4 H aggar Physicists Develop ‘Quantum Slacks,” ” read a headline

March 2008
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Misconception: QC can solve all problems

It turns out that for majority of problems, quantum computers would do no better than classical
computers. A major research direction is to understand which problems can be solved efficiently by

QCs.

For example, we know that scattering In ¢4 N 1+1-dimensions can be solved efficiently by

guantum computers, it might be that glueball-glueball scattering in QCD cannot be solved efficiently
by quantum computers (we don’t know for sure at the moment!)

Class of problems which are best suited for quantum advantage belong to complexity class BQP.
For ex: Shor’s algorithm.



Outline of the talk

+ Holography from super Yang-Mills (SYM) to Sachdev-Ye-Kitaev (SYK)

—ffectiveness of tensor networks for local Hamiltonians - MPS approximation and beyond

- Quantum gates and real-time evolution using quantum circuits

- SYK model with N = 6, 8 Majorana fermions on IBM quantum computers with error mitigation

- Summary and future directions



Holographic duality

+ Certain supersymmetric (maximal) gauge theories are dual to Type IIA/B supergravity at strong couplings in the large
N (planar) limit.

- Insights into quantum gravity through field theories and quantum many-body systems.

- Famous example: AdS/CFT, a version of it was soon also extended to super Yang-Mills (SYM) in p+1-dimensions for
0 < 3 [Maldacena et al., PRD 58 046004(1998)]

- Due to strong/weak nature, solving both sides simultaneously Is difficult (possible due to integrability for some cases)
even for O+1-dimensional models such as BFSS. Reduce the field content to a point where we just have interacting
fermions (all-to-all). This model proposed by Sachdev-Ye and Kitaev is an exception and therefore interesting.

- We have limited tools to study real-time dynamics of such strongly coupled models. One leading candidate is tensor
networks (which also have holographic interpretation such as AdS/MERA etc.)



Tensor networks

The most efficient classical method of studying the properties of lower-dimensional systems is tensor
networks. The idea is based on the fact that if the Hamiltonian is sufficiently local and gapped, then
the relevant sector of the entire Hiloert space is a tiny region which satisfies area-law entanglement
.e., they are less entangled.

In this case, the vector space of dimension dN can be described by O(d)(z) where y is the bond
dimension of the MPS. This prescription fails for gapless systems and has to be replaced by more
complicated network such as MERA.
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Classical to Quantum

An important ingredient of numerical lattice formalism is Wick rotation. Can’t use sampling methods
otherwise.

Tensor networks can help sometimes but they have their own limitations. We need new tools to
understand real-time dynamics of interacting field theories or guantum many-body systems.

We require fundamentally new idea of computing [Manin, Benioff, Feynman et al., circa 19/8] such

that we can compute exp(-iHt) for a given H in terms of circuits exploiting features of QM more
efficiently than classical computers.
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Approaches to universal guantum computing

Qubit approach — Manipulate and utilise the two-state quantum system. More than dozen approaches. Two
most popular — Superconducting and Trapped lon.

Qumodes approach — Use photons (quantum harmonic oscillator), infinite-dimensional HS. Not as popular as
qubit approach. Error correction not that well-developed.

This talk will di

explored for N
Susskind Ham

scuss the qubit approach, however, other approach might lbe better suited for bosonic d.o.f as

_SM model (see 2310.12512). Now extending the “CV” approach to SU(2) gauge theory [Kogut-
Itonian]
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Universal guantum computing efforts

Quantum Technology Market Map - Quantum Computers NON-EXHAUSTIVE, NO ORDER, EXCLUDES LABS l’\@aummm
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Qubits vs. Qumodes

CvV

Qubit

Basic element

Relevant
operators

Common
states

Common
gates

Qumodes

Quadrature operators Z, p

Mode operators @, @

Coherent states |a)
Squeezed states |z)

Number states |n)

Rotation, Displacement, Squeezing,
Beamsplitter, Cubic Phase

Qubits

Pauli operators 0, 0, 0,

Pauli eigenstates [0/1) , |£) , |£2)

Phase Shift, Hadamard, CNOT, T Gate
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Quick Recap - Unitary gates

Operator Gate(s) Matrix
: x| 0 1
Pauli-X (X) X e [1 0]
Pauli-Y (Y) —Y B
. |7l 1 0
Pauli-Z (Z) Z 0 1
. 1 11
Hadamard (H) H 7 [1 _1]
Phase (S, P) —1 S — [(1) 2]
1
71'/8 (T) — T — [0 ei1r/4:|

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)
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Questions?




SYK model

(i)q/Z N
H = Z Jiskeeeeq  XiXidi Xy
i,j,k,"',q=1

qg!

Model of NV Majorana fermions with g-interaction terms with random coupling taken from a Gaussian
gJ?
Na-1

distribution with 7. = 0, J2 =

The termions y satisty, y;x; + X X; = 51:].. We will set J = 1. Note that it has units of energy

and Inverse time.

n the limit of large N and fJ > 1, the model has several interesting features such as
maximal Lyapunov exponent.

14



Mapping fermions to qubits

o

1 —1 1 k—1
Xor—1 = _( Zj)Xku®(N—2k)/2 , Yoy = —— ( HZ]> Yk[|®(N—2k)/2
\/5 ]=1 \/5 ]=1

N fermions requires N/2 qubits. We use the standard Jordan-Wigner mapping to write y in terms of
Paull matrices X, Y, Z, and Identity.

N
The SYK Hamiltonian is then written as sum of Pauli strings. The number of strings is ( ) and
q

grows like ~ NY. Simplest non-trivial case for is N = g with one term. We restrict to g = 4.

15



Simplest case: N=4

H = Jy234 0100034

x1 =X, y, = Yﬂ,)@ =Z/X, y,=72Y

his circuit Is simple to construct and just needs 2 CNO

s and 1 rotation gate.

fd A
\VV

[ A
3/

Rz (—2J12345t)

The goal of quantum computation iIs to construct a unitary operator corresponding to this
Hamiltonian. So, for this case we have exp(—iHt) = exp(iJ,34221).

16



Circuit complexity

Definition: How many 2g-gates do we need to simulate the SYK model?

* Different approaches can be used to do the Hamiltonian simulation (aka time evolution). A popular method is
Trotter method. It is based on Lie-Suzuki-Trotter product formula* (writing H = Z H] m ~ N4)

o —iHt _ (He_in‘”’”)r+ @<2 [H}, H} | 7)»

j=1 Jj<k

Depending on what error (€) we desire in the time-evolution from the second term, we can compute the number
of slices (r) we need to take. So, the complexity reduces to finding number of 2g-gates for each Trotter step.
Recall that N = 4 needed just 2 2g-gates for each Trotter step.

* Corollary of Zassenhaus formula i.e., exp(t(X+Y)) = exp(tX) exp(tY) + O(tA2) (also known as dual of BCH formula). 17



Old work(s)

. V4

% — @(Nlotz/e‘) L. Garcia-Alvarez et al., PRL 119, 040501 (2017)
€ = O(N°t*/e¢) Susskind, Swingle et al., arXiv: 2008.02303 (2020)
€ = ON"?1) Babbush et al., Phys. Rev. A 99, 040301 (2019)

® [he last one clearly is the most efficient, however, In the noisy-era implementing this is not feasible. It
requires fault-tolerant quantum resources + ancillas since it is based on the basic idea of embedding H in a
bigger vector space.

 Using the Trotter methods, the best seems to be ~ N®. In our paper, we improved the complexity to

€ = O(N°t*/€) which we now discuss. It is possible to improve to € = O(N* log(N)t?’/z/\/E). In fact,
sparse versions have better complexity [RGJ, unpublished]

18



Commuting terms

The costs can be simplified if we are little careful in splitting the SYK Hamiltonian.

Finding optimal number of such clusters is a we

graph-colouring algorithm to achieve this. Figure from Gokhale et al., |EE
Qubit-wise owe All\edges (GO) General
commutivity / . commutivity
02 90 ¢ 09 0 4
@ ® @ @
% X
7
 o0® ©o09®
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l-studied compu

The number of terms grows like ~ N4, however, a large fraction O
another and can be collected together and then time-evolved
diagonalising circuit for each cluster and then apply time-evolution o

MO

" them commute wit

e efficiently. We ca
perator.

= 379 .(2020)

1 ONE

N find

‘er science problem. We use a



Estimate based on general commutivity

|0 ||k |2

Pauli strings Clusters Two-qubit gates
1 1 2

15 5 30

70 6 110

210 23 498
12 495 57 1504
14 1001 92 3560
16 1820 116 6812
18 3060 175 11962
20 4845 246 19984
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Return probability

- A simple observable we can compute is the probability that we return to the same initial state after some
evolution time ti.e., P = | (wy | e """ | yp) \2. For initial state, we take | 0Y®V?,

- For approximating the unitary, we use the first-order product formula and construct the corresponding
guantum circult.

- For N =4, we have a simple circuit of only two 2Q gates, so the entire circuit for return prob. is
straightforward. For N = 6, there are 30 2Q gates per step which we cannot show here.

[00)

Rz (—2J12345t)

D
¢V
D
¢V
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IBM chip topology

We used the quantum computers available through IBM to simulate the SYK model. The topology of the
processor is shown below. In practice, we need more gates than necessary. For example, we show a

combination of qubits we used for N = 8. This chip topology is ‘heavy-hex’.

O—(O—"0O—"0O—0O—CO—"CO—C0O—C0O—0O—C0O——0O—0O0
O—C0O—C0O—"—C0O—C0O—C0O—C0O—C0O—0—~—0—~—C0))——C0——0O0——C0O0——C0
o o
O—0O—C0O——C0O——~C0
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Return probability - Results
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Error Mitigation

ne results from the 127-qubit device (red) agrees slightly less than those with self-mitigation ( ).
ne red points have been read from some fixed number of measurements/shots and post-
processed with mild mitigation including M3 to correct read-out errors and DD 1o Increase
coherence time of qubits. This is not enough for complicated models like SYK

To get closer to the exact results, we found that an idea similar to CNOT only mitigation (known as
) seems to help drastically. Basic idea introduced in Urbanek et al. arxXiv: 2103.08591

and extended to SU(2) work of Rahman et al. arXiv:2205.09247

M3 is a matrix measurement mitigation (MMM or M3) technique that solves for corrected measurement probabilities using a dimensionality reduction step

DD (dynamical decoupling) — a series of strong fast pulses are applied on the system which on average increases the lifetime of qubits and delays
decoherence (or effect of interactions with environment)

24



CNQOT-only and self-mitigation

We saw previously that if the input state is | 0)®", then applying any of CNOT will still result in the

same input state. However, in practice, the errors of 2g gates (CNOT) is the dominant source of gate
error in current devices.

This can be used to quantify the errors occurring in the time-evolution circuit. Remove all the single-
qubit gates from exp(—iHt) and apply it on the \O)‘X’” state. Measure the output. The deviation

from | O)®” IS @ measure of the probability of error and used to correct the expectation value of the
observable. This is CNOT-only mitigation.

However, this underestimates the error. Self-mitigation argues to not remove any gates from
exp(—iHt). One constructs two circuits: Physics (P) and Self-Mitigated (SM) circuits and then run

the P circuits for N Trotter steps and the SM mitigation circuit for N/2 Trotter steps with dt and the
other N/2 with -dt. Note the error from SM circuits, use it to correct exp. value of P circuits.

25



Noise model: Quantum depolarizing channel

- An efficient way to model decoherence of qubit Is to use a depolarising guantum channel which is a

CPTP (completely-positive trace preserving, (Tr &(p) = Tr p = 1 and &(p) > 0) map:
E(p) =1 —p)p+pl/2",

f the quantum channel is free of noise, then the depolarising parameter (error rate) is p = 0.

Once the error rate is determined from self-mitigation, we use it to correct the expectation value of the
observable using (O,) = (1 — p){(O0..) + (p/2")Tr(l) where n and ¢ are noisy and corrected value.

20



SYK model - Bound on chaos

SYK model famously saturated the Lyapunov exponent i.e., A = 2aT for JIT > 1 when N is large.

One considers C(f) = — ([W(¢), V(0O)] [W(?), V(0)]) and the ex
OTOC = (W(H)V(O)W()V(0)) 5 = Tr(pW(®) V(0)W(2) V(0)) which charac

SUppPose one star

s at t =0, and computes also !

scales at which the lower order correlators decay

grows as exp(Ar) and satura

These correlators have been compu

size ~Dbillion. Hard for classical computers.

27

nansi

on of the commutator gives

‘erizes quantum chaos.

he two-pt correlator given by (W(H)W(0)), the time

s called ‘dissipatio
es beyond 7, known as scrambling time. B

N

adC

<

me’. After this time, the OTOC

Noles are fastest scramblers!

ed up to N = 60 numerically i.e., H has ~million terms and matrix has



S0 the goal is to com

Out-of-time correlators (OTOQC)

. V4

oute (W(H) V(0)W(2)V(0)) 5 on a quantum computer. Thermal correlators are currently not

easy to compute due

o limited resources. One simplification we can make is consider the f — 0 limit of OTOC.

This is not at all interesting for holography, but this is where we must start. Hence, the density matrix is just p o .

he unusual time-ordering of OTOC is also hard for quantum computers which often mean carrying out forward

and backward evolution. We use a protocol (next slide) which uses only forward evolution to compute OTOC on

guantum hardware.
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Randomised Protocol

 There are various protocols to measure OTOC on quantum computers, see Swingle 2202.07060 for review.

We use the one proposed in 1807.09087 now known as ‘randomised protocol’ since it computes OTOC

through statistical correlations of observables measured on random states generated from a given matrix
ensemble (CUE).

Infinite-temp OTOC is given by T W(t)VIW(£)V) (W(t))u(VTW(t)V)u where the average is over different
random states |y,) prepared by acting with random unitary on arbitrary state say |0)®". Note that this
protocol works when W is traceless operator.

29



Randomised Protocol

* We need two measurements (between which we compute the statistical correlation) and it is shown below. This is the
global version of the protocol (since u has support over all qubits). There is also a local version of the protocol. Note

that cost of decomposing arbitrary u increases exponentially, one can instead use unitary from a subset of Haar
measure. We are currently exploring this direction. They are called unitary #-designs™ in literature.

exp(—iHt)

(VIW (V) ko

Y

| |
| |
| |
| |
| |
ko) : U : exp(—tHt)
| |
| |
| |
| |
| |

ES
=

N

-designs equivalent to first f moments of Haar group
30
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m_cusco and ibm_nazca to obtain the results show for N = 6. We took simplest operators where
V were taken to be single Pauli. We see good agreement without need to do self-mitigation like we
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Finite-temperature SYK model

- We considered OTOC measured over random states (maximally mixed) generated i.e., f = 1/T = 0.

However, m

uch of interesting Physics of the SYK happens in the reg

nave arguec

that you need f# ~ 70 to extract Lyapunov exponents ¢

ion f# > 1 and classical computations

ose to the chaos bound.

» Finite-temperature OTOCs are difficult for quantum computers in general. No simple/general cost-effective

guantum computer for the SYK model.

* |n addition to the thermal state (mixed) of the SYK

thermo-field

coupled SYK model) and when we perform partia

other one.

orotocol exists. To move towards this goal, we are studying the preparation of Gibbs (thermal) states on

Model, one can also consider a purification of this known as

double state (TFD). TFD state is a pure state (up to unitary trans.) of some other system (for ex:

32

trace over either system, we recover thermal state on the



VQE algorithm

Before we move to preparation of Gibbs state, let’s us ook at popular algorithm for preparing (approximate) ground states on QC.

Hybrid classical/quantum algorithm to find the ground state problem of a given Hamiltonian by finding the parameters of a quantum
circuit ansatz that minimizes the Hamiltonian expectation value.

It primarily consists of three steps: 1) Prepare initial ansatz on QC i.e., |w(®)), 2) Measure energy on QC and optimise the parameters
® using classical optimisers and 3) Repeat until desired convergence is achieved.

Qubit Hamiltonian A
Choice of ansatz

Initial parameters 90 New set of 6 values
¢ ¢ Classical Optimizer
A
Energy Evaluation Repeat until

0\ convergence

to obtain

ming E(0O)

0) Parametrized

quantum circuit

0)

E(0) = <yy|H|yp >

State o Expectation ‘
preparation estimation

33



VQE for finite temperatures

* Finite-temperature VQE methods are still an active area of research. Many proposals exist. The cost function is no longer E but rather
E — TS (free energy) which can be hard to compute on QC.

go — R.(61) — By(02) —{ R.(03) —1 S— g
@1 — R,(04) — R,(05) — R.(0g) —d—1 X ) ) o
U(¢) ~ exp(ipH)
92 — R.(07) — Ry(0s) — R (6h) d—s — —
43— R.(010) — Ry(011) — R-(012) d—s— —
VQC(C, vVQGC,

- Selisko et al., 2208.07621



Finite-temperature SYK model

[upcoming work with J. Araz, B. Sambasivam, and F. Ringer]

IlOO

11495

10 1]
12 |
-12 1|90

PRELIMINARY

Fidelity [%]

Results from PennylLane simulator




Summary + future directions

* \We are entering an era where we can compute few things (even if they can be done quickly) using our laptops.
—xploring these toy models will hopefully teach us better algorithms/methods.

[t Is Instructive to see that if we can characterise the noise in these quantum devices, we can mitigate and get
reasonable results!

* Exploring applications to nuclear physics on current devices, such as deuteron/tritium binding energy and time
evolution. Would be happy to chat and explore possibilities further. There is nothing which we can do today on
QCs which can’t be done on laptops. For SYK, to overcome this, we need about few million gates!

« Use of hybrid discrete/CV systems to model physical models is another direction | am exploring.
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Published November 25, 2023 | Version v1 m rq Edit

A model of quantum gravity on a noisy quantum computer -- code e Share
and circuit release
Asaduzzaman, Muhammad' @); Jha, Raghav G.? ©); Sambasivam, Bharath3 | Show affiliations | 79 31
|
| @ VIEWS & DOWNLOADS
Additional resources for the arXiv article: https://arxiv.org/abs/2311.17991 including the matrices and open gasm files. See the paper » Show more details
for details.
Files
Versions
OTOC_N6.zip v
Version v1 Nov 25, 2023
OTOC_NG6.zip 10.5281/zenodo.10202045
Cite all versions? You can cite all versions by
& N=6 using the DOI 10.5281/zenodo.10202044. This DOI
O H_N6_3.mix 17 kB represents all versions, and will always resolve to
the latest one. Read more.
0 H_N6_4.mtx 1.7 kB
D H_N6_7.mtx 1.7 kB
B QC_N6_3.gasm 1.3 kB External resources
B QC_N6_4.qasm 13Kk8 Indexed in
@ QC_N6_7.gasm 1.3 kB
+
OpenAIRE
[0 _ham_paulis_N6_3.txt 380 Bytes CJ P

Both classical and quantum code available at: https://github.com/rgjha/SYKguantumcomp
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