A novel approach to the global analysis of proton form factors in elastic *ep* scattering

Peter Blunden⁺ (University of Manitoba)

JLab Theory Seminar, February 2024

⁺in collaboration with Craig McRae (MSc thesis)

C. McRae and PGB, PRC 109, 015503 (2024)

Generic problem: In a Global Analysis, how to combine data sets from different experiments with different overall normalization (multiplicative) uncertainties?

A simple example

Barlow, NIMPR A 987, 164864 (2021)

Fig. 1. Data from two different experiments.

• Form factors and the G_E/G_M ratio discrepancy

"Rosenbluth" separation (LT)

$$\frac{1}{\tau}\sigma_{\rm red} = G_M^2 + \frac{\varepsilon}{\tau}G_E^2$$

Polarization Transfer (PT)

Two Photon Exchange (TPE) leading candidate to explain the discrepancy

Proton radius discrepancy: muonic H vs electron scattering

$$\langle r^2 \rangle = -6 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2 \to 0}$$

Outline

- Conventional approach: "Penalty Trick"
- "t₀ method" of NNPDF collaboration Ball et al., JHEP 05, 075 (2010)
- Modification for multiple kinematics ("IMF method") us
- Global fits and extraction of $G_E(Q^2)$ and $G_M(Q^2)$
 - IMF vs penalty trick (linear model): reanalysis of SLAC data (48 points) for $Q^2 > 1$ GeV² by Gramolin & Nikolenko, PRC **93**, 055201 (2016)
 - IMF vs penalty trick (nonlinear model): SLAC + other + new data (121 points) by Gmp12 collaboration Christy et al., PRL 128, 102002 (2022)
- The importance of correlations
- Inclusion of TPE in reconciling G_E/G_M discrepancy

Penalty Trick

- \mathcal{N} experiments labelled $r = 1, 2 \dots \mathcal{N}$ (indices $r, s, t \dots$)
- data $y_{r,j}$ for each experiment, labelled $j = 1, 2 \dots N_r$ (indices i, j, k, \dots) has both additive $(\Delta y_{r,j})$ and overall multiplicative (Δn_r) uncertainties
- model M = $\sigma_{\text{red}} = \tau G_M^2(Q^2) + \varepsilon G_E^2(Q^2); \tau \equiv Q^2/(4M^2), 0 < \varepsilon < 1$
- normalization parameters n_r assumed to be normally distributed around 1

Penalty Trick

• \mathcal{N} experiments labelled $r = 1, 2 \dots \mathcal{N}$ (indices $r, s, t \dots$)

• data $y_{r,j}$ for each experiment, labelled $j = 1, 2 \dots N_r$ (indices i, j, k, \dots) has both additive $(\Delta y_{r,j})$ and overall multiplicative (Δn_r) uncertainties

• model M =
$$\sigma_{\text{red}} = \tau G_M^2(Q^2) + \varepsilon G_E^2(Q^2); \tau \equiv Q^2/(4M^2), 0 < \varepsilon < 1$$

• normalization parameters n_r assumed to be normally distributed around 1

Find model parameters plus the normalization parameters by minimizing chi-square

$$\chi_{p}^{2} = \sum_{r=1}^{\mathcal{N}} \left[\frac{\left(n_{r}-1\right)^{2}}{\left(\Delta n_{r}\right)^{2}} + \sum_{j=1}^{N_{r}} \frac{\left(n_{r}y_{r,j} - M_{r,j}\right)^{2}}{\left(\Delta y_{r,j}\right)^{2}} \right]$$

Updated penalty trick scales uncertainties as well (avoids D'Agostini bias)

$$\chi_{\rm p}^2 = \sum_{r=1}^{\mathcal{N}} \left[\frac{\left(n_r - 1\right)^2}{\left(\Delta n_r\right)^2} + \sum_{j=1}^{N_r} \frac{\left(y_{r,j} - M_{r,j} / n_r\right)^2}{\left(\Delta y_{r,j}\right)^2} \right]$$

Likelihood function $\exp(-\chi_p^2/2)$ no longer Gaussian in normalization parameters n_r

to method (a more sound alternative?)

Seminal paper by NNPDF collaboration Ball et al., JHEP 05, 075 (2010)

demonstrate the statistical biases in usual approach when combining multiple data sets
construct a Monte Carlo method that accounts for normalization uncertainty without compromising the integrity of the fit

$$(y_{r,j} \pm \Delta y_{r,j}) (1 \pm \Delta n_r) \longrightarrow y_{r,j} \pm \sqrt{(\Delta y_{r,j})^2 + (y_{r,j}\Delta n_r)^2}$$

- » Build a chi-square for model M (likelihood no longer Gaussian in the data)
- » Use model as a stand-in for data in the denominator (likelihood not Gaussian in the model parameters)
- » Replace model by "best guess" $\hat{\mathrm{M}}$ (achieved by iterating until model converges)

$$\chi^{2} = \sum_{r=1}^{\mathcal{N}} \left[\sum_{j=1}^{N_{r}} \frac{(y_{r,j} - M_{r,j})^{2}}{(\Delta y_{r,j})^{2} + (y_{r,j}\Delta n_{r})^{2}} \right]$$
$$\chi^{2} = \sum_{r=1}^{\mathcal{N}} \left[\sum_{j=1}^{N_{r}} \frac{(y_{r,j} - M_{r,j})^{2}}{(\Delta y_{r,j})^{2} + (M_{r,j}\Delta n_{r})^{2}} \right]$$
$$\chi^{2} = \sum_{r=1}^{\mathcal{N}} \left[\sum_{j=1}^{N_{r}} \frac{(y_{r,j} - M_{r,j})^{2}}{(\Delta y_{r,j})^{2} + (\hat{M}_{r,j}\Delta n_{r})^{2}} \right]$$

Iterated Model Fit (IMF) method

Generalize the method to allow for multiple kinematics, using full covariance matrix

$$\operatorname{cov}_{r,jk} \longrightarrow \operatorname{cov}_{r,jk}^{\operatorname{IMF}} = \operatorname{cov}_{r,jk} + (\Delta n_r)^2 \,\hat{\mathrm{M}}_{r,j} \,\hat{\mathrm{M}}_{r,k}$$

Monte Carlo procedure:

- For each datum generate replica data $y_{r,j}^R$ from a normal distribution around the point's central value and uncertainty
- Generate a normalization factor n_r^R around 1 with uncertainty Δn_r^R
- The final chi-square to minimize is given in matrix form as

$$\chi_{\rm IMF}^2 = \sum_{r=1}^{N} (n_r^R y_r^R - M_r)^{\mathsf{T}} (\operatorname{cov}_r^{\rm IMF})^{-1} (n_r^R y_r^R - M_r)$$

Iterated Model Fit (IMF) method

Generalize the method to allow for multiple kinematics, using full covariance matrix

$$\operatorname{cov}_{r,jk} \longrightarrow \operatorname{cov}_{r,jk}^{\operatorname{IMF}} = \operatorname{cov}_{r,jk} + (\Delta n_r)^2 \,\hat{\mathrm{M}}_{r,j} \,\hat{\mathrm{M}}_{r,k}$$

Monte Carlo procedure:

- For each datum generate replica data $y_{r,j}^R$ from a normal distribution around the point's central value and uncertainty
- Generate a normalization factor $\, n_r^R \,$ around 1 with uncertainty $\, \Delta n_r^R \,$
- The final chi-square to minimize is given in matrix form as

$$\chi_{\rm IMF}^2 = \sum_{r=1}^{N} \left(n_r^R y_r^R - M_r \right)^{\mathsf{T}} (\operatorname{cov}_r^{\rm IMF})^{-1} \left(n_r^R y_r^R - M_r \right)$$

- For ${\cal R}$ replica's (we use ${\cal R}=1,000$) we have ${\cal R}\,$ best-fit models and ${\cal R}\,$ sets of best-fit parameters
- \bullet These fits are averaged together to produce an updated best-fit model \hat{M} , which is then used to update ${\rm cov}_r^{\rm IMF}$
- Iterate until convergence

Form factors and the G_E/G_M ratio

SLAC E140/NE11 LT: Walker *et al*, PRD **49**, 5671 (1994); Andivahis *et al*, PRD **50**, 5491 (1994) Super Rosenbluth LT: Qattan *et al*, PRL **94**, 142301 (2005)

Polarization Transfer (PT): (various)

 $1 \text{ GeV}^2 \le Q^2 \le 8.83 \text{ GeV}^2$

- To extract G_E and G_M from LT measurements we should correct the **data** for TPE at the same level as other RCs.
- SLAC: all details of RC are published
- Super Rosenbluth: no RC details are published, not even cross sections!

Band is at 90% confidence interval

Radiative correction improvements: Gramolin & Nikolenko, PRC 93, 055201 (2016)

- Reanalyze old SLAC data (48 points)
- Use Maximon-Tjon instead of Mo-Tsai (no difference at order Z⁰)
- Improvements to hard internal and external δ_{brem} bremsstrahlung
- Minor improvements to VP and ionization factors
- No inclusion of TPE

"Penalty trick" with linear model

$$G_E^2(Q^2; \boldsymbol{a}) = \left(1 - a_1 \tau - a_2 \tau^2 - a_3 \tau^3\right) G_{dip}^2$$
$$G_M^2(Q^2; \boldsymbol{b}) = \mu_p^2 \left(1 - b_1 \tau - b_2 \tau^2 - b_3 \tau^3\right) G_{dip}^2$$

Walker: Reduced cross sections $\frac{1}{\tau}\sigma_{red} = G_M^2 + \frac{\varepsilon}{\tau}G_E^2$

- 8 GeV: forward angles
- 1.6 GeV: backward angles
 - Normalization factor 0.958 ± 0.007 applied to this set at all Q^2

11

GMp12 experiment

Goals of GMp-12

Christy et al., PRL 128, 102002 (2022)

- Precise e-p elastic cross section over wide range of JLab-12 kinematics
- Expand measurements of TPE to higher Q² values
- Improved extraction of GMp at high Q²
- Performed global analysis of new data plus 6 other experiments (121 points) with $Q^2 > 1 \text{ GeV}^2$
- Apply updated radiative corrections to old data

Walker

IMF method

Improved parametrization of form factors: *z*-expansion model

$$G_E(z; \boldsymbol{a}) = \sum_{k=0}^{k_{\max}} a_k z^k, \quad G_M(z; \boldsymbol{b}) = \mu_p \sum_{k=0}^{k_{\max}} b_k z^k,$$

$$z(Q^2) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}}$$

$$t_{\text{cut}} = 4m_\pi^2, \quad t_0 = t_{\text{cut}} \left(1 - \sqrt{1 + Q_{\max}^2/t_{\text{cut}}}\right)$$

$$\sum_{k=n}^{k_{\max}} \frac{k!}{(k-n)!} a_k = 0, \quad n = 0, 1, 2, 3 \longrightarrow G_E(Q^2) \sim 1/Q^4 \text{ as } Q^2 \to \infty$$

Choosing $k_{\text{max}} = 8$ leaves 4 free parameters for each of G_E and G_M

IMF for nonlinear models

Potential difficulty: average of a functional form $F(x, \alpha)$ will not be of the same form when not linear in the parameters α , ruining iterative steps for best fit model.

Two possible solutions:

1. Find parameters α that are closest to the average of the replica fits $\langle F_R(x) \rangle$ in the least squares sense:

$$\frac{\partial}{\partial \boldsymbol{\alpha}} \int_{x_{\min}}^{x_{\max}} dx \, \left(F(x, \boldsymbol{\alpha}) - \langle F_R(x) \rangle \right)^2 = \mathbf{0}$$

2. Proceed regardless and hope for convergence of the iterative process (convergence is all that's needed to be statistically sound).

- We use $\mathcal{R} = 1,500$ replicas per iteration; convergence in 5 iterations.
- We manually exclude $\sim 10\%$ of replica form factors that change sign for $Q^2 < 1 \text{ GeV}^2$ (model depends on form factors squared).

The importance of correlations

- IMF method achieves fits of the same quality as penalty trick without the need for normalization parameters *n_i*.
- The additional parameters n_i are a means to approximate the correlated nature of the data. They are not physically meaningful on their own!
- Hence we do not perform LT separations using the IMF method to subsets of the data at fixed Q^2 , as this is blind to covariance of data at different Q^2 .
- With the penalty trick fits there is a temptation to treat the normalization factors *n_i* as a pseudo model-independent means to bring data sets into agreement (*e.g.* Andivahis 1.6 GeV).
- This was done in Gmp12 analysis to facilitate comparison LT separation fits with those from global analysis.
- Fitted normalizations are designed to pull cross section data toward the model, so it's no surprise that fits are similar.

Black dots from direct LT separations (interpolate to a common Q^2)

Is this meaningful?

Radiative corrections and TPE

GMp12 experiment

New data, updated RC: $<\Delta_{2\gamma}> = 4.2 \pm 2.0\%$ (Q²>6 GeV²) Using conventional RC: $<\Delta_{2\gamma}> = 6.6 \pm 2.1\%$ (Q²>6 GeV²)

New RC resolves roughtly one-third of the discrepancy

Even after this, discrepancy between continues to $Q^2 > 15 \text{ GeV}^2$

TPE corrections to cross section (CLAS resonances)

- Linear over mid-range of *ε* values, but curves towards endpoints
- Presence of TPE allows for smaller contribution of G_E^2

IMF fit including TPE as a RC

Suggests TPE can fully resolve the proton form factor discrepancy

Summary

- Model-dependent but statistically unbiased fitting leads to minor improvements to global fits to cross section data
- Penalty trick seems to consistently provide similar fits.
 Why bother with the more involved method?
- Lesson from D'Agostini bias: naive treatment of normalization uncertainties can lead to "repulsion" of the fit from the data while keeping the chi-square the same.
- No *a priori* criteria to determine when such misbehaviour is likely to occur.
- Plan to reanalyze penalty trick fits to global data sets including data at low Q^2 (over 1,500 data points) to determine possible impact on proton radius discrepancy.