Meson-meson scattering at large N_c

Jorge Baeza-Ballesteros

In collaboration with P. Hernández and F. Romero-López Based on arXiv/2202.02291 and ongoing work

IFIC, University of Valencia-CSIC

Jefferson Lab - 25th September 2023

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4 $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large N_c
- 6 Summary and outlook

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large *N*c
- Summary and outlook

Long-term goal: Understand subleading N_c effects in the lattice:

- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2020]
- Resonances \longrightarrow Stable ($\Gamma \sim 1/N_c$)
- Exotic states (tetraquarks...) [Coleman 1985, Weinberg 2013]

Long-term goal: Understand subleading N_c effects in the lattice:

- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2020]
- Resonances \longrightarrow Stable ($\Gamma \sim 1/N_c$)
- Exotic states (tetraquarks...) [Coleman 1985, Weinberg 2013]

This talk: *N*_c scaling of meson-meson scattering

Meson-n	neson so	attering at l	arge N_c		
0000	000	00000	00000	000000	0
Large N _C	ChPT	Lattice QCD		Ongoing work	

This talk: *N*_c scaling of meson-meson scattering

Large $N_{\rm c}$ + Unitarized ChPT $\rightarrow N_{\rm c}$ scaling of resonances [Peláez, 2004]

J. Baeza-Ballesteros

Meson-	meson sc	attering at I	large N _c		
00000					
Large N _C	ChPT	Lattice QCD		Ongoing work	Summary

 $m{N_{f}=4}~(m_{u}=m_{d}=m_{s}=m_{c})$ Used to study $K
ightarrow\pi\pi$ [Donini et al. 2020]
$$N_{f} = 4 (m_{u} = m_{d} = m_{s} = m_{c})$$
Used to study $K \to \pi\pi$
[Donini et al. 2020]

 $15 \otimes 15 = 84 (SS) \oplus 45 \oplus 45 \oplus 20 (AA) \oplus 15 \oplus 15 \oplus 1$ $\pi^{+}\pi^{+} \qquad D_{s}^{+}\pi^{+} - D^{+}K^{+}$

 $C_{SS} = D - C + (p_1 \leftrightarrow p_2)$ $C_{AA} = D + C + (p_1 \leftrightarrow p_2)$

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	
$\pi\pi$ scat	tering at	large N _c			

Large N_c counting rules:

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	
$\pi\pi$ scat	tering at	large N _c			

Large N_c counting rules:

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	
$\pi\pi$ scat	tering at	large N _c			

Large N_c counting rules:

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

a, $b \sim \mathcal{O}(1)$ constants

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	
$\pi\pi$ scat	tering at	large N _c			

Large N_c counting rules:

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

a, $b \sim \mathcal{O}(1)$ constants

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	
$\pi\pi$ scat	tering at	large N _c			

Large N_c counting rules:

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

a, $b \sim \mathcal{O}(1)$ constants

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	
$\pi\pi$ scat	tering at	large N _c			

Large N_c counting rules:

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

Large $N_{\rm c}$ ChPT Lattice QCD 2202 0000 Ongoing work Summary 00000 Ongoing work October $\pi\pi$ scattering at large $N_{\rm c}$ c, d, e, f ~ $\mathcal{O}(1)$ constants

Two pions:

Scattering length in the SS and AA channels:

$$a_0^{SS,AA} = \mp \frac{1}{N_c} \left(\tilde{a} + \tilde{b} \frac{N_f}{N_c} \pm \tilde{c} \frac{1}{N_c} \right) + \mathcal{O}(N_c^{-3})$$

Same scaling for other scattering observables

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large *N*c
- Summary and outlook

ChPT describes QCD in terms of pseudo-Goldstone bosons (pions)

$$\phi = \begin{pmatrix} \pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} & \sqrt{2}D^{0} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}K^{0} & \sqrt{2}D^{+} \\ \sqrt{2}K^{-} & \sqrt{2}K^{0} & -\frac{2\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}D^{+}_{s} \\ \sqrt{2}\bar{D}^{0} & \sqrt{2}D^{-} & \sqrt{2}D^{-}_{s} & -\frac{3\eta_{c}}{\sqrt{6}} \end{pmatrix}$$
 $(N_{\rm f} = 4)$

ChPT describes QCD in terms of pseudo-Goldstone bosons (pions)

$$\phi = \begin{pmatrix} \pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} & \sqrt{2}D^{0} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}K^{0} & \sqrt{2}D^{+} \\ \sqrt{2}K^{-} & \sqrt{2}K^{0} & -\frac{2\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}D^{+}_{s} \\ \sqrt{2}\bar{D}^{0} & \sqrt{2}D^{-} & \sqrt{2}D^{-}_{s} & -\frac{3\eta_{c}}{\sqrt{6}} \end{pmatrix}$$
 (N_f = 4)

Most general lagrangian with QCD symmetries

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \operatorname{Tr}[\partial_{\mu} U \partial^{\mu} U^{\dagger}] + \frac{F^{2} B_{0}}{2} \operatorname{Tr}[\chi U^{\dagger} + \chi^{\dagger} U] \quad (2 \text{ LECs}) \quad \begin{array}{c} F^{2} \sim \mathcal{O}(N_{c}) \\ B_{0}, M_{\pi} \sim \mathcal{O}(1) \\ \mathcal{L}_{4} = \sum_{i=0}^{12} L_{i} O_{i} \qquad L_{i} \sim \mathcal{O}(N_{c}) \text{ or } \mathcal{O}(1) \\ \end{array} \quad (13 \text{ LECs})$$

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	00000	00000	000000	0
ChPT at	large <i>N</i> c				

The η^\prime needs to be included

$$M_{\eta'}^2 = M_{\pi}^2 + \frac{2N_{\rm f}\chi_{\rm top}}{F_{\pi}^2} \xrightarrow{F_{\pi}^2 \sim \mathcal{O}(N_{\rm c})}_{\text{large } N_{\rm c}} M_{\pi}^2 + \dots \qquad [\text{Witten-Veneciano}]$$

Large N_c or U(N_f) ChPT [Kaiser, Leutwyler 2000]:

 $\bullet~\mbox{Include}~\eta'$ in pion matrix

$$\phi|_{\mathsf{U}(N_{\mathsf{f}})} = \phi|_{\mathsf{U}(N_{\mathsf{f}})} + \eta' \mathbb{1}$$

• Leutwyler counting scheme

$$\mathcal{O}(m_q) \sim \mathcal{O}(M_\pi^2) \sim \mathcal{O}(k^2) \sim \mathcal{O}(N_c^{-1})$$

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	00●	00000	00000	000000	O
$\pi\pi$ scatte	ring in Cł	ιPT			

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_0^{SS} = -\frac{M_{\pi}^2}{16\pi F_{\pi}^2} \int \propto -\frac{1}{N_c}$$

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto -\frac{1}{N_{c}} \qquad M_{\pi}a_{0}^{AA} = +\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto +\frac{1}{N_{c}}$$

 $\pi\pi$ scattering at NLO in large N_c ChPT [JBB at al. 2022]

$$M_{\pi}a_{0}^{SS,AA} = \mp \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} + f_{SS,AA}(M_{\pi}, F_{\pi}, L_{SS,AA}, K_{SS,AA})$$

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto -\frac{1}{N_{c}} \qquad M_{\pi}a_{0}^{AA} = +\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto +\frac{1}{N_{c}}$$

 $\pi\pi$ scattering at NLO in large N_c ChPT [JBB at al. 2022]

$$M_{\pi}a_{0}^{SS,AA} = \mp \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} + f_{SS,AA}(M_{\pi}, F_{\pi}, L_{SS,AA}, K_{SS,AA})$$

Large
$$N_c \longrightarrow L_{SS} = N_c L^{(0)} + N_f L_c^{(1)} - L_a^{(1)} + \mathcal{O}(N_c^{-1})$$

 $L_{AA} = \underbrace{N_c L^{(0)} + N_f L_c^{(1)}}_{\text{Same sign}} \underbrace{+L_a^{(1)}}_{\text{Opposite}} + \mathcal{O}(N_c^{-1})$

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large $N_{\rm c}$
- Summary and outlook

Large N _C	ChPT	Lattice QCD	Ongoing work	Summary
		00000		
QCD ir	n the latti	се		

Lattice QCD is a first-principles approach to the strong interaction

$$\langle O[\phi]
angle = rac{1}{Z} \int \mathcal{D}\phi \, \mathrm{e}^{-\mathcal{S}[\phi]} O[\phi]$$

 $\phi \equiv$ quark, gluons $S[\phi] \equiv$ QCD action $O[\phi] \equiv$ observable

Large N _C	ChPT	Lattice QCD	Ongoing work	Summary
		00000		
QCD ir	n the latti	ce		

Lattice QCD is a first-principles approach to the strong interaction

$$\langle O[\phi] \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \mathrm{e}^{-\mathcal{S}[\phi]} O[\phi]$$

 $\phi \equiv$ quark, gluons $S[\phi] \equiv$ QCD action $O[\phi] \equiv$ observable

Finite-volume spectrum

Infinite-volume scattering amplitudes

 \mathcal{M}_{2}

Large N _C	ChPT	Lattice QCD		Ongoing work	Summary				
		00000							
Two-particle energy spectrum									

Use a **basis of operators**, $O_i(t)$, with the correct quantum numbers

$$C_{ij}(t) = \langle O_i(t) O_j(0)^\dagger
angle \qquad O_i \sim \pi(m{k}_1) \pi(m{k}_2)$$

Large N _C	ChPT	Lattice QCD		Ongoing work	Summary				
		00000							
Two-particle energy spectrum									

Use a **basis of operators**, $O_i(t)$, with the correct quantum numbers

$$C_{ij}(t) = \langle O_i(t) O_j(0)^{\dagger}
angle \qquad O_i \sim \pi(m{k}_1) \pi(m{k}_2)$$

Solve generalized eigenvalue problem

$$C^{-1/2}(t_0)C(t)C^{-1/2}(t_0)v_n = \lambda_n(t)v_n \longrightarrow \lambda_n(t) \xrightarrow{T \gg t \gg t_0} A_n e^{-E_n t}$$

Fit for different fit ranges and extract the energies from plateaux

Average plateaux using Akaike Information Criterion [Jay, Neil, 2020]

$$w_i \propto \exp\left[-rac{1}{2}\left(\chi^2 - 2N + 2N_{\sf par}
ight)
ight]$$

Reduces human bias

Allows to automatically find plateaux for accurate data

Two- and three-particle scattering in the O(3) model, $\gtrsim 1500$ energy levels [JBB, Hansen (in preparation)]

J. Baeza-Ballesteros

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

Single-channel, *s*-wave
$$\longrightarrow$$
 $k \cot \delta_0 = \frac{2}{\gamma L \pi^{1/2}} Z_{00}^P \left(\frac{kL}{2\pi}\right)$
1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- 3 Scattering in the lattice
- 4 $\pi\pi$ scattering at threshold
 - 5 Meson-meson scattering at large *N*c

Summary and outlook

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	
00000	000	00000	•0000	000000	
Our lattic	e ensemb	les			

Goal: $N_{\rm c}$ scaling of $\pi\pi$ scattering and match to ChPT

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	
00000	000	00000	•••••	000000	
Our lattic	e ensemb	les			

Goal: N_c scaling of $\pi\pi$ scattering and match to ChPT

Ensembles with $N_{\rm f}=4$ dynamical quarks for $N_{\rm c}=3-6$ generated using **HiRep** [Del Debbio et al., 2010]

Summary of ensembles [Hernández et al., 2019]

 $a = 0.075 \text{ fm} \rightarrow [N_{c} = 3 - 6] \times [4 \text{ or } 5 \text{ values of } M_{\pi}] = 17 \text{ ensembles}$ $a = 0.065 \text{ fm} \rightarrow [N_{c} = 3] \times [2 \text{ values of } M_{\pi}] = 2 \text{ ensembles}$ $a = 0.059 \text{ fm} \rightarrow [N_{c} = 3] \times [2 \text{ values of } M_{\pi}] = 2 \text{ ensembles}$

 $M_{\pi}=350{-}590\,\mathrm{MeV}$

Large N _C 00000	ChPT 000	Lattice QCD 00000	2202.02291 0€000	Ongoing work	
$\pi\pi$ scatte	ering lengt	ths			

Goal: N_c scaling of $\pi\pi$ scattering and match to ChPT

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	00000	00000	000000	O
Fits at fix	ed N _c				

We fit to ChPT at fixed N_c for each channel separately,

* $L_{SS,AA}$ are well described by leading and subleading N_c terms * Only U(4) ChPT is consistent with the common large N_c limit

Large N_c ChPT Lattice QCD 2202.02291 Ongoing work Summary 000000 OSCORE Simultaneous chiral and N_c fit

Simultaneous chiral and N_c fit of both channels to U(4) ChPT,

J. Baeza-Ballesteros

Large N_c ChPT Lattice QCD 2202.02291 Ongoing work Summary 000000 OSCORE Simultaneous chiral and N_c fit

Simultaneous chiral and N_c fit of both channels to U(4) ChPT,

J. Baeza-Ballesteros

Compare to lattice and experimental results for the SS channel,

1. Change
$$N_{\rm f}$$
: $\frac{L_{SS}}{N_{\rm c}} \times 10^3 = -0.02(8) - 0.01(5) \frac{N_{\rm f}}{N_{\rm c}} - 1.76(20) \frac{1}{N_{\rm c}}$

- **2.** Translate to $SU(N_f)$
- 3. Change renormalization scale, $\mu = 1.40(12)\,{
 m GeV}
 ightarrow 0.77\,{
 m GeV}$

Large Ne ChPT Lattice QCD 2202.02291 Ongoing work Summary 00000 Ongoing work Chemistry 00000 Ongoing work Ong

Compare to lattice and experimental results for the SS channel,

1. Change
$$N_{\rm f}$$
: $\frac{L_{SS}}{N_{\rm c}} \times 10^3 = -0.02(8) - 0.01(5) \frac{N_{\rm f}}{N_{\rm c}} - 1.76(20) \frac{1}{N_{\rm c}}$

- **2.** Translate to $SU(N_f)$
- 3. Change renormalization scale, $\mu = 1.40(12)\,{
 m GeV}
 ightarrow 0.77\,{
 m GeV}$

$$\begin{array}{ll} & & L_{SS}^{N_c=3,N_f=3} \times 10^3 = -1.14(22)_{\rm stat}(11)_{\mu} & ({\rm this \ work}) \\ \\ \swarrow & & L_{SS}^{N_c=3,N_f=3} \times 10^3 = -0.9(1.5) & [{\rm Bijnens,\ Ecker\ 2014\]} \\ & & \ell_{I=2} = 4.3(1.2)_{\rm stat}(0.5)_{\mu} & ({\rm this \ work}) \\ \\ & & & \ell_{I=2} = 3.79(0.61)_{\rm stat} \left({}^{+1.34}_{-0.11} \right)_{\rm sys} & [{\rm Feng,\ et\ al.\ 2010\]} \\ & & & \ell_{I=2} = 4.65(0.85)_{\rm stat}(1.07)_{\rm sys} & [{\rm Helmes,\ et\ al.\ 2015\]} \\ & & & \ell_{I=2} = 512\pi^2 L_{SS}^{N_c=3,N_f=2} \end{array}$$

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large $N_{\rm c}$
- Summary and outlook

Large N _c	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	00000	00000	000000	0
$\pi\pi$ scat	tering at	large N _c			

AA channel is attractive ---- Possible tetraquark

Large N _C 00000	ChPT 000	Lattice QCD 00000	2202.02291 00000	Ongoing work	
$\pi\pi$ scatt	ering at	large N _c			

AA channel is **attractive** \rightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T^0_{cs0}(2900) \text{ in } D^+ K^- \\ T^{++}_{cs0}(2900) \text{ and } T^0_{cs0}(2900) \text{ in } D^{\pm}_{s} \pi^+ \end{array} \longrightarrow AA \text{ channel}$$

Large N _C 00000	ChPT 000	Lattice QCD 00000	2202.02291 00000	Ongoing work	
$\pi\pi$ scatt	ering at	large N _c			

AA channel is **attractive** \rightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{l} T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-} \\ T_{c\overline{s}0}^{++}(2900) \text{ and } T_{c\overline{s}0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+} \end{array} \longrightarrow \begin{array}{l} AA \text{ channel} \\ J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45 \oplus 45 \oplus 20 \oplus 15 \oplus 15 \oplus 1 \end{array}$$

Large N _C 00000	ChPT 000	Lattice QCD 00000	2202.02291 00000	Ongoing work	
$\pi\pi$ scatt	ering at	large N _c			

AA channel is **attractive** \rightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T^0_{cs0}(2900) \text{ in } D^+ K^- \\ T^{++}_{c\bar{s}0}(2900) \text{ and } T^0_{c\bar{s}0}(2900) \text{ in } D^{\pm}_{s}\pi^+ \end{array} \longrightarrow AA \text{ channel}$$
$$J = 1: T^0_{cs1}(2900) \text{ in } D^+ K^- \longrightarrow 84 \oplus 45 \oplus 45 \oplus 20 \oplus 15 \oplus 15 \oplus 1$$
Below $D^*_{s}\rho$ threshold \longrightarrow Described as meson-meson bound states

Large N _C 00000	ChPT 000	Lattice QCD 00000	2202.02291 00000	Ongoing work	
$\pi\pi$ scatt	ering at	large N _c			

AA channel is **attractive** \longrightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{l} T^{0}_{cs0}(2900) \text{ in } D^{+}K^{-} \\ T^{++}_{c\overline{s0}}(2900) \text{ and } T^{0}_{c\overline{s0}}(2900) \text{ in } D^{\pm}_{s}\pi^{+} \end{array} \longrightarrow AA \text{ channel}$$
$$J = 1: T^{0}_{cs1}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45 \oplus 45 \oplus 20 \oplus 15 \oplus 15 \oplus 1$$
Below $D^{*}_{s}\rho$ threshold \longrightarrow Described as meson-meson bound states

Goal: N_c scaling of meson-meson scattering + tetraquark

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	00000	00000	000000	O
Lattice c	omputa	tions			

 $N_{
m c}=3,4,5,6$ ensembles with $a\sim 0.075$ fm and $M_{\pi}\sim 590$ MeV

Operator basis: $\pi\pi + \rho\rho + \text{local tetraquark}$

Local tetraquark operators → Point sources in a regular subgrid Λ

$$T(\mathbf{P}) \propto \sum_{\mathbf{x} \in \tilde{\Lambda}} e^{-i\mathbf{P}\mathbf{x}} T(\mathbf{x})$$

$$T(x)\sim ar{d}arGamma_1 u\,ar{s}arGamma_2 c -ar{s}arGamma_1 u\,ar{d}arGamma_2 c$$

Quantum numbers of AA channel

Large Nc ChPT Lattice QCD 2202.02291 Ongoing work Summary 00000 00000 00000 00000 00000 0 Finite-volume energies: AA channel

We study the effect of different operators for $N_c = 3$:

 $\pi\pi$ vs $\pi\pi$ + Local tetraquarks

Large N _c	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	00000	00000	000000	0
Scatterir	ng phase	shift: AA c	hannel		

Compare amplitude for $\pi\pi$ vs $\pi\pi$ + local tetraquarks

Expected large N_c scaling: $\mathcal{M} \sim N_c^{-1}$

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4 $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large N_c
- 6 Summary and outlook

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
					•
Summary	and ou	tlook			

Goal: N_c scaling of meson-meson scattering

- The large N_c limit allows to study the non-pertubartive regime of QCD, but subleading effects may be large
- > We have studied $\pi\pi$ scattering near threshold and matched it to U(4) ChPT
- We are working on an energy-dependent study of mesons-meson scattering, searching for possible tetraquark resonance

Large N _c	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary		
					•		
Summary and outlook							

Goal: N_c scaling of meson-meson scattering

- ➤ The large N_c limit allows to study the non-pertubartive regime of QCD, but subleading effects may be large
- > We have studied $\pi\pi$ scattering near threshold and matched it to U(4) ChPT
- We are working on an energy-dependent study of mesons-meson scattering, searching for possible tetraquark resonance

Next steps: fit to $k \cot \delta_0$, *SA* and *AS* channels, $N_c = 4, 5, 6$

Large N _c	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary		
					•		
Summary and outlook							

Goal: N_c scaling of meson-meson scattering

- ➤ The large N_c limit allows to study the non-pertubartive regime of QCD, but subleading effects may be large
- > We have studied $\pi\pi$ scattering near threshold and matched it to U(4) ChPT
- We are working on an energy-dependent study of mesons-meson scattering, searching for possible tetraquark resonance
- **Next steps**: fit to $k \cot \delta_0$, *SA* and *AS* channels, $N_c = 4, 5, 6$

Thank you for your attention!

84 (*SS*) \oplus **45** (*SA*) \oplus **45** (*AS*) \oplus **20** (*AA*) \oplus 15 \oplus 15 \oplus 1

$$\begin{aligned} O_{SS}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) + \pi^+(p_2) D_s^+(p_1) + K^+(p_1) D^+(p_2) + K^+(p_2) D^+(p_1) \right] \\ O_{SA}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) - \pi^+(p_2) D_s^+(p_1) - K^+(p_1) D^+(p_2) + K^+(p_2) D^+(p_1) \right] \\ O_{AS}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) - \pi^+(p_2) D_s^+(p_1) + K^+(p_1) D^+(p_2) - K^+(p_2) D^+(p_1) \right] \\ O_{AA}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) + \pi^+(p_2) D_s^+(p_1) - K^+(p_1) D^+(p_2) - K^+(p_2) D^+(p_1) \right] \end{aligned}$$

$\pi\pi$ scattering in large $N_{\rm c}$ ChPT

We must consider the following loop diagrams

$$\mathcal{T}_{AA}^{U(N_{\rm f})} = \mathcal{T}_{AA}^{\rm SU(N_{\rm f})} + \frac{4M_{\pi}^4}{F_{\pi}^4 N_{\rm f}} \left(1 + \frac{2}{N_{\rm f}}\right) F_{\eta'\pi}(k^2) - \frac{4M_{\pi}^4}{F_{\pi}^4 N_{\rm f}^2} F_{\eta'\eta'}(k^2) + \frac{2M_{\pi}^4}{F_{\pi}^4} \left[K_{AA} + K_{AA}' \left(\frac{k^2}{M_{\pi}}\right)^2 + \dots \right]$$

$$\mathcal{T}_{SS}^{U(N_{\rm f})} = \mathcal{T}_{SS}^{SU(N_{\rm f})} - \frac{4M_{\pi}^4}{F_{\pi}^4 N_{\rm f}} \left(1 - \frac{2}{N_{\rm f}}\right) F_{\eta'\pi}(k^2) - \frac{4M_{\pi}^4}{F_{\pi}^4 N_{\rm f}^2} F_{\eta'\eta'}(k^2) + \frac{2M_{\pi}^4}{F_{\pi}^4} \left[K_{SS} + K_{SS}' \left(\frac{k^2}{M_{\pi}}\right)^2 + \dots \right]$$

Large N_c limit of U(N_f) ChPT

$$\begin{split} M_{\eta'}^{2} &\to M_{\pi}^{2} \text{ limit:} \\ M_{\pi}a_{0}^{SS} &= -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{SS} + K_{SS} \left(\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\right)^{2} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ M_{\pi}a_{0}^{AA} &= \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{AA} + K_{AA} \left(\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\right)^{2} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ M_{\eta'}^{2} \gg M_{\pi}^{2} \text{ to match SU}(N_{f}) \text{ and U}(N_{f}) \text{ LECs:} \\ \left[L_{SS}^{(1)} \right]_{mum} &= \left[L_{SS}^{(1)} \right]_{mum} - \frac{1}{2M^{2}(L+N_{f}\lambda_{0}-\lambda_{0})} \end{split}$$

$$\begin{bmatrix} L_{SS}^{(1)} \end{bmatrix}_{SU(N_{\rm f})} = \begin{bmatrix} L_{SS}^{(1)} \end{bmatrix}_{U(N_{\rm f})} - \frac{1}{8N_{\rm f}^2(4\pi)^2} (1 + N_{\rm f}\lambda_0 - \lambda_0) \\ \begin{bmatrix} L_{AA}^{(1)} \end{bmatrix}_{SU(N_{\rm f})} = \begin{bmatrix} L_{AA}^{(1)} \end{bmatrix}_{U(N_{\rm f})} + \frac{1}{8N_{\rm f}^2(4\pi)^2} (1 - N_{\rm f}\lambda_0 - \lambda_0) \\ \end{pmatrix} \qquad \qquad \lambda_0 = \log \frac{M_{\eta'}^2 - M_{\pi}^2}{\mu^2}$$

NLO

 $\pi\pi$ scattering amplitudes for $\mathit{N}_{\rm f}$ flavours are known to NNLO [Weinberg 1979, Gasser, Leutwyler 1985, Bijnens, Lu 2011]

$$\begin{split} M_{\pi} a_{0}^{SS} &= -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{SS} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \right] \\ &+ \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ M_{\pi} a_{0}^{AA} &= \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{AA} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} + \dots \right] \\ &- \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \end{split}$$

Explicit $N_{\rm f}$ scaling is not the expected at large $N_{\rm c}$

$$\text{Large } N_{\text{c}} \text{:} \ a_0^R \propto \mp \frac{1}{N_{\text{c}}} \left(\tilde{a} + \tilde{b} \frac{N_{\text{f}}}{N_{\text{c}}} \mp \tilde{c} \frac{1}{N_{\text{c}}} \right) + \mathcal{O}(N_{\text{c}}^{-3}) \\ \tilde{a}, \tilde{b}, \tilde{c} \sim \mathcal{O}(1) \text{ constants}$$

 $\pi\pi$ scattering amplitudes for $\mathit{N}_{\rm f}$ flavours are known to NNLO [Weinberg 1979, Gasser, Leutwyler 1985, Bijnens, Lu 2011]

$$\begin{split} M_{\pi} a_{0}^{SS} &= -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{SS} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \right] \\ &+ \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ M_{\pi} a_{0}^{AA} &= \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{AA} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} + \dots \right] \\ &- \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \end{split}$$

Explicit $N_{\rm f}$ scaling is not the expected at large $N_{\rm c}$

$$\text{Large } N_{\text{c}} \text{:} \ a_0^R \propto \mp \frac{1}{N_{\text{c}}} \left(\tilde{a} + \tilde{b} \frac{N_{\text{f}}}{N_{\text{c}}} \mp \tilde{c} \frac{1}{N_{\text{c}}} \right) + \mathcal{O}(N_{\text{c}}^{-3}) \\ \tilde{a}, \tilde{b}, \tilde{c} \sim \mathcal{O}(1) \text{ constants}$$

$\pi\pi$ scattering in large $N_{\rm c}$ ChPT

We have computed M_{SS} and M_{AA} to NNLO in U(N_f) ChPT

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}}L_{SS} + K_{SS} \left(\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\right)^{2} + \frac{M_{\pi}^{2}}{4F_{\pi}^{2}\pi^{2}N_{f}^{2}} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}}\log\frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} - \frac{M_{\pi}^{2}+M_{\eta'}^{2}}{M_{\pi}^{2}-M_{\eta'}^{2}}\frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}}\log\frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\eta'}^{2}}{M_{\pi}^{2}-M_{\eta'}^{2}}\frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}}\log\frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\eta'}^{2}}{M_{\pi}^{2}-M_{\eta'}^{2}}\frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}}\log\frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\pi'}^{2}}{M_{\pi}^{2}-M_{\eta'}^{2}}\frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}}\log\frac{M_{\eta'}^{2}}{\mu^{2}} - \frac{M_{\eta'}^{2}}{M_{\pi}^{2}-M_{\eta'}^{2}}\frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}}\log\frac{M_{\eta'}^{2}}{\mu^{2}} \right]$$

$$\frac{K_{SS}}{N_{c}^{2}} = \frac{K_{AA}}{N_{c}^{2}} + \mathcal{O}(N_{c}^{-1})$$
...and similarly for $M_{\pi}a_{0}^{AA}$

Expected $N_{
m f}$ scaling at large $N_{
m c}$ (as $M_{\eta'}^2
ightarrow M_{\pi}^2)$

$$L_{SS} = N_{c}L^{(0)} + N_{f}L_{c}^{(1)} - L_{a}^{(1)} + \mathcal{O}(N_{c}^{-1})$$
$$L_{AA} = \underbrace{N_{c}L^{(0)} + N_{f}L_{c}^{(1)}}_{\text{Same sign}} \underbrace{+L_{a}^{(1)}}_{\text{Opposite}} + \mathcal{O}(N_{c}^{-1})$$

Lüscher's formalism

Check convergence of threshold expansion

AA-channel: Continuum extrapolation for $N_c = 3$

Continuum extrapolation of $k \cot \delta_0$ for $N_c = 3$ in 3 steps:

- 1. Extrapolation to $k/M_{\pi} = -0.08$ using Effective Range Expansion and $M_{\pi}^2 r_0 a_0 \in [-5, -1]$
- **2.** Interpolation to $\xi = 0.14$
- 3. Constrained continuum extrapolation

- * Large $\mathcal{O}(a^2)$ effects for both regularizations
- * Use TM fermions
- * Wilson-ChPT inspired parametrization

$$\Delta \mathcal{M}_{AA} = 32\pi^2 a^2 W \xi$$

 $[W \sim \mathcal{O}(N_{\rm c}^0)]$

$$\star W = 42(29) \text{ fm}^{-2}$$

First step of continuum extrapolation

Extrapolation to $k/M_\pi^2=-0.08$ using Effective Range Expansion with $M_\pi^2 r_0 a_0 \in [-5,-1]$

$$\underbrace{M_{\pi}^{2}r_{0}a_{0} = -3}_{\text{ERE:}} \frac{k}{M_{\pi}}\cot\delta_{0} = \frac{1}{M_{\pi}a_{0}}\left[1 + \frac{1}{2}(M_{\pi}^{2}r_{0}a_{0})\left(\frac{k^{2}}{M_{\pi}^{2}}\right)\right]$$

I O ChPT

We fit to ChPT at fixed N_c for each channel separately,

Well described by:

- \star Different N_c^2 terms
- \star Common $\mathit{N_{c}^{2}}$ term + subleading dependency

Single channel fits

Fit	$L^{(0)} \cdot 10^3$	$L^{(1)} \cdot 10^3$	$K/N_{ m c}^2\cdot 10^5$	W	$\chi^2/{ m dof}$
<i>SS</i> , SU(4)	-0.04(1.3)	-1.70(18)	-	-	12.8/15
AA, SU(4)	-1.22(19)	0.8(4)	-	-94(15)	38.5/19
<i>SS</i> , U(4)	-0.01(7)	-1.78(20)	1.2(2.5)	-	12.2/14
AA, U(4)	-0.1(4)	1.8(4)	21(5)	-32(23)	22.5/18

SS channel, U(4) ChPT

AA channel, U(4) ChPT

Eigenvectors of the GEVP provide intuition on the effect of each operator

Finite-volume energies: AA channel

We study the effects of different operators for $N_c = 3$:

 $\pi\pi$ + Local tetraquarks vs $\pi\pi$ + $\rho\rho$ + Local tetraquarks

