

Hadronic contributions to the muon's anomalous magnetic moment from analyticity

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn, Germany

JLab theory seminar — 26/10/2020

Outline

The anomalous magnetic moment of the muon

Aoyama et al., Phys. Rept. (2020)

Hadronic vacuum polarisation

- The $\pi^+\pi^-\pi^0$ channel Hoferichter, Hoid, BK, JHEP **1908** (2019) 137
- The $\pi^0 \gamma$ channel Hoid, Hoferichter, BK, Eur. Phys. J. (2020)

Hadronic light-by-light scattering

- Dispersive analysis of the π^0 transition form factor
- High-energy asymptotics
- Putting pieces together

Hoferichter, Hoid, BK, Leupold, Schneider, Phys. Rev. Lett. **121** (2018) 112002; JHEP **1810** (2018) 141

Summary / Outlook

The anomalous magnetic moment of the muon

gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

- Dirac theory for spin-1/2 fermions: g_μ = 2 rad. corr.: g_μ = 2(1 + a_μ), a_μ "anomalous magnetic moment"
- one of the most precisely measured quantities in particle physics

 $a_{\mu}^{\exp} = (116\,592\,089\pm63) \times 10^{-11}$ BNL E821 2006

The anomalous magnetic moment of the muon

● gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

- Dirac theory for spin-1/2 fermions: g_μ = 2 rad. corr.: g_μ = 2(1 + a_μ), a_μ "anomalous magnetic moment"
- one of the most precisely measured quantities in particle physics $a_{\mu}^{\exp} = (116\,592\,089\pm63) \times 10^{-11}$ BNL E821 2006
- ... with a significant (??) deviation from the Standard Model: $a_{\mu}^{\rm SM} = (116\,591\,810\pm43) \times 10^{-11}$

 $\longrightarrow 3.7\sigma$ discrepancy:

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \times 10^{-11}$$

Aoyama et al. 2020

• new Fermilab experiment: reduce experimental error by factor 4

Hadronic contributions to a_{μ}

			-
	$a_{\mu} \left[10^{-11} \right]$	$\Delta a_{\mu} \ [10^{-11}]$	Aoyama et al. 2020
experiment	116 592 089.	63.	-
QED $\mathcal{O}(\alpha)$	116 140 973.321	0.023	-
$QED\ \mathcal{O}(lpha^2)$	413 217.626	0.007	
QED $\mathcal{O}(lpha^3)$	30 141.902	0.000	
${\sf QED}~{\cal O}(lpha^4)$	381.004	0.017	
$QED\ \mathcal{O}(lpha^5)$	5.078	0.006	
QED total	116 584 718.931	0.030	>
electroweak	153.6	1.0	\geq
had. VP (LO)	6931.	40.	
had. VP (NLO)	-98.3	0.7	μ
had. LbL	92.	19.	
total	116 591 810.	43.	hadrons

Hadronic contributions to a_{μ}

	$a_{\mu} \left[10^{-11} \right]$	$\Delta a_{\mu} \ [10^{-11}]$
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.321	0.023
$QED\;\mathcal{O}(lpha^2)$	413 217.626	0.007
$QED\;\mathcal{O}(lpha^3)$	30 141.902	0.000
${\sf QED}\; {\cal O}(lpha^4)$	381.004	0.017
$QED\;\mathcal{O}(lpha^5)$	5.078	0.006
QED total	116 584 718.931	0.030
electroweak	153.6	1.0
had. VP (LO)	6931.	40.
had. VP (NLO)	-98.3	0.7
had. LbL	92.	19.
total	116 591 810.	43.

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$\propto \sigma_{\rm tot}(e^+e^-
ightarrow {\rm hadrons})$$

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$a_{\mu}^{\text{had VP}} \propto \int_{4M_{\pi}^2}^{\infty} K(s) \sigma_{\text{tot}}(e^+e^- \to \text{hadrons})$$

• K(s): kinematical function, for large s: $K(s) \propto 1/s$, $\sigma_{tot}(e^+e^- \rightarrow hadrons) \propto 1/s$

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$a_{\mu}^{\text{had VP}} \propto \int_{4M_{\pi}^2}^{\infty} K(s) \sigma_{\text{tot}}(e^+e^- \to \text{hadrons})$$

- K(s): kinematical function, for large s: $K(s) \propto 1/s$, $\sigma_{tot}(e^+e^- \rightarrow hadrons) \propto 1/s$
- more than 75% of $a_{\mu}^{had VP}$ given by energies $s \leq 1 \, {\rm GeV^2}\,$ Jegerlehner, Nyffeler 2009
- dominated by $e^+e^- \rightarrow \pi^+\pi^ \longrightarrow$ pion electromagnetic form factor
- well constrained by data KLOE, BABAR...

Motivation: $\pi^+\pi^-\pi^0$ with analyticity constraints

- second largest exclusive channel next to $\pi^+\pi^-$
- large discrepancy between different data integration analyses:

Channel	KNT18	DHMZ17	Difference
Data based channels ($\sqrt{s} \le 1.8$ GeV)			
$\pi^+\pi^-$	503.74 ± 1.96	506.70 ± 2.58	-2.96
$\pi^+\pi^-\pi^0$	47.70 ± 0.89	46.20 ± 1.45	1.50
$\pi^+\pi^-\pi^+\pi^-$	13.99 ± 0.19	13.68 ± 0.31	0.31
$\pi^+\pi^-\pi^0\pi^0$	18.15 ± 0.74	18.03 ± 0.54	0.12
K^+K^-	23.00 ± 0.22	23.06 ± 0.41	-0.06
$K_S^0 K_L^0$	13.04 ± 0.19	12.82 ± 0.24	0.22
Total	693.3 ± 2.5	693.1 ± 3.4	0.2

in units of 10^{-10} (!) A. Keshavarzi, Mainz 2018

 \longrightarrow factor \sim 10 smaller overall, absolute uncertainty comparable

Motivation: $\pi^+\pi^-\pi^0$ with analyticity constraints

- second largest exclusive channel next to $\pi^+\pi^-$
- large discrepancy between different data integration analyses:

Channel	KNT18	FJ17	Difference
Data based channels $(0.318 \le \sqrt{s} \le 2 \text{ GeV})$			
$\pi^+\pi^-$	501.68 ± 1.71	502.16 ± 2.44	-0.48
$\pi^+\pi^-\pi^0$	47.83 ± 0.89	44.32 ± 1.48	3.51
$\pi^+\pi^-\pi^+\pi^-$	15.17 ± 0.21	14.80 ± 0.36	0.37
$\pi^+\pi^-\pi^0\pi^0$	19.80 ± 0.79	19.69 ± 2.32	0.11
K^+K^-	23.05 ± 0.22	21.99 ± 0.61	1.06
$K^0_S K^0_L$	13.05 ± 0.19	13.10 ± 0.41	-0.05
Total	693.27 ± 2.46	688.07 ± 4.14	5.20

in units of 10^{-10} (!) A. Keshavarzi, Mainz 2018

 \longrightarrow factor \sim 10 smaller overall, absolute uncertainty comparable

Motivation: $\pi^+\pi^-\pi^0$ with analyticity constraints

- second largest exclusive channel next to $\pi^+\pi^-$
- large discrepancy between different data integration analyses:

Channel	KNT18	DHMZ17	Difference
Data based channels ($\sqrt{s} \le 1.8$ GeV)			
$\pi^+\pi^-$	503.74 ± 1.96	506.70 ± 2.58	-2.96
$\pi^+\pi^-\pi^0$	47.70 ± 0.89	46.20 ± 1.45	1.50
$\pi^+\pi^-\pi^+\pi^-$	13.99 ± 0.19	13.68 ± 0.31	0.31
$\pi^+\pi^-\pi^0\pi^0$	18.15 ± 0.74	18.03 ± 0.54	0.12
K^+K^-	23.00 ± 0.22	23.06 ± 0.41	-0.06
$K_S^0 K_L^0$	13.04 ± 0.19	12.82 ± 0.24	0.22
Total	693.3 ± 2.5	693.1 ± 3.4	0.2

in units of 10^{-10} (!) A. Keshavarzi, Mainz 2018

 \longrightarrow factor ${\sim}10$ smaller overall, absolute uncertainty comparable

 independent cross-check with dispersion-theoretical amplitude: analyticity, unitarity, QCD constraints

analogous to $\pi^+\pi^-$

Colangelo, Hoferichter, Stoffer 2018

•
$$\gamma^*(q) \to \pi^+(p_+)\pi^-(p_-)\pi^0(p_0)$$
 amplitude:

 $\langle 0|j_{\mu}(0)|\pi^{+}(p_{+})\pi^{-}(p_{-})\pi^{0}(p_{0})\rangle = -\epsilon_{\mu\nu\rho\sigma} p_{+}^{\nu} p_{-}^{\rho} p_{0}^{\sigma} \mathcal{F}(s,t,u;q^{2})$

s,t,u: pion-pion invariant masses, $s+t+u=q^2+3M_\pi^2$

"reconstruction theorem": neglect discontinuities in F-waves...

 → decomposition into single-variable functions

$$\mathcal{F}(s,t,u;q^2) = \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$$

normalisation fixed from Wess–Zumino–Witten anomaly:

$$\mathcal{F}(0,0,0;0) = \mathbf{F}_{3\pi} = \frac{1}{4\pi^2 F_{\pi}^3}$$

• (*s*-channel) P-wave projection: $f_1(s,q^2) = \mathcal{F}(s,q^2) + \hat{\mathcal{F}}(s,q^2)$ $\hat{\mathcal{F}}(s,q^2)$: contribution from crossed channels $\mathcal{F}(t/u,q^2)$

Unitarity relation for $\mathcal{F}(s,q^2)$:

 $\operatorname{disc} \mathcal{F}(s,q^2) = 2i \left\{ \underbrace{\mathcal{F}(s,q^2)}_{\mathcal{F}(s,q^2)} + \underbrace{\hat{\mathcal{F}}(s,q^2)}_{\mathcal{F}(s,q^2)} \right\} \times \theta(s - 4M_\pi^2) \times \sin \,\delta_1^1(s) \, e^{-i\delta_1^1(s)}$

right-hand cut

left-hand cut

right-hand cut

Unitarity relation for $\mathcal{F}(s,q^2)$:

disc $\mathcal{F}(s,q^2) = 2i \{\mathcal{F}(s,q^2)\}$

 $\} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut only —> Omnès problem

$$\mathcal{F}(s,q^2) = a(q^2) \,\Omega(s) \,, \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s}\right\}$$

 \longrightarrow amplitude given in terms of pion vector form factor

Unitarity relation for $\mathcal{F}(s, q^2)$:

• inhomogeneities $\hat{\mathcal{F}}(s,q^2)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = a(q^2) \,\Omega(s) \left\{ 1 + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s,q^2) = \frac{3}{2} \int_{-1}^{1} dz \,(1-z^2) \mathcal{F}(t(s,z),q^2)$$

right-hand cut

 $\operatorname{disc} \mathcal{F}(s,q^2) = 2i \left\{ \underbrace{\mathcal{F}(s,q^2)}_{\mathcal{F}(s,q^2)} + \underbrace{\hat{\mathcal{F}}(s,q^2)}_{\mathcal{F}(s,q^2)} \right\} \times \theta(s - 4M_{\pi}^2) \times \sin \,\delta_1^1(s) \, e^{-i\delta_1^1(s)}$

left-hand cut

• inhomogeneities $\hat{\mathcal{F}}(s,q^2)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = \mathbf{a}(q^2) \,\Omega(s) \left\{ 1 + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s,q^2) = \frac{3}{2} \int_{-1}^{1} dz \,(1-z^2) \mathcal{F}(t(s,z),q^2)$$

• crossed-channel scatt. between *s*-, *t*-, *u*-channel (left-hand cuts)

• parameterisation of subtraction function $a(q^2)$

 \longrightarrow to be fitted to $e^+e^- \rightarrow 3\pi$ cross section data:

$$a(q^2) = \frac{F_{3\pi}}{3} + \frac{q^2}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}\,\mathcal{A}(s')}{s'(s'-q^2)} + C_n(q^2)$$

• $\mathcal{A}(q^2)$ includes resonance poles:

$$\mathcal{A}(q^2) = \sum_{V} \frac{c_V}{M_V^2 - q^2 - i\sqrt{q^2}\Gamma_V(q^2)} \qquad V = \omega, \phi, \omega', \omega''$$
$$c_V \text{ real}$$

conformal polynomial (inelasticities); S-wave cusp eliminated:

$$C_n(q^2) = \sum_{i=1}^n c_i \left(z(q^2)^i - z(0)^i \right), \qquad z(q^2) = \frac{\sqrt{s_{\text{inel}} - s_1} - \sqrt{s_{\text{inel}} - q^2}}{\sqrt{s_{\text{inel}} - s_1} + \sqrt{s_{\text{inel}} - q^2}}$$

• exact implementation of $\gamma^* \to 3\pi$ anomaly:

$$\frac{F_{3\pi}}{3} = \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\operatorname{Im} a(s')}{s'}$$

$e^+e^- ightarrow 3\pi$ cross section data sets

experiment	region of $\sqrt{s}[{ m GeV}]$	# data points	normalisation uncertainty
SND 2002	[0.98, 1.38]	67	5.0% or $5.4%$
SND 2003	[0.66, 0.97]	49	3.4% or $4.5%$
SND 2015	[1.05, 1.80]	31	3.7%
CMD-2 1995	[0.99, 1.03]	16	4.6%
CMD-2 1998	[0.99, 1.03]	13	2.3%
CMD-2 2004	[0.76, 0.81]	13	1.3%
CMD-2 2006	[0.98, 1.06]	54	2.5%
DM1 1980	[0.75, 1.10]	26	3.2%
ND 1991	[0.81, 1.39]	28	10% or $20%$
DM2 1992	[1.34, 1.80]	10	8.7%
BaBar 2004	[1.06, 1.80]	30	all systematics

- normalisation-type systematics assumed 100% correlated
- avoid biased fit for empirical full covariance matrix
 - \longrightarrow iterative solution

D'Agostini 1994, NNPDF 2010

Fit results

Parameters:

- resonance parameters M_{ω} , Γ_{ω} , M_{ϕ} , Γ_{ϕ} , c_{ω} , c_{ϕ} , $c_{\omega'}$, $c_{\omega''}$
- conformal parameters c_1 , c_2 , c_3
- energy rescaling $\sqrt{s} \rightarrow \sqrt{s} + \xi(\sqrt{s} 3M_{\pi})$

 \longrightarrow far less an issue than for $\pi^+\pi^-$

Fit results

Parameters:

- resonance parameters M_{ω} , Γ_{ω} , M_{ϕ} , Γ_{ϕ} , c_{ω} , c_{ϕ} , $c_{\omega'}$, $c_{\omega''}$
- conformal parameters c_1 , c_2 , c_3
- energy rescaling $\sqrt{s} \rightarrow \sqrt{s} + \xi(\sqrt{s} 3M_{\pi})$
 - \longrightarrow far less an issue than for $\pi^+\pi^-$
- quality of the combined fit to all data:

this work

 $\chi^2/{
m dof}$ 430.8/305 = 1.41

- hinspace correlations increase $\chi^2/{
 m dof}$ by \sim 0.3
- significantly better fits to individual data sets

 \longrightarrow fit errors inflated by scale factor $S = \sqrt{\chi^2/\text{dof}}$

Fit results $e^+e^- ightarrow 3\pi$ data up to 1.8 GeV

Hoferichter, Hoid, BK 2019

- black / gray bands represent fit and total uncertainties
- vacuum polarisation removed from the cross section

Fit results $e^+e^- ightarrow 3\pi$: ω, ϕ peaks

• VP-subtraction: expect $\Delta M_{\omega} = -0.13 \text{ MeV}, \Delta M_{\phi} = -0.26 \text{ MeV}$

$$\begin{split} M_{\omega} &= 782.63(3) \, \mathrm{MeV} & \Gamma_{\omega} &= 8.71(6) \, \mathrm{MeV} \\ M_{\phi} &= 1019.20(2) \, \mathrm{MeV} & \Gamma_{\phi} &= 4.23(4) \, \mathrm{MeV} \end{split}$$

...vs. PDG:

$$\begin{split} M_{\omega} &= 782.65(12) \, \mathrm{MeV} & \Gamma_{\omega} &= 8.49(8) \, \mathrm{MeV} \\ M_{\phi} &= 1019.461(16) \, \mathrm{MeV} & \Gamma_{\phi} &= 4.249(13) \, \mathrm{MeV} \end{split}$$

 $\longrightarrow M_{\omega}$ compatible with PDG [but tension with $\pi\pi$ (!) channel]

Fit results: 3π contribution to HVP

• central result for the 3π contribution to HVP:

 $a_{\mu}^{3\pi}|_{\leq 1.8\,{\rm GeV}} = 462(6)(6) \times 10^{-11} = 462(8) \times 10^{-11}$

Hoferichter, Hoid, BK 2019

• interpolation errors main discrepancy between different groups:

Davier et al. 2017, 2019	Keshavarzi et al. 2018
462.0(14.5)	477.0(8.9)

 \longrightarrow linear interpolation overestimates narrow resonances

• consistently above values as small as

 $a_{\mu}^{3\pi}|_{\leq 2.0\,{\rm GeV}} = 443(15)\times 10^{-11}$

Jegerlehner 2017

Hadronic light-by-light scattering

- hadronic light-by-light:
 - \triangleright subleading in $\alpha_{\rm QED}$
 - ▷ large relative uncertainty

Hadronic light-by-light scattering

→ increasing systematic control over HLbL Aoyama et al. 2020

Hadronic light-by-light scattering

- \rightarrow increasing systematic control over HLbL Aoyama et al. 2020
 - largest (and unambiguous!) individual contribution: π^0 pole term \longrightarrow depends on $\pi^0 \rightarrow \gamma^* \gamma^*$ form factor (doubly virtual in general!)

Hadronic light-by-light: the π^0 pole

dispersive approach to HLbL: Colangelo, Hoferichter, Procura, Stoffer 2013-

• largest individual HLbL contribution: π^0 pole term singly / doubly virtual form factors $F_{\pi^0\gamma^*\gamma^*}(q^2, 0)$ and $F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)$

Hadronic light-by-light: the π^0 pole

dispersive approach to HLbL: Colangelo, Hoferichter, Procura, Stoffer 2013-

largest individual HLbL contribution:

 π^0 pole term singly / doubly virtual form factors $F_{\pi^0\gamma^*\gamma^*}(q^2, 0)$ and $F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)$

• normalisation fixed by Wess–Zumino–Witten anomaly:

$$F_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_{\pi}}$$

 \longrightarrow measured at 0.75% (F_{π} : pion decay constant) PrimEx 2020

Hadronic light-by-light: the π^0 pole

dispersive approach to HLbL: Colangelo, Hoferichter, Procura, Stoffer 2013-

• largest individual HLbL contribution:

 π^0 pole term singly / doubly virtual form factors $F_{\pi^0\gamma^*\gamma^*}(q^2, 0)$ and $F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)$

• normalisation fixed by Wess–Zumino–Witten anomaly:

$$F_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_{\pi}}$$

 \longrightarrow measured at 0.75% (F_{π} : pion decay constant) PrimEx 2020

two-loop integral with constant form factors does not converge
 → no full prediction from e.g. chiral perturbation theory

 → sensible high-energy behaviour required!

Pion-pole contribution to a_{μ}

• 3-dimensional integral representation: Jegerlehner, Nyffeler 2009

- $w_{1/2}(Q_1, Q_2, \tau)$: kinematical weight functions, $\tau = \cos \theta$
- $F_{\pi^0\gamma^*\gamma^*}(-Q_1^2,-Q_2^2)$: space-like on-shell π^0 TFF

Pion-pole contribution to a_{μ}

• weight functions $w_{1/2}(Q_1, Q_2, \tau = 0)$:

- concentrated for $Q_i \leq 0.5 \,\mathrm{GeV}$
 - \longrightarrow pion-pole contribution dominantly from low-energy region
 - → pion transition form factor can be determined model-independently and with high precision using dispersion relations

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

Hoferichter et al. 2014

isovector photon: 2 pions

 $\propto \quad \mbox{pion vector form factor} \quad \times \quad \gamma^* \to 3\pi$ all determined in terms of pion-pion P-wave phase shift + Wess-Zumino-Witten anomaly for normalisation

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

▷ isovector photon: 2 pions

 \propto pion vector form factor × $\gamma^* \rightarrow 3\pi$ all determined in terms of pion—pion P-wave phase shift + Wess–Zumino–Witten anomaly for normalisation ▷ isoscalar photon: 3 pions
Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

isovector photon: 2 pions

 \propto pion vector form factor \times $\gamma^* \rightarrow 3\pi$

all determined in terms of pion-pion P-wave phase shift

+ Wess–Zumino–Witten anomaly for normalisation

▷ isoscalar photon: 3 pions

dominated by narrow resonances ω, ϕ

$\pi^0 o \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

$\pi^0 o \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

$\pi^0 o \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

Pion vector form factor vs. Omnès representation

Schneider et al. 2012

Comparison to $e^+e^-
ightarrow \pi^0\gamma$ data

Hoferichter, Hoid, BK, Leupold, Schneider 2018

- "prediction"—no further parameters adjusted
- data very well reproduced

Fit to $\pi^0\gamma$ instead: HVP contribution

- fit disp. representation to $e^+e^- \rightarrow \pi^0 \gamma$ instead of 3π data
 - \longrightarrow excellent consistency, average pole parameters:

	$e^+e^- o 3\pi, \pi^0\gamma$	PDG
$\bar{M}_{\omega} \; [{\sf MeV}]$	782.736(24)	782.65(12)
$\bar{\Gamma}_{\omega} \left[MeV \right]$	8.63(5)	8.49(8)
$\bar{M}_{\phi} \; [\text{MeV}]$	1019.457(20)	1019.461(16)
$\bar{\Gamma}_{\phi} \; [MeV]$	4.22(5)	4.249(13)

• $\pi^0 \gamma$ HVP contribution:

Hoid, Hoferichter, BK 2020

$$a_{\mu}^{\pi^{0}\gamma}|_{\leq 1.35 \,\mathrm{GeV}} = 43.8(6)(1) \times 10^{-11} = 43.8(6) \times 10^{-11}$$

• good agreement (except small interpolation errors):

Davier et al. 2019	Keshavarzi et al. 2019
44.1(1.0)	45.8(1.0)

Towards the doubly-virtual π^0 transition form factor

- so far: subtracted dispersion relation
 - ▷ high precision at low energies
 - $\triangleright~$ uses $\pi^0 \to \gamma\gamma$ as input for form factor normalisation

▷ asymptotically:
$$\lim_{Q^2 \to \infty} F_{\pi^0 \gamma^* \gamma^*} \left(-Q^2, 0 \right) = \text{const.}$$
$$\lim_{Q^2 \to \infty} F_{\pi^0 \gamma^* \gamma^*} \left(-Q^2, -Q^2 \right) = \text{const.}$$

- \longrightarrow unfit for $(g-2)_{\mu}$ implementation
- \longrightarrow switch to unsubtracted representation

Towards the doubly-virtual π^0 transition form factor

- so far: subtracted dispersion relation
 - ▷ high precision at low energies
 - $\triangleright~$ uses $\pi^0 \to \gamma\gamma$ as input for form factor normalisation

▷ asymptotically:
$$\lim_{Q^2 \to \infty} F_{\pi^0 \gamma^* \gamma^*} \left(-Q^2, 0 \right) = \text{const.}$$
$$\lim_{Q^2 \to \infty} F_{\pi^0 \gamma^* \gamma^*} \left(-Q^2, -Q^2 \right) = \text{const.}$$

- \longrightarrow unfit for $(g-2)_{\mu}$ implementation
- \longrightarrow switch to unsubtracted representation
- double-spectral-function representation:

 $f_1(s,$

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} dx \int_{s_{thr}}^{\infty} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho(x,y) = \frac{q_{\pi}^{3}(x)}{12\pi\sqrt{x}} \operatorname{Im} \left[F_{\pi}^{V*}(x)f_{1}(x,y) \right] + [x \leftrightarrow y]$$
$$q^{2}): \quad \gamma^{*}(q^{2})\pi \to \pi\pi \text{ P-wave}$$

 \rightarrow doubly-virtual form factor fixed from singly-virtual input!

Asymptotics and pQCD constraints (1)

• asymptotically, π^0 TFF can be expressed via pion wave function:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = -\frac{2F_{\pi}}{3} \int_{0}^{1} dx \frac{\phi_{\pi}(x)}{xq_{1}^{2} + (1-x)q_{2}^{2}} + \mathcal{O}(Q^{-4})$$

$$\phi_{\pi}(x) = 6x(1-x) + \dots$$

Brodsky, Lepage 1979–1981

• implies
$$F_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$$

 $F_{\pi^0\gamma^*\gamma^*}(-Q^2,0) = \frac{2F_{\pi}}{Q^2} + \mathcal{O}(Q^{-4})$

Asymptotics and pQCD constraints (1)

• asymptotically, π^0 TFF can be expressed via pion wave function:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = -\frac{2F_{\pi}}{3} \int_{0}^{1} dx \frac{\phi_{\pi}(x)}{xq_{1}^{2} + (1-x)q_{2}^{2}} + \mathcal{O}(Q^{-4})$$

$$\phi_{\pi}(x) = 6x(1-x) + \dots$$

Brodsky, Lepage 1979–1981

- implies $F_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$ $F_{\pi^0\gamma^*\gamma^*}(-Q^2,0) = \frac{2F_{\pi}}{Q^2} + \mathcal{O}(Q^{-4})$
- change of variables: rewrite this as dispersion relation

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{pQCD}}(q_{1}^{2}, q_{2}^{2}) = \frac{1}{\pi} \int_{0}^{\infty} dx \frac{\text{Im} F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{pQCD}}(x, q_{2}^{2})}{x - q_{1}^{2}}$$
$$\text{Im} F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{pQCD}}(x, y) = \frac{2\pi F_{\pi}}{3(x - y)} \phi_{\pi} \left(\frac{x}{x - y}\right) \qquad \text{Khodjamirian 1999}$$

Asymptotics and pQCD constraints (2)

• formally, write this as a double-spectral representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{pQCD}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{\infty} dx \int_{0}^{\infty} dy \frac{\rho^{pQCD}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{pQCD}(x,y) = -2\pi^{2}F_{\pi}xy \,\delta''(x-y)$$

Asymptotics and pQCD constraints (2)

• formally, write this as a double-spectral representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{pQCD}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{\infty} dx \int_{0}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{\text{pQCD}}(x,y) = -2\pi^{2}F_{\pi}xy \,\delta''(x-y)$$

• decomposition of the full form factor:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{s_{m}}^{s_{m}} dx \int_{s_{m}}^{s_{m}} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{0}^{s_{m}} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

Asymptotics and pQCD constraints (2)

• formally, write this as a double-spectral representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{pQCD}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{\infty} dx \int_{0}^{\infty} dy \frac{\rho^{pQCD}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{pQCD}(x,y) = -2\pi^{2}F_{\pi}xy \,\delta''(x-y)$$

• decomposition of the full form factor:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{s_{m}}^{s_{m}} dx \int_{s_{m}}^{s_{m}} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{0}^{s_{m}} dy \frac{\rho(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

- use dispersive $\rho(x, y)$ at low energies
- doubly-asymptotic: $ho^{pQCD}(x,y) \propto x y$

 \rightarrow does not contribute to singly-virtual TFF!

• mixed regions: nothing known, $\rho^{pQCD}(x, y)$ vanishes there \rightarrow all constraints can be fulfilled setting these to zero

Asymptotics and pQCD constraints (3)

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

• pQCD piece alone: $F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q^{2},-Q^{2}) = \frac{2F_{\pi}}{3Q^{2}} + \mathcal{O}(Q^{-4})$

• dispersive part:
$$\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x,y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$$

Asymptotics and pQCD constraints (3)

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

• pQCD piece alone: $F_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q^{2},-Q^{2}) = \frac{2F_{\pi}}{3Q^{2}} + \mathcal{O}(Q^{-4})$

- dispersive part: $\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\operatorname{disp}}(x,y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$
- all constraints okay if $\rho^{\text{disp}}(x, y)$ fulfils two sum rules:

$$\frac{1}{\pi^2} \int_0^{s_{\rm m}} dx \int_0^{s_{\rm m}} dy \frac{\rho^{\rm disp}(x,y)}{xy} = \frac{1}{4\pi^2 F_{\pi}} \qquad \text{[anomaly]}$$
$$\frac{1}{\pi^2} \int_0^{s_{\rm m}} dx \int_0^{s_{\rm m}} dy \frac{\rho^{\rm disp}(x,y)}{x} = 2F_{\pi} \qquad \text{[Brodsky-Lepage]}$$

Asymptotics and pQCD constraints (3)

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

• pQCD piece alone: $F_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$

• dispersive part:
$$\frac{1}{\pi^2} \int_0^{s_{\rm m}} dx \int_0^{s_{\rm m}} dy \frac{\rho^{\rm disp}(x,y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$$

• all constraints okay if $\rho^{\text{disp}}(x, y)$ fulfils two sum rules:

$$\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x, y)}{x y} = \frac{1}{4\pi^2 F_\pi} \quad \text{[anomaly]}$$
$$\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x, y)}{x} = 2F_\pi \quad \text{[Brodsky-Lepage]}$$

• add effective pole: $\rho^{\text{eff}} = \frac{g_{\text{eff}}}{4\pi^2 F_{\pi}} \pi^2 M_{\text{eff}}^4 \delta \left(x - M_{\text{eff}}^2 \right) \delta \left(y - M_{\text{eff}}^2 \right)$ find $g_{\text{eff}} \sim 10\%$ (small), $M_{\text{eff}} \sim 1.5 \dots 2.0 \,\text{GeV}$ (reasonable)

Normalisation

• uncertainty on $\pi^0 \to \gamma \gamma \pm 1.5\%$

PrimEx 2020

 \longrightarrow implemented via effective pole coupling $g_{
m eff}$

Normalisation

• uncertainty on $\pi^0 \to \gamma \gamma \pm 1.5\%$

PrimEx 2020

 \longrightarrow implemented via effective pole coupling $g_{
m eff}$

Dispersive input

- different $\pi\pi$ phase shift inputs:
 - ▷ Bern vs. Madrid Colangelo et al. 2011, García-Martín et al. 2011
 - ▷ effective form factor phase (incl. ρ' , ρ'') Schneider et al. 2012
- cutoff in Khuri–Treiman integrals $1.8 \dots 2.5 \, \mathrm{GeV}$

Normalisation

• uncertainty on $\pi^0 \to \gamma \gamma \pm 1.5\%$

PrimEx 2020

 \longrightarrow implemented via effective pole coupling $g_{
m eff}$

Dispersive input

- different $\pi\pi$ phase shift inputs:
 - ▷ Bern vs. Madrid Colangelo et al. 2011, García-Martín et al. 2011
 - ▷ effective form factor phase (incl. ρ' , ρ'') Schneider et al. 2012
- cutoff in Khuri–Treiman integrals $1.8...2.5 \,\mathrm{GeV}$

Brodsky–Lepage limit uncertainty

- allow for $\frac{+20\%}{-10\%}$, 3σ band around data BaBar 2009, Belle 2012
 - \longrightarrow variation in effective pole mass $M_{
 m eff}$

Normalisation

• uncertainty on $\pi^0 \to \gamma \gamma \pm 1.5\%$

PrimEx 2020

 \longrightarrow implemented via effective pole coupling $g_{
m eff}$

Dispersive input

- different $\pi\pi$ phase shift inputs:
 - ▷ Bern vs. Madrid Colangelo et al. 2011, García-Martín et al. 2011
 - ▷ effective form factor phase (incl. ρ' , ρ'') Schneider et al. 2012
- cutoff in Khuri–Treiman integrals $1.8 \dots 2.5 \, \text{GeV}$

Brodsky–Lepage limit uncertainty

- allow for $\frac{+20\%}{-10\%}$, 3σ band around data BaBar 2009, Belle 2012
 - \longrightarrow variation in effective pole mass $M_{
 m eff}$

Onset of pQCD asymptotics

• vary $s_m = 1.7(3) \text{GeV}^2$

Results: singly-virtual

Hoferichter, Hoid, BK, Leupold, Schneider 2018

Results: singly-virtual

Hoferichter, Hoid, BK, Leupold, Schneider 2018

Results: doubly-virtual (diagonal)

in comparison to Gérardin, Meyer, Nyffeler 2016

Results: doubly-virtual (diagonal)

0.08 $-Q^2)$ [GeV] 0.06 $Q^2 F_{\pi^0 \gamma^* \gamma^*} ($ this work LMD+V lattice 0 510 15202530 3540 0 $Q^2 \left[\text{GeV}^2 \right]$

in comparison to Gérardin, Meyer, Nyffeler 2016

Hoferichter, Hoid, BK, Leupold, Schneider 2018

Comparison dispersive vs. LMD+V-lattice

Hoferichter, Hoid, BK, Leupold, Schneider 2018 Gérardin, Meyer, Nyffeler 2016

Results: $(g-2)_{\mu}$ from π^0 pole

Final result for the π^0 pole contribution $[10^{-11}]$

$\boldsymbol{63.0\pm0.9}$	chiral anomaly / $\pi^0 o \gamma\gamma$
\pm 1.1	dispersive input
+ 2.2 - 1.4	Brodsky–Lepage
\pm 0.6	onset of pQCD contribution s_m
$= 63.0 \stackrel{+ 2.7}{_{- 2.1}}$	

- first model-independent, data-driven determination with all physical low- and high-energy constraints implemented
- dominant uncertainties are all accessible in real-photon or singly-virtual experiments

Towards $\eta,\,\eta'$: transition form factor $\eta o \gamma^*\gamma$

Hanhart et al. 2013, BK, Plenter 2015

$$F_{\eta\gamma^*\gamma}(q^2,0) = F_{\eta\gamma\gamma} + \frac{q^2}{12\pi^2} \int_{4M_\pi^2}^{\infty} ds \, \frac{q_\pi^3(s) [F_\pi^V(s)]^* f_1^{\eta \to \pi\pi\gamma}(s)}{s^{3/2}(s-q^2)} \\ + \Delta F_{\eta\gamma^*\gamma}^{I=0}(q^2,0) \, [\longrightarrow \mathsf{VMD}]$$

Towards $\eta, \, \eta'$: transition form factor $\eta o \gamma^* \gamma$

Hanhart et al. 2013, BK, Plenter 2015

Prediction for η' transition form factor

- isovector: combine high-precision data on $\eta' \rightarrow \pi^+ \pi^- \gamma$ and $e^+ e^- \rightarrow \pi^+ \pi^-$
- isoscalar: VMD, couplings fixed from

$$\eta^\prime
ightarrow \omega \gamma$$
 and $\phi
ightarrow \eta^\prime \gamma$

 π

How to go *doubly* virtual? — $e^+e^- ightarrow \eta\pi^+\pi^-$

• idea (again): beat α^2_{QED} suppression of $e^+e^- \rightarrow \eta e^+e^-$ by measuring $e^+e^- \rightarrow \eta \pi^+\pi^-$ instead

How to go *doubly* virtual? — $e^+e^- ightarrow \eta\pi^+\pi^-$

• idea (again): beat α^2_{QED} suppression of $e^+e^- \rightarrow \eta e^+e^-$ by measuring $e^+e^- \rightarrow \eta \pi^+\pi^-$ instead

• test factorisation hypothesis in $e^+e^- \rightarrow \eta \pi^+\pi^-$:

$$f_1^{\eta\pi\pi\gamma^*}(s,k^2) \stackrel{!?}{=} f_1^{\eta\pi\pi\gamma}(s) \times F^{\eta\gamma\gamma^*}(k^2)$$

- \triangleright allow same form for $f_1^{\eta\pi\pi\gamma}(s)$ as in $\eta \to \pi^+\pi^-\gamma$
- \triangleright fit subtractions to $\pi^+\pi^-$ distribution in $e^+e^- \rightarrow \eta\pi^+\pi^-$
 - \rightarrow are they compatible to the ones in $\eta \rightarrow \pi^+ \pi^- \gamma$?
- ▷ parametrise $F^{\eta\gamma\gamma^*}(k^2)$ by sum of Breit–Wigners (ρ , ρ')

Xiao et al. (preliminary)

How to go *doubly* virtual? — $e^+e^- ightarrow \eta\pi^+\pi^-$

Xiao et al. (preliminary); data: BaBar 2007

- $d\sigma/d\sqrt{s}$ integrated over 1 GeV $\leq \sqrt{k^2} \leq$ 4.5 GeV
- factorisation seems to work only if curvature ($\simeq a_2$) retained
- more differential/binned data highly desirable!

How to go *doubly* virtual? — $\eta' ightarrow \pi^+ \pi^- \pi^+ \pi^-$

• prediction of $\eta' \rightarrow 4\pi$ branching ratios based on ChPT + VMD:

 $\longrightarrow \quad \mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (10 \pm 3) \times 10^{-5} \quad \text{Guo, BK, Wirzba 2012}$ exp: $\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (8.5 \pm 0.7 \pm 0.6) \times 10^{-5} \quad \text{BESIII 2014}$

How to go *doubly* virtual? — $\eta' ightarrow \pi^+ \pi^- \pi^+ \pi^-$

• prediction of $\eta' \rightarrow 4\pi$ branching ratios based on ChPT + VMD:

- $\longrightarrow \quad \mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (10 \pm 3) \times 10^{-5} \quad \text{Guo, BK, Wirzba 2012}$ exp: $\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (8.5 \pm 0.7 \pm 0.6) \times 10^{-5} \quad \text{BESIII 2014}$
- start analysis of *doubly* virtual η' transition form factor from here?

• aim: build double-spectral function for $\eta^{(\prime)}$ transition form factor

Summary / Outlook

Dispersive analyses of π^0 , $\eta^{(\prime)}$ transition form factors:

• high-precision data on

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ var. / $\eta \rightarrow \pi^+\pi^-\gamma$ KLOE / $\eta' \rightarrow \pi^+\pi^-\gamma$ BESIII allow for high-precision dispersive predictions of π^0 , $\eta^{(\prime)} \rightarrow \gamma^*\gamma$ Merge with high-energy constraints on π^0 :

- double-spectral representation, dispersive (low) + pQCD (high)
- addition of one effective pole allows to fulfil constraints:

anomalyBrodsky–Lepage limitpQCD limit• π^0 pole $(g-2)^{\pi^0}_{\mu} = 63.0^{+2.7}_{-2.1} \times 10^{-11}$ PrimEx-IIuncertainties: $\pi^0 \rightarrow \gamma\gamma$ PrimEx-IIdispersive uncertaintiesBES IIIBL limit (BaBar vs. Belle)Belle II

In progress:

• $\pi^0 \rightarrow e^+e^-$ & similar program for η / η' B.-L. Hoid, S. Holz et al.

Charged pion form factor

 $\frac{1}{2i}\operatorname{disc} F_{\pi}^{V}(s) = \operatorname{Im} F_{\pi}^{V}(s) = F_{\pi}^{V}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)}$

 \longrightarrow final-state theorem: phase of $F_{\pi}^{V}(s)$ is just $\delta_{1}^{1}(s)$ Watson 1954

Charged pion form factor

 $\frac{1}{2i}\operatorname{disc} F_{\pi}^{V}(s) = \operatorname{Im} F_{\pi}^{V}(s) = F_{\pi}^{V}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)}$

 \longrightarrow final-state theorem: phase of $F_{\pi}^{V}(s)$ is just $\delta_{1}^{1}(s)$ Watson 1954

• solution:

$$F_{\pi}^{V}(s) = P(s)\Omega(s) , \quad \Omega(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{1}(s')}{s'(s'-s)}\right\}$$

P(s) polynomial, $\Omega(s)$ Omnès function

Omnès 1958

 $\triangleright \pi\pi$ phase shifts from Roy equations

Ananthanarayan et al. 2001, García-Martín et al. 2011

 \triangleright P(0) = 1 from symmetries (gauge invariance)

• below 1 GeV: $F_{\pi}^{V}(s) \approx (1 + 0.1 \,\text{GeV}^{-2}s)\Omega(s)$ slope due to inelastic resonances $\rho', \rho''...$

Hanhart 2012

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

- η^(') → π⁺π⁻γ driven by the chiral anomaly, π⁺π⁻ in P-wave → final-state interactions the same as for vector form factor
 ansatz: 𝓕^{η^(')}_{ππγ} = A × P(s) × Ω(s), P(s) = 1 + α^(')s, s = M²_{ππ}
- divide data by pion form factor $\longrightarrow P(s)$ Stollenwerk et al. 2012

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

How to go *doubly* virtual? — $\eta' ightarrow \pi^+\pi^-\pi^+\pi^-$

• work in progress: implement a_2 left-hand cut for $\eta' \rightarrow \pi^+\pi^-\pi^+\pi^-$, too!

- pairwise rescattering only (no Khuri–Treiman for four-body!)
- a_2 -exchange provides natural factorisation-breaking
- aim: build double-spectral function for $\eta^{(\prime)}$ transition form factor based on $\eta^{(\prime)} \to \pi^+ \pi^- \pi^+ \pi^-$ amplitude
- next step: consistency with $\eta' \rightarrow \pi^+ \pi^- \gamma$ data

Summary: processes and unitarity relations for $\pi^0 o \gamma^* \gamma^*$

