Unlocking QCD dynamics using jet substructure

Kyle Lee
LBNL

Jefferson Lab Theory Seminar,
11/09/2020
Jet substructures and characteristic scales

Single prong observables
- Jet angularities
- Energy-energy correlations
- Jet shape

Multi-prong observables
- N-subjettiness
- D_2

IRC unsafe /NP sensitive
- Hadron in jet
- Multiplicities
- Jet charge

Groomed observables
- All of the above
- Observables characterizing grooming (SD): $z_g, \ \theta_g = R_g/R$

Hard
- p_T

Jet algorithm
- $p_T R$

Energy profile
- $p_T r$

Jet mass
- m^2_J/p_T

Grooming
- $z_{cut} p_TR$

Temperature
- T

Hadronization
- Λ
Jet substructures and characteristic scales

Constrain BSM models

Precision probe of QCD

Probe of quark gluon plasma

Introduction

Soft Drop Groomed Jets

Fragmenting Jet Function

Constrain BSM models

Precision probe of QCD

Probe of quark gluon plasma
Lund diagram to map different splitting

- Lund diagram is useful to visualize collinear and soft splittings.
- Map splitting history into Lund Plane.

Fig. from 5th Heavy Ion Jet Workshop Report, 2018
Lund diagram to map different splitting

- Devise jet substructure observables to probe different kinematical regions to discriminate different jet quenching models and tune Monte Carlo (with / without medium).
Soft Drop Groomed Jet Observables

- Different grooming parameters removes different region of phase space
- Reduces NP effects by removing soft radiations.

Soft Drop Condition
\[z > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R} \right)^\beta \]

- Soft drop grooming algorithms:
 1. Reorder emissions in the identified jet according to their relative angle using C/A jet algorithm.
 2. Recursively remove soft branches until soft drop condition is met.
Soft Drop Groomed Jet Observables

- Different grooming parameters removes different region of phase space
- Reduces NP effects by removing soft radiations.

I. Usual jet observables
- Jet mass
Soft Drop Groomed Jet Observables

• Different grooming parameters removes different region of phase space

• Reduces NP effects by removing soft radiations.

I. Usual jet observables

- Jet mass \((a = 0) \)

- Jet angularity \(\tau_a \)

\[
\tau_a = \frac{1}{p_T} \sum_{i \in J} p_{T,i} (\Delta R_{i,J})^{2-a}
\]

- \(\ldots \)
Soft Drop Groomed Jet Observables

- Different grooming parameters removes different region of phase space
- Reduces NP effects by removing soft radiations.

I. Usual jet observables

- Jet mass \((a = 0)\)
- Jet angularity \(\tau_a\)
 \[
 \tau_a = \frac{1}{p_T} \sum_{i \in J} p_{T,i} (\Delta R_{i,J})^{2-a}
 \]
- …

II. Observables unique to soft drop

- At the time soft drop condition is met
 \[
 z > z_{cut} \left(\frac{\Delta R_{12}}{R} \right)^{\beta}
 \]
 \[\tau_g = z \quad R_g = \Delta R_{12}\]
Soft Drop Groomed Jet Observables

- Different grooming parameters removes different region of phase space
- Reduces NP effects by removing soft radiations.

I. Usual jet observables
- Jet mass \(a = 0 \)
- Jet angularity \(\tau_a \)
 \[
 \tau_a = \frac{1}{p_T} \sum_{i \in J} p_{T,i} (\Delta R_{i,J})^{2-a}
 \]
- …

II. Observables unique to soft drop
- At the time soft drop condition is met
 \[
 z > z_{cut} \left(\frac{\Delta R_{12}}{R} \right)^{\beta}
 \]
 \[
 z_g = z \quad R_g = \Delta R_{12}
 \]

III. Soft-sensitive observables unique to groomed jets
- Energy drop \(\Delta_E = \frac{p_T - p_{T}^{gr}}{p_T} \)
- Angle between standard and groomed jet axes
- …
Soft Drop Groomed Jet Observables

- Different grooming parameters removes different region of phase space
- Reduces NP effects by removing soft radiations.

I. Usual jet observables

- Jet mass \((a = 0)\)
- Jet angularity \(\tau_a\)
- \(\tau_a = \frac{1}{p_T} \sum_{i \in J} p_{T,i} (\Delta R_{i,J})^{2-a}\)
- …

II. Observables unique to soft drop

- At the time soft drop condition is met

\[z > z_{cut} \left(\frac{\Delta R_{12}}{R} \right)^\beta \]

- Energy drop \(\Delta E = \frac{p_T - p_T^{gr}}{p_T}\)
- Angle between standard and groomed jet axes
- …

III. Soft-sensitive observables unique to groomed jets

- Energy drop \(\Delta E = \frac{p_T - p_T^{gr}}{p_T}\)
- Angle between standard and groomed jet axes
- …
QCD factorization for inclusive jet

\[pp \rightarrow J + X \]

- Jet dynamics isolated to jet function \(J_c \)
- Similar factorization holds for AA collision? \(J_c \rightarrow J_c^{\text{med}} \)

Factorization for pp

\[
\frac{d\sigma^{pp\rightarrow hX}}{dp_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^{c} \otimes D_{c}^{b} \\
\Lambda_{\text{QCD}} p_{T} \Lambda_{\text{QCD}}
\]

Inclusive Jet

\[
\frac{d\sigma^{pp\rightarrow JX}}{dp_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^{c} \otimes J_{c} \\
\Lambda_{\text{QCD}} p_{T} p_{T} R
\]

RG evolution

\[
\mu \frac{d}{d\mu} J_i = \sum_{j} P_{ji} \otimes J_j
\]

Dasgupta, Dreyer, Salam, Soyez `15
Kaufmann, Mukherjee, Vogelsang `15
Kang, Ringer, Vitev `16
Dai, Kim, Leibovich `16
Jet substructure factorization

Inclusive jet production \(pp \rightarrow \text{jet} + X \)

\[
\frac{d\sigma^{pp\rightarrow\text{jet}X}}{dp_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes J_c \Lambda_{QCD} p_T p_T R
\]

Jet substructure \(\rho \)

\[
\frac{d\sigma^{pp\rightarrow\text{jet}(\rho)X}}{dp_T d\eta d\rho} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes G_c(\rho) \Lambda_{QCD} p_T p_T R
\]

and other scale(s) depending on \(\rho \)

\(\mathcal{G}(\rho) \)
Jet angularity τ_a

\[
\frac{d\sigma_{pp\to jet(\tau_a)}X}{dp_T d\eta d\tau_a} = \sum_{a,b,c} f_a \otimes f_b \otimes H^c_{ab} \otimes G_c(\tau_a)
\]

and τ_a dependent scales

$\tau_a = \frac{1}{p_T} \sum_{i\in J} p_{T,i}(\Delta R_{i,j})^{2-a}$

- A generalized class of IR safe observables for $-\infty < a < 2$
- Parameter a gives varying sensitivity to collinear radiations.

$\tau_{pp}^{0} = \frac{m_J^2}{p_T^2} + O((\tau_{pp}^{0})^2)$

ATLAS Preliminary
Pb+Pb 0-10%
126 < p_T < 158 GeV

$g(\text{broadening}) = \frac{1}{p_T} \sum_{i\in J} p_{T,i}(\Delta R_{i,j})$

- Analysis for different a currently in progress. ALICE Preliminary
Factorization for the jet angularity

- The ungroomed case ($\tau_a \ll R^{2-a}$)

\[
\tau_a \sim z \theta^{2-a}
\]

- The groomed case ($\tau_{a, gr} / R^{2-a} \ll z_{\text{cut}} \ll 1$)

\[
z > z_{\text{cut}} (\theta / R)^\beta
\]

Hard-collinear

\[
\theta_H \sim R \quad z_H \sim 1
\]

Collinear

\[
z_c \sim 1 \quad \theta_c \sim \tau_a \frac{1}{2-a}
\]

(Collinear-)soft

\[
\theta_s \sim R \quad z_{cs} \sim \frac{\tau_a}{R^{2-a}}
\]

\[\notin \text{ gr soft} \]

\[
\theta_{\notin \text{gr}} \sim R \quad z_{\notin \text{gr}} \sim z_{\text{cut}} \left(\frac{\theta}{R}\right)^\beta = z_{\text{cut}}
\]

\[\in \text{ gr soft (collinear-soft)}\]

\[
z_{\text{gr}} \sim z_{\text{cut}} \left(\frac{\theta}{R}\right)^\beta = z_{\text{cut}} \left(\frac{\frac{\tau_a}{R^{2-a}}}{2-a+\beta}\right) = z_{\text{cut}} \left(\frac{\tau a R^\beta}{z_{\text{cut}}}
ight)^{\frac{1}{2-a+\beta}}
\]

\[
\theta_{\text{gr}} \sim \left(\frac{\tau a R^\beta}{z_{\text{cut}}}
ight)^{\frac{1}{2-a+\beta}}
\]
Factorization for the jet angularity

\[J_c \rightarrow G_c \]

- The ungroomed case (\(\tau_a \ll R^{2-a} \))
 \[G_i(z, p_T R, \tau_a, \mu) = \sum_j H_{i \rightarrow j}(z, p_T R, \mu)C_j(\tau_a, p_T, \mu) \otimes S_j(\tau_a, p_T, R, \mu) \]

- Jointly resums large logs \(\alpha_s^n \ln^n R \) and \(\alpha_s^n \ln^{2n} \tau_a^{2-a} / R \)

- The groomed case (\(\tau_{a,gr}/R^{2-a} \ll z_{cut} \ll 1 \))
 \[G_i(z, p_T R, \tau_a, z_{cut}, \beta, \mu) = \sum_j H_{i \rightarrow j}(z, p_T R, \mu)S_{j}^{gr}(p_T, R, z_{cut}, \beta, \mu)C_j(\tau_a, p_T, \mu) \otimes S_j^{gr}(\tau_a, p_T, R, z_{cut}, \beta, \mu) \]

- Jointly resums large logs \(\alpha_s^n \ln^n R \), \(\alpha_s^n \ln^{2n} \tau_a^{2-a} / R \), and \(\alpha_s^n \ln^{2n} z_{cut} \).
Factorization for the groomed jet angularity

- Ungroomed jet mass has large NP shifts

\[
\frac{d\sigma}{dp_T d\eta d\tau_a} = \int dk F_a(k) \frac{d\sigma_{\text{pert}}}{dp_T d\eta d\tau_a} \left(\tau_a - \frac{R^{1-a}}{p_T} k \right)
\]

Perturbative result \(\otimes \) NP shape function

\[F_a(k) = \left(\frac{4k}{Q_a^2} \right) \exp \left(-\frac{2k}{Q_a} \right) \]

\[\Omega_a = \int dk k F_a(k) \]

\[\Omega_a = \Omega_a^{\text{had}} + \Omega_a^{\text{MPI}} \]

\(\Omega_a^{\text{had}} = \langle 0 | \mathcal{O} | 0 \rangle \sim 1 \text{ GeV} \) is universal. non-universal

- Groomed jet mass is more robust to NP effects

- Nonperturbative corrections to groomed jet mass

\[\text{Hoang, Mantry, Pathak, Stewart `19} \]

\[\text{Lee, Sterman `07} \]

\[\text{Stewart, Tackmann, Waalewijn `15} \]

\[\text{Kang, KL, Liu, Ringer `18} \]

\[\text{Kang, KL Liu, Ringer `18} \]
\(\alpha_s \) extraction

- World Average with 0.9\% total uncertainty
 \[\alpha_s(m_Z) = 0.1181 \pm 0.0011 \]

- Most precise input: lattice determination

- Next precise input: \(e^+e^- \) event shape determination: thrust and C-parameter.
 - \(3 - 4\sigma \) tension with lattice.

- High-quality of data pouring out of the LHC.
 - Can we carry out an \(\alpha_s \) extraction using \(pp \) data?
\(\alpha_s \) extraction

- **Key challenge:** (for \(e^+e^- \) event shape extraction or ungroomed jet substructure at \(pp \))

Degeneracy between the extractions of \(\alpha_s \) and fitting \(\Omega^{\text{had}} \)

Also, contaminations from MPI

Fig. from Abbatte, Fickinger, Hoang, Mateu, Stewart `10
\(\alpha_s \) extraction

- **Key challenge:** (for \(e^+e^- \) event shape extraction or ungroomed jet substructure at \(pp \))
 degeneracy between the extractions of \(\alpha_s \) and fitting \(\Omega^{\text{had}} \)

Also, contaminations from MPI

- **Desire:**
 - reduced sensitivity to non-perturbative effects (hadronizations and MPI)
 - additional handle(s) to lift degeneracy between extractions of \(\alpha_s \) and fitting \(\Omega^{\text{had}} \)

Groomed jet angularities!

- **Proof-of-principle Monte Carlo study shows groomed angularity to be an ideal observable.**
 - Currently feasible to determine with 10% uncertainty.

Fig. from
Abbate, Fickinger, Hoang, Mateu, Stewart `10

Les Houches `17
Introduction

Soft Drop Groomed Jets

Fragmenting Jet Function

Groomed jet radius

• Dynamically determines the size of the hard-collinear splitting

$R_g = R_{12}$

- What is the transverse resolution length of the medium?

• Also gives the “active area” of the groomed jet

$\text{Active area } \sim \pi R_g^2$

- Can serve as a proxy for the sensitivity to pileup.
- Complicated by clustering effects

• Factorization formalism necessary for studying many groomed jet observables

- To regulate divergence of the Sudakov safe observables
- Sometimes the observables are invariably coupled to R_g measurements.

ex: ΔE, energy drop
Groomed jet radius

- Factorization derived to NLL
 Kang, KL, Liu, Neill, Ringer `19

- Data comparison
 ATLAS `19

• Small MPI effects

Kang, KL, Liu, Neill, Ringer `19
Larkoski, Marzani, Soyez, Thaler `14

\[\log \frac{1}{z} \quad \beta > 0 \]

\[\log \frac{1}{z_{cut}} \]

\[\theta = R_g \]

\[\log \frac{R_0}{\theta} \]

\[\sqrt{s} = 13 \text{ TeV}, \ \text{anti-}k_T, \ R = 0.8 \]
\[p_T > 600 \text{ GeV}, \ |\eta| < 1.5 \]
soft drop, \[z_{cut} = 0.1 \]

\[+\text{MPI+had} \]
\[+\text{MPI} \]
\[+\text{Partonic} \]
Energy drop

- Energy drop measurements in soft drop groomed jet is coupled with R_g measurements.
 - Factorizations for trimmed jets, iterated soft drop groomed jets \(Cal, KL, Ringer, Waalewijn \ `20 \)
- All energy drop dependent “modes” are only sensitive to soft modes only.
 - Does the medium modify the soft and collinear radiations differently?

\[
\Delta E = \frac{p_T - p_T^{gr}}{p_T}
\]
Energy drop

- Factorization framework differential in both ΔE, R_g:
 \[\frac{d\sigma}{dp_T d\eta d\Delta E dR_g} \]

- Integrate over regions of R_g: $\theta_g^{\text{cut}} < \theta_g < 1$ ($\theta_g = \frac{R_g}{R}$)

 - Experimental tracking efficiency may require θ_g^{cut}

 - Different θ_g^{cut} gives varying sensitivity to non-perturbative effects

 - May be useful for MC tuning

Experimental tracking efficiency may require θ_g^{cut}

Different θ_g^{cut} gives varying sensitivity to non-perturbative effects

- May be useful for MC tuning
Energy drop

- Factorization framework differential in both Δ_E, R_g:
 \[
 \frac{d\sigma}{dp_T d\eta d\Delta_E dR_g}
 \]

- Integrate over regions of R_g: $\theta_g^{\text{cut}} < \theta_g < 1 \ (\theta_g = \frac{R_g}{R})$
 - Experimental tracking efficiency may require θ_g^{cut}
 - Different θ_g^{cut} gives varying sensitivity to non-perturbative effects
 - May be useful for MC tuning

- Good agreement within perturbative region

\[\sqrt{s} = 13 \text{ TeV}, p_T = 140-160 \text{ GeV}, R = 0.8, |\eta| < 2\]
Soft Drop: $z_{\text{cut}} = 0.5, \beta = 1.5, \theta_g^{\text{cut}} = 0.25$

Cal, KL, Ringer, Waalewijn '20

CMS '17
Fragmenting Jet Function (FJJF)

\[pp \rightarrow h + X \]

Factorization: separation of dynamics

\[
\frac{d\sigma_{pp\rightarrow hX}}{dp_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes D_h^c
\]

\[\Lambda_{QCD} \quad p_T \quad \Lambda_{QCD} \]

- Fragmentation Functions

\[D_c^h \]

Parton polarization

<table>
<thead>
<tr>
<th>Hadron polarization</th>
<th>U</th>
<th>L/circ</th>
<th>T/lin</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(D^{h/c})</td>
<td>(H^{\perp h/c})</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>(G^{h/c})</td>
<td>(H_L^{\perp h/c})</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(D_T^{\perp h/c})</td>
<td>(G_T^{h/c})</td>
<td>(H^{h/c})</td>
</tr>
</tbody>
</table>
Fragmenting Jet Function (FJF)

\[pp \rightarrow h + X \]

Factorization: separation of dynamics

\[
\frac{d\sigma_{pp\rightarrow hX}}{d^3p_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes D_c^h
\]

\[\Lambda_{\text{QCD}} \quad p_T \quad \Lambda_{\text{QCD}} \]

• Fragmentation Functions

• Can jet substructure measurements help us to constrain fragmentation functions?
Fragmenting Jet Function (FJJ)

Unpolarized case:

\[
\frac{d\sigma^{pp\rightarrow \text{jet}(h)}_X}{dp_T d\eta d z_h} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H_{ab}^{c} \otimes g_{c}^{h}(z_h) \otimes p_T R \Lambda_{QCD}
\]

where

\[
z = \frac{p_T^J}{p_T^c}
\]

\[
z_h = \frac{p_T^h}{p_T^J}
\]

Procura, Stewart `10
Arleo, Fontannaz, Guillet, Nguyen `14
Kaufmann, Mukherjee, Vogelsang `15
Kang, Ringer, Vitev `16
Dai, Kim, Leibovich `16
Fragmenting Jet Function (FJJ)

Unpolarized case:

\[
\frac{d\sigma^{pp\rightarrow jet(h)}X}{dp_Td\eta dz_h} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H_{ab}^c \otimes g_c^h(z_h) \otimes \frac{p_T R}{\Lambda_{QCD}}
\]

where \[z = \frac{p_T}{p_T}
\]

\[
z_h = \frac{p^{h}_T}{p^{J}_T}
\]

where \[z = \frac{p^{h}_T}{p^{c}_T}
\]

Procura, Stewart `10
Arleo, Fontannaz, Guillet, Nguyen `14
Kaufmann, Mukherjee, Vogelsang `15
Kang, Ringer, Vitev `16
Dai, Kim, Leibovich `16
Fragmenting Jet Function (FJF)

Unpolarized case:

\[
\frac{d\sigma^{pp\rightarrow\text{jet}(h)}X}{dp_T d\eta d\zeta_h} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H_{ab}^c \otimes g_{c}^h(\zeta_h) \otimes \frac{p_T}{\Lambda_{\text{QCD}}} \\
\text{where } \zeta = \frac{p_T^J}{p_T^C} \\
\zeta_h = \frac{p_T^h}{p_T^J}
\]

IR sensitivity and require matching:

\[
g_{c}^h(\zeta, \zeta_h, p_T R, \mu) = \sum_j j_{ij}(\zeta, \zeta_h, p_T R, \mu) \otimes D_{ij}^h(\zeta_h, \mu)
\]

• Collinear FJFs can be related to collinear FFs

Procura, Stewart ¹⁰
Arleo, Fontannaz, Guillet, Nguyen ¹⁴
Kaufmann, Mukherjee, Vogelsang ¹⁵
Kang, Ringer, Vitev ¹⁶
Dai, Kim, Leibovich ¹⁶
Polarized Fragmenting Jet Function (FJF)

Polarized case:

$$\frac{d\sigma_{\bar{p}p \rightarrow \text{jet}(\bar{h}) X}}{dp_T\,dn\,dz_h} = \sum_{a,b,c} \Lambda_A \, g_{a/A} \otimes f_{b/B} \otimes \Delta_{LL} H_{\bar{a}\bar{b}}^{\bar{c}} \otimes \Delta_{L} G_{c}^{h}(z_h) \, \Lambda_h$$

$$\frac{d\sigma_{\bar{p}p \rightarrow \text{jet}(\bar{h}) X}}{dp_T\,dn\,dz_h} = \sum_{a,b,c} S_{A\perp}^i \, h_{a/A} \otimes f_{b/B} \otimes \Delta_{TT} (H_{ij})_{\bar{a}\bar{b}}^{\bar{c}} \otimes \Delta_{T} G_{c}^{h}(z_h) \, S_{h\perp}^j$$

where

$$z = \frac{p_T^J}{p_T^c}$$

$$z_h = \frac{p_h^J}{p_T^J}$$

$$d\sigma_{LL} = \frac{d\sigma(\Lambda_A, \Lambda_h) - d\sigma(\Lambda_A, -\Lambda_h)}{2}$$

$$d\sigma_{TT} = \frac{d\sigma(\bar{S}_{A\perp}, \bar{S}_{h\perp}) - d\sigma(\bar{S}_{A\perp}, -\bar{S}_{h\perp})}{2}$$

Similar definitions for

$$\Delta_{LL} H_{\bar{a}\bar{b}}^{\bar{c}}$$ and $$\Delta_{TT} (H_{ij})$$

Kang, KL, Zhao, `20
Polarized Fragmenting Jet Function (FJF)

Polarized case:

\[
\frac{d\sigma_{\bar{p}p\to\text{jet}(\vec{h})X}}{dp_T d\eta d\varepsilon} = \sum_{a,b,c} \Lambda_A g_{a/A} \otimes f_{b/B} \otimes \Delta_{LL} H^c_{ab} \otimes \Delta_L G^h_c(z_h) \Lambda_h
\]

\[
\frac{d\sigma_{\bar{p}p\to\text{jet}(\vec{h})X}}{dp_T d\eta d\varepsilon} = \sum_{a,b,c} S_{A\perp}^i h_{a/A} \otimes f_{b/B} \otimes \Delta_{TT}(H_{ij})^\varepsilon_{ab} \otimes \Delta_T G^h_c(z_h) S_{h\perp}^j
\]

where \(z = \frac{p_T^J}{p_T^C} \)

\(z_h = \frac{p_T^h}{p_T^J} \)

Quark polarization

<table>
<thead>
<tr>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(D^{h/q})</td>
<td></td>
</tr>
</tbody>
</table>

Hadron polarization

<table>
<thead>
<tr>
<th>U</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>(G^{h/q})</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>(h^{h/q})</td>
</tr>
</tbody>
</table>
Polarized Fragmenting Jet Function (FJF)

Polarized case:

\[
\frac{d\sigma_{\overline{p}p \to \text{jet}(\vec{h})X}}{dp_T d\eta d\vec{z}_h} = \sum_{a,b,c} \Lambda_A g_{a/A} \otimes f_{b/B} \otimes \Delta_{LL} H_{ab}^\vec{c} \otimes \Delta_L G_c^h(z_h) \Lambda_h
\]

\[
\frac{d\sigma_{\overline{p}p \to \text{jet}(\vec{h})X}}{dp_T d\eta d\vec{z}_h} = \sum_{a,b,c} S_{A\perp}^i h_{a/A} \otimes f_{b/B} \otimes \Delta_{TT}(H_{ij})_{\vec{c}ab} \otimes \Delta_T G_c^h(z_h) S_h^i
\]

where

\[
z = \frac{p_T^J}{p_T^C}
\]

\[
z_h = \frac{p_T^h}{p_T^J}
\]

IR sensitivity and require matching:

\[
G_c^h(z, z_h, p_TR, \mu) = \sum_j J_{ij}(z, z_h, p_TR, \mu) \otimes D_j^h(z_h, \mu)
\]

\[
\Delta_L G_c^h(z, z_h, p_TR, \mu) = \sum_j \Delta_L J_{ij}(z, z_h, p_TR, \mu) \otimes G_j^h(z_h, \mu)
\]

\[
\Delta_T G_c^h(z, z_h, p_TR, \mu) = \sum_j \Delta_T J_{ij}(z, z_h, p_TR, \mu) \otimes H_j^h(z_h, \mu)
\]

Quark polarization

<table>
<thead>
<tr>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^{h/q})</td>
<td>(G^{h/q})</td>
<td>(H^{h/q})</td>
</tr>
</tbody>
</table>

Hadron polarization

Kang, KL, Zhao, `20
Study of FJJ

<table>
<thead>
<tr>
<th></th>
<th>$e^+e^- \rightarrow hX$</th>
<th>$pp \rightarrow hX$</th>
<th>$pp \rightarrow \text{jet}(h)X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluon sensitivity</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Differential in z_h</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

Also large amounts of data available for pp!
Fragmenting Jet Function (FJF)

- Light charged hadrons

 Arleo, Fontannaz, Guillet, Nguyen `14
 Kaufmann, Mukherjee, Vogelsang `15
 Kang, Ringer, Vitev `16
 Neill, Scimemi, Waalewijn `16

- Photons

 Kaufmann, Mukherjee, Vogelsang `16

- Heavy flavor mesons

 Chien, Kang, Ringer, Vitev, Xing `15
 Bain, Dai, Hornig, Leibovich, Makris, Mehen `16
 Anderle, Kaufmann, Stratmann, Ringer, Vitev `17

- Quarkonia

 Baumgart, Leibovich, Mehen, Rothstein `14
 Bain, Dai, Hornig, Leibovich, Makris, Mehen `16
 Kang, Qiu, Ringer, Xing, Zhang `17
 Bain, Dai, Leibovich, Makris, Mehen `17

\[
F(z_h, p_T) = \frac{d\sigma^{pp\rightarrow(jet,h)X}}{dp_T d\eta dz_h} / \frac{d\sigma^{pp\rightarrow jet X}}{dp_T d\eta}
\]
Longitudinally polarized Λ

Three different scenarios

- **Scenario 1**: Only strange quarks have contribution to the fragmentation.
- **Scenario 2**: Negative distributions of up and down quarks are assumed.
- **Scenario 3**: Same fragmentation for up, down, and strange quarks.
FJF to study longitudinally polarized Λ

\[D_{\text{jet} \Lambda}^{\text{LL}} = \frac{d\Delta_{\text{LL}} \sigma}{d\sigma} \]

- **Scenario 1**: Only strange quarks have contribution to the fragmentation.
- **Scenario 2**: Negative distributions of up and down quarks are assumed.
- **Scenario 3**: Same fragmentation for up, down, and strange quarks.

RHIC kinematics
- \(\sqrt{s} = 200 \text{ GeV}, \ R = 0.4 \)
- \(|\eta_J| < 1.2, \ 10 < p_{JT} < 15 \text{ GeV}\)

\[p(P_A, S_A) \]

\[\Lambda_{\text{LL}}(\%) \]

\[z_\Lambda \]

\[D_{\text{LL}} \]

\[h \]

\[a, b, c \]

Gives shape expected from the scenarios
TMD hadron in jet (TMDFJF)

- Still hard-collinear factorization structure other than jet function modified.

\[
\frac{d\sigma_{pp\to \text{jet}(h)}X}{dp_T d\eta dz_h} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H_{ab}^c \otimes G_c^h(z_h)
\]

\[
\frac{d\sigma_{pp\to \text{jet}(h)}X}{dp_T d\eta dz_h d^2 j_\perp} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H_{ab}^c \otimes G_c^h(z_h, j_\perp)
\]
TMD hadron in jet (TMDFJF)

• Still hard-collinear factorization structure other than jet function modified.

\[
\frac{d\sigma_{pp\rightarrow \text{jet}(h)X}}{d\mathbf{p}_T d\eta dz_h d^2\mathbf{j}_\perp} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H^c_{ab} \otimes G^h_c(z_h, \mathbf{j}_\perp)
\]

When \(\Lambda_{QCD} \lesssim j_\perp \ll p_TR, \quad \lambda \sim j_\perp/p_T \)

\[
\begin{align*}
collinear & \quad k_c \sim p_T(\lambda^2, 1, \lambda) \\
soft & \quad k_s \sim p_T(\lambda R, \lambda/R, \lambda)
\end{align*}
\]

\[
G^h_c(z, z_h, \omega, R, \mathbf{j}_\perp, \mu) = \mathcal{H}_{c\rightarrow i}(z, \omega, R, \mu) \int d^2k_\perp d^2\lambda_\perp \delta^2(z_h\lambda_\perp + k_\perp - \mathbf{j}_\perp) \\
& \quad \times D_{h/i}(z_h, \mathbf{k}_\perp, \mu, \nu) S_i(\lambda_\perp, \mu, \nu R) \\
& = C_{c\rightarrow i}(z, p_TR, \mu) \hat{D}_{h/i}(z_h, \mathbf{j}_\perp; \mu = p_TR)
\]

Standard subtracted TMDFFs, say in SIDIS

Shown to be true perturbatively at NLO

• TMDFJFs can be related to TMDFFs
Polarized **TMDFJF**

- Still hard-collinear factorization structure other than jet function modified.

\[
\frac{d\sigma_{LL}^{\bar{p}p \to \text{jet}(h)X}}{dp_T d\eta dz_h} = \sum_{a,b,c} \Lambda_A \ g_{a/A} \otimes f_{b/B} \otimes \Delta_{LL} H_{ab}^{c} \otimes \Delta_L G_{c}^{h}(z_h) \Lambda_h
\]

\[
\frac{d\sigma_{TT}^{\bar{p}p \to \text{jet}(h)X}}{dp_T d\eta dz_h} = \sum_{a,b,c} S_{A \perp}^{i} \ h_{a/A} \otimes f_{b/B} \otimes \Delta_{TT} \left(H_{ij} \right)_{ab}^{c} \otimes \Delta_T G_{c}^{h}(z_h) \ S_{h \perp}^{j}
\]
Introduction

Soft Drop Groomed Jets

Fragmenting Jet Function

Polarized TMDFJF

- Still hard-collinear factorization structure other than jet function modified.

\[
\frac{d\sigma_{\bar{p}p \to \text{jet}(\bar{h})}}{dp_T d\eta dz_h} = \sum_{a,b,c} \Lambda_A g_{a/A} \otimes f_{b/B} \otimes \Delta_{LL} H_{\bar{a}b}^c \otimes \Delta_L G_c^h(z_h) \Lambda_h
\]

\[
\frac{d\sigma_{T\bar{T} \to \text{jet}(\bar{h})}}{dp_T d\eta dz_h} = \sum_{a,b,c} S_{A \perp}^i h_{a/A} \otimes f_{b/B} \otimes \Delta_{TT} (H_{ij})_{\bar{a}b}^c \otimes \Delta_T G_c^h(z_h) S_{h \perp}^j
\]

Polarized TMD hadron in jet production

when fragmenting parton is unpolarized,

\[
G_c^h(z_h) \rightarrow G_c^h(z_h, j_\perp) F_U
\]

// longitudinally polarized,

\[
\Delta_L G_c^h(z_h) S_L \rightarrow \Delta_L G_c^h(z_h, j_\perp) F_L
\]

// transversely polarized,

\[
\Delta_T G_c^h(z_h) S_{h_T}^i \rightarrow \Delta_T G_c^h(z_h, j_\perp) F_T^i
\]

\(F_U, F_L \) and \(F_T^i \) can depend on \(j_\perp, S_{h \perp}, \Lambda_h \) depending on the polarization of the final hadron.
Polarized TMDFJF

TMD Fragmentation Functions (TMDFF)

<table>
<thead>
<tr>
<th>Quark polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hadron polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

Polarized TMD hadron in jet production

- when fragmenting parton is unpolarized,
- longitudinally polarized,
- transversely polarized,

F_U, F_L and F_T^{i} can depend on $j_\perp, S_{h\perp}, \Lambda_h$ depending on the polarization of the final hadron.

TMD Fragmenting Jet Functions (TMDFJF)

<table>
<thead>
<tr>
<th>Quark polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hadron polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

Actually not really good notations:

- $G_c^h(z_h) \rightarrow G_c^h(z_h, j_\perp) F_U$
- $\Delta_L G_c^h(z_h) S_L \rightarrow \Delta_L G_c^h(z_h, j_\perp) F_L$
- $\Delta_T G_c^h(z_h) S_{hT}^i \rightarrow \Delta_T G_c^h(z_h, j_\perp) F_T^{i}$
Z-tagged jet

- LHCb collaboration measured collinear FFs and \(\hat{j}_\perp \)

 Agrees well in the \(0.1 < z_h < 0.5 \) region
Z-tagged jet

- LHCb collaboration measured collinear FFs and j_\perp

 Agrees well in the $0.1 < z_h < 0.5$ region

- LHCb collaboration measured j_\perp recently.
 but with entire $0 < z_h < 1$
Polarizing FF

TMD Fragmentation Functions

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quark polarization</td>
<td>(D^{h/q})</td>
<td>(G^{h/q})</td>
<td>(H_{L}^{h/q})</td>
</tr>
<tr>
<td>Hadron polarization</td>
<td>(D_{T}^{h/q})</td>
<td>(G_{T}^{h/q})</td>
<td>(H^{h/q}) (H_{T}^{h/q})</td>
</tr>
</tbody>
</table>

• Describes transversely polarized hadron inside unpolarized parton.

• Belle data shows different trend in \(p_T\) with different range of \(z_{\Lambda}\)

Belle Collaboration `19

• FJF at hadron colliders would be a great complimentary results!
Polarizing FJF

\[\mathcal{D}_{T}^{h/c} \]

- Describes transversely polarized hadron inside the jet produced from an unpolarized parton.

\[
\frac{d\Delta \sigma_{pp \rightarrow \text{jet}(h) X}}{d \mathbf{p}_{T} d\eta d z_h d^2 \mathbf{j}_\perp} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes \mathcal{D}_{T}^{h/c}(z_h, \mathbf{j}_\perp)
\]

When \(\Lambda_{\text{QCD}} \lesssim j_\perp \ll p_T R \),

\[
\mathcal{D}_{T}^{h/c}(z, z_h, \omega_j R, j_\perp, \mu) = \mathcal{H}_{c \rightarrow i}(z, \omega_j R, \mu) \frac{\epsilon_{\mu \nu}^i S_{h \perp}^\mu}{z_h M_h} \int d^2 \mathbf{k}_\perp d^2 \mathbf{\lambda}_\perp \delta^2 (z_h \mathbf{\lambda}_\perp + \mathbf{k}_\perp - \mathbf{j}_\perp) \\
\times k_\perp^\nu D_{T}^{h/i}(z_h, \mathbf{k}_\perp, \mu, \nu) S_{i}(\mathbf{\lambda}_\perp, \mu, \nu R) \\
\sim S_{h \perp} \sin(\phi_s - \phi_j)
\]
Polarizing FJF

• Used PFF fits from Belle data

\[\text{Callos, Kang, Terry, '20} \]

\[D_{1T,M}(z_{\Lambda}, Q) \]

• Predictions at the LHC kinematics
• Positive from up quark PFF at small \(z_{\Lambda} \)
• Negative from down quark PFF at \(z_{\Lambda} \gtrsim 0.3 \)

LHC kinematics
\(\sqrt{s} = 8 \text{ TeV}, \ R = 0.5 \)
\(2.5 < \eta_J < 4 \)
\(0 < j_{\perp} < 1 \text{ GeV} \)
Azimuthal angular dependence

\[
\frac{d\sigma^{p(S_A)+p/e\rightarrow (\text{jet } h(S_h))}}{dp_T d\eta_J dz_h d^2 j_\perp} = F_{UU,U} + |S_T| \sin(\phi_{S_A} - \hat{\phi}_h) F_{TU,U}^{\sin(\phi_{S_A} - \hat{\phi}_h)} \\
+ \Lambda_h \left[\lambda F_{LU,L} + |S_T| \cos(\phi_{S_A} - \hat{\phi}_h) F_{TU,L}^{\cos(\phi_{S_A} - \hat{\phi}_h)} \right] \\
+ |S_{h\perp}| \left\{ \sin(\hat{\phi}_h - \hat{\phi}_{S_h}) F_{UU,T}^{\sin(\hat{\phi}_h - \hat{\phi}_{S_h})} + \lambda \cos(\hat{\phi}_h - \hat{\phi}_{S_h}) F_{LU,T}^{\cos(\hat{\phi}_h - \hat{\phi}_{S_h})} \\
+ |S_T| \left(\cos(\phi_{S_A} - \hat{\phi}_{S_h}) F_{TU,T}^{\cos(\phi_{S_A} - \hat{\phi}_{S_h})} + \cos(2\hat{\phi}_h - \hat{\phi}_{S_h} - \hat{\phi}_{S_A}) F_{TU,T}^{\cos(2\hat{\phi}_h - \hat{\phi}_{S_h} - \hat{\phi}_{S_A})} \right) \right\},
\]

\[F_{S_A S_B, S_h}\]

Polarization of \(A, B, h \)

- Different structures come with different characteristic angular dependence.
Thank you!