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Motivation
Generalized Parton Distributions (GPDs) contain information 
about many hadron properties:


3D structure


Spin sum


Pressure and shear force distributions


Goal:


Perform a global extraction of GPDs from available data


Obstacle:


Shadow GPDs (SGPDS) (Bertone, et. al. Phys.Rev.D 103 
(2021) 11, 114019):  


There is an infinite number of functions that can give 
the same observable.
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GPDs

Definition:





Functions of , , and :
x ξ t

x =
k+ + k′ +

p+ + p′ +
ξ =

p′ + − p+

p+ + p′ +
t = (p′ − p)2
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H(x, ξ, t)
p p′ 

k k′ 



GPDs
Forward Limit ( ):


H GPD:





Forward limit of E does not map to known functions


ξ, t → 0
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GPDs
Polynomiality:
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GPDs
First moments give electromagnetic form factors:








∫
1

−1
dx Hq(x, ξ, t; μ2) = Fq

1 (t; μ2)

∫
1

−1
dx Eq(x, ξ, t; μ2) = Fq

2 (t; μ2)
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GPDs

Second moments give gravitational form factors:


Ji sum rule:





 is related to internal stresses

2Ja(μ2) = Aa
01(0,μ2) + Ba

01(0,μ2) = ∫
1

−1
dx x[Ha(x, ξ,0; μ2) + Ea(x, ξ,0; μ2)]

Ca
1
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GPDs

Evolution:


GPDs change with the energy scale in accordance with evolution 
equations of the general form:


dHa(x, ξ, t)
d ln Q2

= ∫ dxPa(x, ξ)Ha(x, ξ, t; Q2
0)
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The Inverse Problem

Deeply virtual Compton scattering:


Compton Form Factors:


x-dependence is lost in the integration


While a fit could obtain a GPD:  Does the x-dependence represent the true GPD?


There is an infinite number of functions that can give the same CFF.

ℋ(ξ, t, Q2) = ∫
1

−1
dx∑

a

Ca(x, ξ, Q2, μ2) Ha(x, ξ, t; μ2)
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ℰ(ξ, t, Q2) = ∫
1

−1
dx∑

a

Ca(x, ξ, Q2, μ2) Ea(x, ξ, t; μ2)



Shadow GPDs

The difference between one of the multiple solutions to the inverse problem and the true GPD:





Can rule out any  that do not satisfy the properties of GPDs, therefore SGPDs:


Must satisfy polynomiality


Zero contribution to CFF: 





Forward Limit:  

Fa
S(x, ξ; μ2) = Fa

F(x, ξ; μ2) − Fa
T(x, ξ; μ2)

Fa
F

∑
a

Ca(x, ξ, Q2, μ2) ⊗ Fa
S(x, ξ; μ2) = 0

Ha
S(x,0,0) = 0
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Evolution and SGPDs

Example SGPDs explored in Bertone, et. al. Phys.Rev.D 103 (2021) 
11, 114019 give very small but non-zero CFF after evolution to a 
different energy scale.


SGPDs can be multiplied by any factor and the result would still be a 
SGPD at the input scale


Non-zero CFF after evolution would be multiplied by this factor


Data spanning a range of energy scales would give a limit to the 
possible scaling factors
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Evolution and SGPDs

In this work:


Generate simulated CFF data spanning a range of energy scales and skewness 
using a model


Calculate how this data constrains a Monte Carlo sampling of SGPDs


Explore how these SGPDs would impact:


Spin sum


Pressure and shear stresses


Tomography
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“True” GPDs

Use VGG model as a proxy for the “true” GPD:


Vanderhaeghen, et. al., Phys. Rev. Lett. 80, 5064 (1998)


Vanderhaeghen, et. al., Phys. Rev. D 60, 094017 (1999)


Goeke, et. al., Prog. Part. Nucl. Phys. 47, 401 (2001)


Guidal, et. al., Phys. Rev. D 72, 054013 (2005)


Use PDFs from JAM20-SIDIS (EM, et. al., Phys. Rev. D 104, 016015 
(2021))
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“True” GPDs
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Calculating Shadow GPDs

Start from a double distribution (DD):


SGPD is a Radon transform of the DD:


This guarantees the SGPDs satisfy polynomiality

FDD(α, β) =
m+n≤N

∑
m even,n odd

cmnαmβn

HS(x, ξ) = ∫
1

−1
dβ∫

1−|β|

−1+|β|
dαδ(x − β − αξ)FDD(α, β)
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Calculating Shadow GPDs

SGPD conditions give a set of equations that can be solved for the unknowns ( )


For a given  there are more unknown coefficients than constraining equations:


Assign random values to enough randomly selected coefficients to reduce the 
number of unknowns so that the equations can be solved


Use 


SGPDs give zero contribution to the CFF at next-to-leading order

cmn

N

N = 27
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Calculating Shadow GPDs

For SGPDs derived this way we can impose the forward limit in two ways:


Type A:


Consistent with Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019:





Type B:


Could also multiply  by a function of  that is zero when 


Hu(+)
S (x,0; μ0)) = 0

FDD t t = 0

Hu(+)
S (x,0; μ0)) ≠ 0
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Example Shadow GPDs
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Exploring SGPDs and Evolution

Use Monte Carlo sampling to generate replicas that are linear 
combinations of three SGPDs:





Randomly select the scaling factors until we get 10000 replicas that all 
give CFFs that are within 1% of the simulated data from the model.


Plot the region :  Outer boundary of all 10000 replicas

Hu(+)(x, ξ; μ2, λ) = Hu(+)
T (x, ξ; μ2) + λ1Hu(+)

S1 (x, ξ; μ2) + λ2Hu(+)
S2 (x, ξ; μ2) + λ3Hu(+)

S3 (x, ξ; μ2)

δHS
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Exploring SGPDs and Evolution
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Exploring SGPDs and Evolution
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Inclusion of higher  data leads to 
better constraint of SGPDs at 
smaller 


True over the full range of x when 



Only true for low x when

ξ

ξ

Hu(+)
S (x,0; μ0)) = 0

Hu(+)
S (x,0; μ0)) ≠ 0
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Exploring SGPDs and Evolution
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Some range of  is necessary for 
evolution to constrain the SGPDs 
but a large range is not as 
necessary as having large  data.

Q2

ξ
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Exploring SGPDs and Evolution
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Exploring SGPDs and Evolution
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The trend of larger  data leading to better constrained SGPDs at 
smaller   is a direct result of the  dependence of the SGPDs 


Independent of the model used as a proxy for the “true” GPD


Independent of the chosen uncertainty

ξ
ξ ξ



Example Shadow GPDs
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Positivity constraints and SGPDs
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Positivity constraints can help to better constrain SGPDs  
(Dutrieux, et al., Eur. Phys. J. C 82, 252 (2022))


Care must be taken since these inequalities can be violated by 
regularization and renormalization effects in QCD  
(Collins, Rogers, Sato, Phys. Rev. D 105, 076010 (2022)) 



Positivity constraints and SGPDs
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Positivity constraints and SGPDs
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SGPDs and Spin
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Ji sum rule:





For H:








Since this contribution can be determined from the PDFs, H SGPDs would not contribute.


For E:


E SGPDs can contribute to the spin because the forward limit is not known

2Ja(μ2) = Aa
01(0,μ2) + Ba

01(0,μ2) = ∫
1

−1
dx x[Ha(x, ξ,0; μ2) + Ea(x, ξ,0; μ2)]

Aq
01(0) = ∫

1

−1
dxxHq(x,0,0; μ2) = ∫

1

0
dxx(q(x; μ2) + q̄(x; μ2))

Ag
01(0) = ∫

1

−1
dxxHg(x,0,0; μ2) = 2∫

1

0
dxxg(x; μ2)



SGPDs and Spin
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Calculating the spin contributions:


: 


: 


: 


The contribution of E SGPDs to the spin is ~4%.


Knowledge of the forward limit of the E GPD from lattice would reduce 
the possible E SGPDs to those for which the forward limit gives zero.

HT Ju+ = 0.389

ET Ju+ = 0.219

δES Ju+ = 0.009



SGPDs and Internal Stresses
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Internal stresses in the hadron are connected to  in the second 
moment of the GPD.


This contribution comes from the D-term portion of the GPD


The SGPDs explored here have no D-term and so would not affect 
internal stress calculations


Dutrieux, et. al.,  Eur. Phys. J. C 81, 300 (2021):


Found different D-terms that fit data equally well (shadow D-terms)


Result in significantly different internal stresses        

Ca
1



SGPDs and Tomography
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Transverse spatial distribution can be obtained from a transverse Fourier transform of 
the H GPD at .


Requires accurate knowledge of t-dependence at .


Not accessible experimentally.


Must extrapolate from t-dependence at non-zero .


Impact of Type A SGPDs would be minimal since they get smaller as 


Impact of Type B SGPDs would be minimal at small x but could be substantial at large x


Quantitative analysis of the impact SGPDs could have on tomography requires a 
thorough exploration of possible t-dependent SGPDs which we leave for future work.

ξ = 0

ξ = 0

ξ

ξ → 0



Conclusions
For the SGPDs that have been explored here:


Data at larger  leads to the SGPDs being better constrained at lower  at least in the range of low x


These findings are independent of the model used as the proxy for the “true” GPD.


Positivity constraints could help to constrain SGPDs even further.


The contribution of H SGPDs to spin would be zero because of the forward limit constraint.


The contribution of E SGPDs to spin is not negligible.  Determination of the forward limit by other means such as 
lattice QCD could help reduce this.


Though not explored in this work, shadow D-terms could have a significant impact on internal stress calculations 
(Dutrieux, et. al.,  Eur. Phys. J. C 81, 300 (2021))


Quantitative analysis of the impact SGPDs could have on tomography requires a thorough exploration of possible 
t-dependent SGPDs which we leave for future work.

ξ ξ
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Conclusions

The SGPDs explored are only a small sampling of all possible SGPDs:


Though we have not yet found examples of SGPDs that do not 
exhibit the behavior found in this work, we cannot generalize these 
results to all SGPDs


Data spanning a range of  at larger  is a necessary but possibly 
not sufficient condition for extracting GPDs from DVCS data.

Q2 ξ
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