SHEDDING LIGHT ON SHADOW GENERALIZED PARTON DISTRIBUTIONS (GPDS)

JLAB THEORY SEMINAR 10-16-23

PRESENTER: ERIC MOFFAT COLLABORATORS: IAN CLOET ADAM FREESE LEONARD GAMBERG WALLY MELNITCHOUK

ANDREAS METZ ALEXEI PROKUDIN NOBUO SATO

Motivation

- * Generalized Parton Distributions (GPDs) contain information about many hadron properties:
 - * 3D structure
 - * Spin sum
 - * Pressure and shear force distributions
- * Goal:
 - * Perform a global extraction of GPDs from available data
- * Obstacle:
 - * Shadow GPDs (SGPDS) (Bertone, et. al. Phys.Rev.D 103) (2021) 11, 114019):
 - * There is an infinite number of functions that can give the same observable.

QuantOm Collaboration

GPDs

* Definition:

$$P \cdot n \int \frac{d\lambda}{2\pi} e^{ixP \cdot n\lambda} \left\langle p' \left| \bar{\psi}^{q}(-\frac{1}{2}\lambda n) \not n \psi^{q}(\frac{1}{2}\lambda n) \right| p \right\rangle = \bar{u}(p') \left[H^{q}(x,\xi,t;\mu^{2}) \not n + E^{q}(x,\xi,t;\mu^{2}) \frac{i\sigma^{n\Delta}}{2M} \right] u(p),$$

$$n_{\mu}n_{\nu} \int \frac{d\lambda}{2\pi} e^{ixP \cdot n\lambda} \left\langle p' \left| G^{\mu\alpha}(-\frac{1}{2}\lambda n) G_{\alpha}^{\nu}(\frac{1}{2}\lambda n) \right| p \right\rangle = \bar{u}(p') \left[x H^{g}(x,\xi,t;\mu^{2}) \not n + x E^{g}(x,\xi,t;\mu^{2}) \frac{i\sigma^{n\Delta}}{2M} \right] u(p),$$

* Functions of *x*, ξ , and *t*:

$$x = \frac{k^{+} + k^{'+}}{p^{+} + p^{'+}} \quad \xi = \frac{p^{'+} - p^{+}}{p^{+} + p^{'+}} \quad t = (p' - p)^{2}$$

(API)s * Forward Limit ($\xi, t \to 0$): ***** H GPD: $H^{q}(x, 0, 0) = q(x) \Theta(x) - \bar{q}(-x) \Theta(-x),$ $2H^{g}(x, 0, 0) = q(x)\Theta(x) - q(-x)\Theta(-x),$

* Forward limit of E does not map to known functions

GPDs

* Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^{s} H^{a}(x,\xi,t;\mu^{2}) = \sum_{i=0 \,(\text{even})}^{s} \, (2\xi)^{i} \, A^{a}_{s+1,i}(t,\mu^{2}) + \operatorname{mod}(s,2) \, (2\xi)^{s+1} \, C^{a}_{s+1}(t,\mu^{2}),$$

$$\int_{-1}^{1} \mathrm{d}x \, x^{s} E^{a}(x,\xi,t;\mu^{2}) = \sum_{i=0 \,(\text{even})}^{s} \, (2\xi)^{i} \, B^{a}_{s+1,i}(t,\mu^{2}) - \operatorname{mod}(s,2) \, (2\xi)^{s+1} \, C^{a}_{s+1}(t,\mu^{2}),$$

GPDs

* First moments give electromagnetic form factors:

 $\int_{-1}^{1} dx H^{q}(x,\xi,t;\mu^{2}) = F_{1}^{q}(t;\mu^{2})$

 $\int_{-1}^{1} dx E^{q}(x,\xi,t;\mu^{2}) = F_{2}^{q}(t;\mu^{2})$

(H)

* Second moments give gravitational form factors: * Ji sum rule:

$$2J^{a}(\mu^{2}) = A^{a}_{01}(0,\mu^{2}) + B^{a}_{01}(0,\mu^{2}) + B^{a$$

* C_1^a is related to internal stresses

 $= \int_{-1}^{1} dx \, x \left[H^{a}(x,\xi,0;\mu^{2}) + E^{a}(x,\xi,0;\mu^{2}) \right]$

GPDs

* Evolution:

* GPDs change with the energy scale in accordance with evolution equations of the general form:

$$\frac{\mathrm{d}H^a(x,\xi,t)}{\mathrm{d}\ln Q^2} = \int \mathrm{d}x$$

 $xP^{a}(x,\xi)H^{a}(x,\xi,t;Q_{0}^{2})$

The Inverse Problem

* Deeply virtual Compton scattering:

* Compton Form Factors:

$$\mathcal{H}(\xi, t, Q^2) = \int_{-1}^{1} dx \sum_{a} C^a(x, \xi, Q^2, \mu^2) H^a(x, \xi, t; \mu^2) \quad \mathcal{E}(\xi, t, Q^2) = \int_{-1}^{1} dx \sum_{a} C^a(x, \xi, Q^2, \mu^2) E^a(x, \xi, t; \mu^2)$$

* x-dependence is lost in the integration

* While a fit could obtain a GPD: Does the x-dependence represent the true GPD? * There is an infinite number of functions that can give the same CFF.

Shadow GPDs

- * Can rule out any F_F^a that do not satisfy the properties of GPDs, therefore SGPDs:
 - Must satisfy polynomiality
 - * Zero contribution to CFF:

$$\sum_{a} C^{a}(x,\xi,Q^{2},$$

* Forward Limit: $H_S^a(x,0,0) = 0$

* The difference between one of the multiple solutions to the inverse problem and the true GPD:

 $F_S^a(x,\xi;\mu^2) = F_F^a(x,\xi;\mu^2) - F_T^a(x,\xi;\mu^2)$

$$\mu^2) \otimes F_S^a(x,\xi;\mu^2) = 0$$

Evolution and SGPDs

- Example SGPDs explored in Bertone, et. al. Phys.Rev.D 103 (2021)
 11, 114019 give very small but non-zero CFF after evolution to a different energy scale.
- SGPDs can be multiplied by any factor and the result would still be a SGPD at the input scale
- * Non-zero CFF after evolution would be multiplied by this factor
- Data spanning a range of energy scales would give a limit to the possible scaling factors

Evolution and SGPDs

* In this work:

- using a model
- * Calculate how this data constrains a Monte Carlo sampling of SGPDs
- * Explore how these SGPDs would impact:
 - * Spin sum
 - * Pressure and shear stresses
 - * Tomography

* Generate simulated CFF data spanning a range of energy scales and skewness

"True" GPDs

- * Use VGG model as a proxy for the "true" GPD:
 - * Vanderhaeghen, et. al., Phys. Rev. Lett. 80, 5064 (1998)
 - * Vanderhaeghen, et. al., Phys. Rev. D 60, 094017 (1999)
 - * Goeke, et. al., Prog. Part. Nucl. Phys. 47, 401 (2001)
 - * Guidal, et. al., Phys. Rev. D 72, 054013 (2005)
- * Use PDFs from JAM20-SIDIS (EM, et. al., Phys. Rev. D 104, 016015 (2021))

Calculating Shadow GPDs

* Start from a double distribution (DD):

* SGPD is a Radon transform of the DD:

$$H_{S}(x,\xi) = \int_{-1}^{1} d\beta \int$$

* This guarantees the SGPDs satisfy polynomiality

 $F_{DD}(\alpha,\beta) = \sum^{m+n \leq N} c_{mn} \alpha^m \beta^n$

m even,*n* odd

 $1-|\beta|$ $d\alpha\delta(x-\beta-\alpha\xi)F_{DD}(\alpha,\beta)$ $-1+|\beta|$

Calculating Shadow GPDs

- * SGPD conditions give a set of equations that can be solved for the unknowns (c_{mn})
 - * For a given N there are more unknown coefficients than constraining equations:
 - * Assign random values to enough randomly selected coefficients to reduce the number of unknowns so that the equations can be solved
 - * Use N = 27
 - * SGPDs give zero contribution to the CFF at next-to-leading order

Calculating Shadow GPDs

- * For SGPDs derived this way we can impose the forward limit in two ways: * Type A:
 - * Consistent with Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019: $H_{\varsigma}^{u(+)}(x,0;\mu_0)) = 0$

* Type B:

* Could also multiply F_{DD} by a function of t that is zero when t = 0

 $H^{u(+)}_{s}(x,0;\mu_0)) \neq 0$

* Use Monte Carlo sampling to generate replicas that are linear combinations of three SGPDs:

$$H^{u(+)}(x,\xi;\mu^2,\lambda) = H_T^{u(+)}(x,\xi;\mu^2) + \lambda_1 H_{S1}^{u(+)}(x,\xi;\mu^2) + \lambda_2 H_{S2}^{u(+)}(x,\xi;\mu^2) + \lambda_3 H_{S3}^{u(+)}(x,\xi;\mu^2)$$

- * Plot the region δH_S : Outer boundary of all 10000 replicas

* Randomly select the scaling factors until we get 10000 replicas that all give CFFs that are within 1% of the simulated data from the model.

Exploring SGPDs and Evolution $Q^2 \leq 100 \text{ GeV}^2$

- * Inclusion of higher ξ data leads to better constraint of SGPDs at smaller ξ
 - True over the full range of x when $H_{S}^{u(+)}(x,0;\mu_{0})) = 0$
 - * Only true for low x when $H^{u(+)}_{c}(.)$ $(x,0;\mu_0)) \neq 0$

* Some range of Q^2 is necessar evolution to constrain the SGPDs but a large range is not as necessary as having large ξ data.

- * The trend of larger ξ data leading to better constrained SGPDs at smaller ξ is a direct result of the ξ dependence of the SGPDs
 - * Independent of the model used as a proxy for the "true" GPD
 - * Independent of the chosen uncertainty

Positivity constraints and SGPDs

- Positivity constraints can help to better constrain SGPDs (Dutrieux, et al., Eur. Phys. J. C 82, 252 (2022))
- Care must be taken since these inequalities can be violated by regularization and renormalization effects in QCD (Collins, Rogers, Sato, Phys. Rev. D 105, 076010 (2022))

Positivity constraints and SGPDs

Positivity constraints and SGPDs

 $\left|E^{q}(x,\xi,t;\mu^{2})\right| \leq \frac{2}{\sqrt{t_{\mathrm{m}}}}$

$$\frac{2M}{\frac{d}{d}min} - t} \sqrt{q(x_{in}; \mu^2)} q(x_{out}; \mu^2)$$

SGPDs and Spin

* Ji sum rule:

$$2J^{a}(\mu^{2}) = A^{a}_{01}(0,\mu^{2}) + B^{a}_{01}(0,\mu^{2}) = \int_{-1}^{1} dx \, x$$

* For H:

$$\begin{aligned} A_{01}^{q}(0) &= \int_{-1}^{1} dx x H^{q}(x,0,0;\mu^{2}) = \int_{0}^{1} dx x (q(x;\mu^{2}) + \bar{q}(x;\mu^{2})) \\ A_{01}^{g}(0) &= \int_{-1}^{1} dx x H^{g}(x,0,0;\mu^{2}) = 2 \int_{0}^{1} dx x g(x;\mu^{2}) \end{aligned}$$

* Since this contribution can be determined from the PDFs, H SGPDs would not contribute.

* For E:

* E SGPDs can contribute to the spin because the forward limit is not known

$\left[H^{a}(x,\xi,0;\mu^{2}) + E^{a}(x,\xi,0;\mu^{2})\right]$

SGPDs and Spin

- * Calculating the spin contributions:
 - * $H_T: J^{u+} = 0.389$
 - * $E_T: J^{u+} = 0.219$
 - * $\delta E_{\rm S}: J^{u+} = 0.009$
- * The contribution of E SGPDs to the spin is $\sim 4\%$.

* Knowledge of the forward limit of the E GPD from lattice would reduce the possible E SGPDs to those for which the forward limit gives zero.

SGPDs and Internal Stresses

- * Internal stresses in the hadron are connected to C_1^a in the second moment of the GPD.
- * This contribution comes from the D-term portion of the GPD
- * The SGPDs explored here have no D-term and so would not affect internal stress calculations
- * Dutrieux, et. al., Eur. Phys. J. C 81, 300 (2021):
 - * Found different D-terms that fit data equally well (shadow D-terms)
 - * Result in significantly different internal stresses

SGPDs and Tomography

- * Transverse spatial distribution can be obtained from a transverse Fourier transform of the H GPD at $\xi = 0$.
 - * Requires accurate knowledge of t-dependence at $\xi = 0$.
 - * Not accessible experimentally.
 - * Must extrapolate from t-dependence at non-zero ξ .
- * Impact of Type A SGPDs would be minimal since they get smaller as $\xi
 ightarrow 0$
- * Impact of Type B SGPDs would be minimal at small x but could be substantial at large x
- * Quantitative analysis of the impact SGPDs could have on tomography requires a thorough exploration of possible t-dependent SGPDs which we leave for future work.

Conclusions

* For the SGPDs that have been explored here:

- * Data at larger ξ leads to the SGPDs being better constrained at lower ξ at least in the range of low x
- * These findings are independent of the model used as the proxy for the "true" GPD.
- * Positivity constraints could help to constrain SGPDs even further.
- * The contribution of H SGPDs to spin would be zero because of the forward limit constraint.
- * The contribution of E SGPDs to spin is not negligible. Determination of the forward limit by other means such as lattice QCD could help reduce this.
- Though not explored in this work, shadow D-terms could have a significant impact on internal stress calculations (Dutrieux, et. al., Eur. Phys. J. C 81, 300 (2021))
- Quantitative analysis of the impact SGPDs could have on tomography requires a thorough exploration of possible t-dependent SGPDs which we leave for future work.

Conclusions

* The SGPDs explored are only a small sampling of all possible SGPDs:

- results to all SGPDs

* Though we have not yet found examples of SGPDs that do not exhibit the behavior found in this work, we cannot generalize these

* Data spanning a range of Q^2 at larger ξ is a necessary but possibly not sufficient condition for extracting GPDs from DVCS data.

