Three-body scattering in the presence of bound states

Sebastian M. Dawid

Thomas Jefferson National Accelerator Facility
"Cake" Seminar
Thursday, September 13th, 2021
Previous JLab seminars on three-body physics

Monday, October 15, 2018, 1:00 p.m. Room L102
Maxim Mai (GWU)
3 hadrons in (in-)finite volume

Monday, October 29, 2018, 1:00 p.m. Room L102
Andrew Jackura (Indiana U.)
Phenomenology of 3→3 Scattering

Monday, February 11, 2019, 1:00 p.m. Room L102
Peng Guo (California Bakerfield University)
Multiple particles interaction in finite volume

Wednesday, March 13, 2019, 1:00 p.m. Room L102
Raúl Briceño (JLab/ODU)
The three-body problem

Monday, December 14th, 2020, 1:00 p.m.
Fernando Romero López (University of Valencia)
Two- and three-particle scattering amplitudes from lattice QCD

Monday, March 15th, 2021, 1:00 p.m.
Maxwell Hansen (University of Edinburgh)
Three-pion scattering from lattice QCD
Efimov physics - picture

Short range, near-resonant interaction (barely supports two-body bound state)

Two bodies

Induced long-range interaction
Discrete scale symmetry
Borromean binding

\[E_n \propto - \left(e^{-\frac{2\pi}{s_0}} \right)^n \]
Three-body processes and hadronic spectrum

- Exotic resonances decay to three-particle final states
 - \(X(3872), N^*(1440), a_1(1260), a_1(1420), ... \)

- Interpretations
 - molecules,
 - hybrids,
 - diquark-antidiquark,
 - kinematical effects (triangle singularity)

- Goal — to build three-body scattering formalism
 - derive properties of hadrons from the (lattice) QCD
 - having convenient three-body framework for phenomenology

Light-meson spectroscopy with COMPASS
Ketzer, Grube, Ryabchikov, Prog. Part. Nucl. Phys. 113 (2020) 103755

not only a question of computational cost. With decreasing pion mass also the kinematical thresholds for three- and four-hadron channels decrease. In particular highly excited states couple strongly to such multi-hadron final states. However, the current method is not applicable to these channels. A complete finite-volume formalism for three or even more particles would therefore be a major breakthrough for the calculation of masses and decay modes of hadron resonances. Such a formalism is already under development (see Ref. [33] and references therein).
Exotic states

Roper $N^*(1440)$

X(3872)

Pion-nucleon scattering in the Roper channel from lattice QCD, Lang, Leskovec, Padmanath, Prelovsek, Phys. Rev. D 95 (2017) 1, 014510

Combining experimental $N\pi$ phase shifts with elastic approximation and the Lüscher formalism suggests in the spectrum an additional energy level near the Roper mass $m_R = 1.43$ GeV for our lattice. We do not observe any such additional energy level, which implies that $N\pi$ elastic scattering alone does not render a low-lying Roper resonance. The current status indicates that the $N^*(1440)$ might arise as dynamically generated resonance from coupling to other channels, most notably the $N\pi\pi$.

- About 7 MeV from $D\bar{D}\pi$
- About 0.4 MeV from $D^*\bar{D}$
Principles of the S–matrix theory:

- **Unitarity** (probability conservation)
- **Analyticity** (causality)
- **Crossing symmetry** (particles ↔ antiparticles)
- **Poincaré symmetry** (frame independence)
- **Internal symmetries** (charge, isospin, G–parity)

Analyticity on the first Riemann sheet,
Bound–states & resonances correspond to poles,
Branch cuts correspond to open channels.
Elastic unitarity in the two-body scattering

\[2 \text{Im} \begin{array}{c} \includegraphics[width=0.5\textwidth]{diagram.png} \end{array} = \begin{array}{c} \includegraphics[width=0.5\textwidth]{diagram.png} \end{array} \]

- Unitarity relation: \(SS^\dagger = 1 \) implies \(\frac{1}{2i} (M^\dagger - M) = \frac{1}{2i} M M^\dagger \) for \(S = 1 + iM \)

- After partial wave projection

\[\text{Im} M_\ell(s) = \rho(s) |M_\ell(s)|^2 \theta(s - 4m^2) \quad \text{where} \quad \rho(s) \propto \sqrt{1 - \frac{4m^2}{s}} \]

- In consequence

\[M^{-1}_\ell(s) = K^{-1}_\ell(s) - i\rho(s) \]

- Phase shift

\[K^{-1}_\ell(s) = \frac{q^*}{8\pi E^*} \cot \delta_l(E^*) \]
Two-body Lüscher formalism – general idea

- One-dimensional NR problem in infinite volume (IV)
 \[\psi(x) \propto \cos(k|x| + \delta(k)) \]

- One-dimensional NR problem in finite volume (FV)

 - Functions
 \[\cos\left(\frac{kL}{2} + \delta(k)\right) = \cos\left(\frac{kL}{2} + \delta(k)\right) \]

 - Derivatives
 \[-\sin\left(\frac{kL}{2} + \delta(k)\right) = \sin\left(\frac{kL}{2} + \delta(k)\right) \]

 Periodic boundary conditions

Quantization condition
\[\frac{kL}{2} + \delta(k) = n\pi \]
Two-body quantization condition

- Relation between IV phase shift and FV spectrum

\[\det \left[\mathcal{M}(s) + F^{-1}(s, P, L) \right] = 0 \]

Matrices in the angular momentum space (truncation)

Complicated but known function

An a0 resonance in strongly coupled \(\pi\eta, \bar{K}K \) scattering from lattice QCD
Briceño, Dudek, Young, Rev. Mod. Phys. 90 (2018) 2, 025001

Resonance in coupled \(\pi\omega, \pi\phi \) scattering from lattice QCD
Woss et al. (HadSpec), Phys. Rev. D 100 (2019) 5, 054506
The canonical workflow

- Finite volume spectrum → Quantization Condition → Three-body K-matrix
- K-matrix + two-body subprocesses → integral equations → 3-body amplitudes
- Final amplitudes analytically continued to the unphysical Riemann sheets

Two main frameworks

- Relativistic Effective Field Theory
 - generic scalar EFT,
 - summation of 2PI, 3PI diagrams,
 (references — next few slides)
 - First results — three pions at I=3

- Unitarity-based framework
 - parametrization based on the S matrix unitarity,
 (references — next few slides)
 - First results — three pions at I=3
Three-body S-matrix unitarity in one slide

Phenomenology of relativistic $3 \rightarrow 3$ reaction amplitudes within the isobar approximation

Pair/Isobar and Spectator choice

Partial-wave projection

Three-body unitarity relation

Amputation of two-body interactions
The B-matrix approach

- Physical degrees of freedom (domain of integration)
- Simple parametrization with clear interpretation

Three-body amplitude

$$A_{\ell m_\ell; \ell' m_\ell} (\sigma', s, \sigma)$$

- pair–spectator,
- partial waves,
- symmetrization,

One Particle Exchange

Short Range Interactions

$$A = M_2 B M_2 + M_2 \int B \tau A$$

$$\tilde{A} = B + \int B M_2 \tau \tilde{A}$$

$$M_2 = K + K i \rho M_2$$
The unitarity-based approach

✧ Formalism

Relativistic three-body theory with applications to \(\pi-N \) scattering
Aaron, Amado, Young, Phys. Rev. 174, 2022 (1968)

Three-body unitarity in finite volume

Three-body unitarity with Isobars revisited

Three-body spectrum in a finite volume: the role of cubic symmetry

Phenomenology of relativistic \(3 \rightarrow 3 \) reaction amplitudes within the isobar approximation

Three-body scattering: ladders and resonances
Mikhasenko et al. (JPAC), JHEP 08 (2019) 1, 080

Bound states in the B-matrix formalism for the three-body scattering
Dawid, Szczepaniak, Phys. Rev. D 103 (2021) 1, 014009

✧ Lattice spectrum

and applications

Finite-Volume Spectrum of \(\pi^+\pi^- \) and \(\pi^0\pi^0\pi^0 \) Systems

Three-body unitarity vs finite-volume \(\pi^0\pi^0\pi^0 \) spectrum from lattice QCD

Dalitz plots and lineshape of \(a_1(1260) \) from relativistic three-body unitary approach

Three-pion spectrum in the I=3 channel from lattice QCD

Finite volume energy spectrum of the K-K-K system

Three-body interactions from the finite-volume spectrum
Brett et al., Phys. Rev. D 104 (2021) 1, 014501

Three-body dynamics of the \(a_1(1260) \) resonance from lattice QCD
Mai et al. (GWQCD), arxiv:2107.03973 (2021)

older papers from 60's by
Fleming, Holman, Grisaru, Blankenbecler, Cook, Lee, Hwa, Greben, Kok, etc.
REFT three-body formalism

\[
C_L(E, \hat{P}) = \sum \text{diagrams} + \sum \text{diagrams} + \sum \text{diagrams} + \cdots
\]

\[
\text{det} \left[\mathcal{K}_{\text{df},3}(s) + F_3(s, P, L)^{-1} \right] = 0
\]

- Infinite volume integral equations:

\[
\mathcal{M}_3^{(u,u)} = \mathcal{D}^{(u,u)} + \mathcal{M}_{\text{df},3}^{(u,u)}
\]
REFT approach

Formalism

Relativistic, model-independent, three-particle quantization condition
Hansen, Sharpe, Phys. Rev. D 90 (2014) 11, 116003

Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude

Threshold expansion of the three-particle quantization condition
Hansen, Sharpe, Phys. Rev. D 93 (2016) 9, 096006

Relating the FV spectrum and the 2-and-3-particle S matrix for relativistic systems of identical scalar particles
Briceño, Hansen, Sharpe, Phys. Rev. D 95 (2017) 7, 074510

Three-particle systems with resonant subprocesses in a finite volume

Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism

Generalizing the relativistic quantization condition to include all three-pion isospin channels
Hansen, Romero-López, Sharpe, JHEP 07 (2020) 047

Relativistic three-particle quantization condition for nondegenerate scalars
Blanton, Sharpe, Phys. Rev. D 103 (2021) 5, 054503

Three-particle finite-volume formalism for $\pi^+\pi^+K^+$ and related systems
Blanton, Sharpe, Phys. Rev. D 104 (2021) 3, 034509

Lattice spectrum and applications

Numerical study of the relativistic three-body quantization condition in the isotropic approximation
Briceño, Hansen, Sharpe, Phys. Rev. D 98 (2018) 1, 014506

Implementing the three-particle quantization condition including higher partial waves
Blanton, Romero-López, Sharpe, JHEP 03 (2019) 106

$I=3$ Three-Pion Scattering Amplitude from Lattice QCD

Interactions of two and three mesons including higher partial waves from lattice QCD
Blanton et al., arxiv:2106.05690 (2021)

Energy dependent $\pi^+\pi^-\pi^+$ scattering amplitude from lattice QCD
Hansen et al. (HadSpec), Phys. Rev. Lett. 126 (2021) 012001
Both formalisms equivalent in the FV and IV form

\[\int \left[\delta_{p'k'} + \frac{1}{3} \int_{k'} U_{p'k'} K_{df,k'k} \right] R_{kp} = \int_{k'} \int_k U_{p'k'} K_{df,k'k} U_{kp} \]

\[\text{det} \left[\overline{K}^{-1}_{2,L} + \tilde{F} + \tilde{G} - (2\omega L^3)^{-1} R^{(u,u)} (2\omega L^3)^{-1} \right] = 0 \]

In practice, differences in the regularization schemes exist in the literature.
Short summary

- Three-body physics is not only interesting, but also important for studies of resonances,
 - Lattice QCD,
 - Phenomenology,
- The two-body Lüscher philosophy is well-developed, and guides the three-body research,
- There are two equivalent relativistic formalisms,
 - Unitarity-based,
 - EFT,
- R-matrix or K_{df} are obtained from lattice or modeled; they are related to the physical amplitudes via integral equations,
- Amplitudes must have good analytic properties,
Solving the EFT three-body ladder equation

- **Ladder approximation,** $B = G + (R=0)$

- **Numerical solution of the three-body EFT equations**

- **Similar studies**

 - **weakly interacting system in the $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$**
 Hansen et al., Phys. Rev. Lett. 126 (2021), 012001

 - **decay** $a_1(1260) \rightarrow \rho^0\pi^- \rightarrow \pi^-\pi^+\pi^-$
Nonrelativistic studies

The Three-Boson System with Short-Range Interactions

◆ NREFT approach

\[\mathcal{L} = \psi^\dagger (i\partial_0 + \frac{\nabla^2}{2m})\psi + \Delta T^\dagger T - \frac{g}{\sqrt{2}} (T^\dagger \psi \psi + \text{h.c.}) + \hbar T^\dagger T \psi^\dagger \psi + \ldots \]

◆ The three-body equation

\begin{align*}
T & = \quad + \quad + \quad + \\
\end{align*}

Three-body spectrum in a finite volume: the role of cubic symmetry

\begin{align*}
\text{Three-body scattering in the presence of bound states}
\end{align*}
Bound-state system from REFT QC

Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states
Romero-López et al., JHEP 10 (2019) 007

- **Start with the quantization condition**

\[
\det \left[\mathcal{K}_{df,3}(s) + F_3(s, P, L)^{-1} \right] = 0
\]

- **S-wave, P=0, and K_{df}=0**

- **Geometric function**

\[
L^3 F_3^s \equiv \frac{\tilde{F}_s^s}{3} - \tilde{F}_s^s \frac{1}{1/\tilde{K}_2^s + \tilde{F}_s^s + \tilde{G}_s^s}
\]

- **Energy levels**

- **Noninteracting 3-particle states,**
- **Noninteracting dimer-particle states,**
- **Interacting 3-particle, dimer-particle, and trimer states**

- **2-body quantization condition**
Bound state system from REFT QC

Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states
Romero-López et al., JHEP 10 (2019) 007

Graphs showing the relationship between $\frac{k}{m}$ cot δ_0 and $(k/m)^2$ for different values of a: $a=2$ and $a=16$. The graphs compare linear fits, quartic global fits, and the energy $E = 3m$. The graphs indicate the behavior of the system under different conditions, with $a=2$ and $a=16$ showing distinct patterns in the scatterplots.
Numerical procedure

- Discretization of the integral equation → N linear equations (Matrix equation)
- Regulation of the bound-state pole via ϵ-prescription

\[A_2(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} A_2(s; N, \epsilon) \]

Systematics

- **Unitarity test:** \[\text{Im} A_2(s) = \rho_2(s) |A_2(s)|^2 \quad \rightarrow \quad \Delta \rho_2 = 100 \times \left| \frac{\text{Im} A_2^{-1}(s; N, \epsilon) + \rho_2(s)}{\rho_2(s)} \right| \]

- **Convergence test:** \[\Delta_N A_2 = 2 \times \left| \frac{A_2(s; N + 1, \epsilon) - A_2(s; N, \epsilon)}{A_2(s; N + 1, \epsilon) + A_2(s; N, \epsilon)} \right| \]

Methods

- **“Brute force”**
- **Explicit pole removal**
- **Spline-based quadratures**
Brute force method

Three-body scattering in the presence of bound states

\[D_s^{(u,u)}(p, k) = -M_2(E_{2,p}^*)G_s(p, k, \epsilon)M_2(E_{2,k}^*) - \int_0^{k_{\text{max}}} \frac{k'^2}{(2\pi)^2\omega_{k'}} G_s(p, k', \epsilon) D_s^{(u,u)}(k', k), \]

\[
\begin{align*}
\text{Discretization:} & \quad d(N, \epsilon) = -G(\epsilon) - P \cdot G(\epsilon) \cdot M \cdot d(N, \epsilon) \\
\text{Matrix inversion:} & \quad d(N, \epsilon) = -\left[\mathbb{1} + P \cdot G(\epsilon) \cdot M \right]^{-1} \cdot G(\epsilon) \\
\text{Limits:} & \quad d^{(u,u)}(p, k) = \lim_{\epsilon \to 0} \lim_{N \to \infty} d(N, \epsilon) \\
\text{Amputation:} & \quad D^{(u,u)}(p, k) \equiv M_2(p)d^{(u,u)}(p, k)M_2(k) \\
\text{Double ordered limit \rightarrow single limit:} & \quad \epsilon \propto \eta/N
\end{align*}
\]
Numerical procedures – continuation

Interpolation

\[d_{S}^{(u,u)}(p,k) = -G_{S}(p,k) - \int_{0}^{\infty} \frac{dk'k'^{2}}{(2\pi)^{2}\omega_{k'}}G_{S}(p,k')M_{2}(k')d_{S}^{(u,u)}(k',k) \]

1. Plug the solution
2. Plug the BS momentum
3. Integrate (sum over discrete momenta)

Limits

Poisson summation formula \(\rightarrow\) error

\[\sigma(\epsilon, N) \approx |G_{S} \rho_{2} d^{(u,u)}| e^{-\eta} \]

\[\eta = 2\pi \epsilon N \times \text{(energy factors)} \]
Splines-based method

\[d_{S}^{(u,u)}(p, k) = -G_{S}(p, k) - \int_{0}^{\infty} \frac{dk'k'^2}{(2\pi)^2 \omega_{k'}} G_{S}(p, k') M_{2}(k') d_{S}^{(u,u)}(k', k) \]

\[d_{S}^{(u,u)}(\sigma_k, \sigma_p) = -G_{S}(\sigma_k, \sigma_p) - \sum_{n=0}^{N_s} \omega_{n}(\sigma_k, s) d_{S}^{(u,u)}(\sigma_q, s) \]

\[d_{S}^{(u,u)}(\sigma_k, \sigma_p) \approx \sum_{n=0}^{N_s} S_{n}(\sigma_k) d_{S}^{(u,u)}(\sigma_q, \sigma_p) \]

Possible improvement

\[\int_{0}^{(\sqrt{s}-m)^2} \frac{d\sigma_q}{\pi} G_{S}(\sigma_k, \sigma_q) \frac{\lambda^{1/2}(s, \sigma_q, m^2)}{16\pi s} M_{2}(\sigma_q) S_{i}(\sigma_q) = \sum_{n=0}^{N_s} \omega_{n}(\sigma_k) S_{i}(\sigma_{q,n}) \]
Extrapolations of the results

- Expansion in $1/N$
- Epsilon regulator fixed to $\epsilon \propto \eta/N$
Example results, $M^2 = 3m^2$, i.e. $a=2$

\[\Delta \rho_2(q/m) \cot \delta \]
Example results, $M^2 = 3.89m^2$, i.e. $a=6$

\[\Delta \rho_2 (\rho/m) \cot \delta \]

\[\rho_2 A_2 \]

\[\Delta \rho_2 \]

\[(E/m)^2 \]
Example result, three-body scattering length

This work, $\eta = 15$
Romero-López et al. ○
NREFT $\Lambda = 0.75m$

Romero-Lopez et al., JHEP 10 (2019) 007
Example result, $2 \rightarrow 3$ amplitude

We are not limited below the three-body threshold,
Below the threshold — circular cut

- Analytic structure of the integration kernel
- OPE develops the circular cut

- Real Particle Exchange cut

\[\sigma_{\pm} = \frac{1}{2}(s - \sigma_{p'} + 3m^2) \pm \frac{1}{2\sqrt{\sigma_{p'}}}\sqrt{\sigma_{p'} - 4m^2} \lambda^{1/2}(s, \sigma_{p'}, m^2) \]

- Crossing the real axis

\[\sigma_{c1} = \frac{(m^2 - s)(m^2 - \sigma_{p'} + s)}{(m^2 - \sigma_{p'} - s)} \quad \sigma_{c2} = \frac{(m^2 - s)(2m^2 - \sigma_{p'})}{\sigma_{p'}} \]
Circular cut in motion picture

\[\epsilon = 0.3 \]

\[\text{Im} \sigma_p, 0.0 \]

\[\text{Re} \sigma_p \]

\[\text{Re OPE} \]

\[\text{Im OPE} \]

Three-body scattering in the presence of bound states

work in progress
Interpolation and bound–state poles

- Interpolation requires contour deformation
- We need to solve for complex isobar energies lying along the contour
- Three–body poles lie close to the threshold
 - no circular cut
 - no deformation needed
Bound–state–particle scattering

- Model study—formation of the three–body bound states
- Analytic properties of the B–matrix formalism

Dawid, Szczepaniak, Phys. Rev. D 103 (2021) 1, 014009

Generalization of the B-matrix formalism

- Amplitude constrained by unitarity in the physical interval

![Diagram showing the B-matrix formalism]

\[
\int_q \equiv \int \frac{d\Omega_q}{4\pi} \int_0^{q_{\text{max}}} \frac{dq}{2\pi^2 \omega_q} = \int \frac{d\Omega_q}{4\pi} \int_{\sigma_{\text{min}}}^{(\sqrt{s}-m)^2} \frac{d\sigma_q}{2\pi} \tau(s, \sigma_q)
\]

- One can not continue below two-body threshold

- Generalization needed to include coupled channels

\[
A_{22} = B_{22} + \int_k B_{22} \rho_2 A_{22} + \int_q B_{22,q} A_{22,q},
\]

\[
A_{23,p} = B_{23,p} F_p + \int_k B_{23} \rho_2 A_{23,p} + \int_q B_{23,q} A_{33,q},
\]

\[
A_{32,p'} = F_{p'} B_{32,p'} + \int_k F_{p'} B_{32} \rho_2 A_{32,qp'} + \int_q F_{p'} B_{32,q} A_{32,q},
\]

\[
A_{33,p'} = F_{p'} B_{33,p'} F_p + \int_k F_{p'} B_{33} \rho_2 A_{33,p} + \int_q F_{p'} B_{33,p} A_{33,q}.
\]
Generalization of the B–matrix formalism

- Satisfies unitarity above the three–particle threshold
- New kernels include multi–channel couplings, for example

\[\tilde{A}_{33} = \mathcal{H}_{33} + \int \mathcal{H}_{33} \mathcal{M}_2 \tilde{A}_{33} \]

- Formal solutions can be found

\[\tilde{A}_{33} = \frac{1}{1 - \mathcal{H}_{33} \mathcal{M}_2} \mathcal{H}_{33} \]
\[\tilde{A}_{32} = \frac{1}{1 - \mathcal{H}_{33} \mathcal{M}_2} \mathcal{H}_{32} \]
\[\tilde{A}_{23} = \frac{1}{1 - \mathcal{H}_{22} i \rho_2} \mathcal{H}_{23} \]
\[\tilde{A}_{22} = \frac{1}{1 - \mathcal{H}_{22} i \rho_2} \mathcal{H}_{22} \]
Generalization of the B–matrix formalism

Approximation: all multi–particle interactions are constant and real (couplings \(g_{ij} \)),

\[
\begin{align*}
 a_{33}(s) &= \frac{g_{33}}{1 - g_{22}i\rho_2 - g_{33}\mathcal{I}(s)}, \\
 a_{22}(s) &= \frac{g_{22}}{1 - g_{22}i\rho_2 - g_{33}\mathcal{I}(s)}.
\end{align*}
\]

Solutions do not satisfy unitarity below the three–body threshold

Spurious singularities start arbitrarily close to the two–body threshold

Kernel suffering from non–physical left–hand cuts:

\[
\mathcal{I}(s) = \int_{\sigma_{\text{min}}}^{(\sqrt{s}-m)^2} \frac{\sigma_q}{2\pi} \tau(s, \sigma_q) \mathcal{M}_2(\sigma_q)
\]
Analyticity of the B-matrix equations

- Dispersion procedure ensures analyticity

Kernel free from those problems:

\[\mathcal{I}_d(s) = \frac{(s - s_s)^2}{\pi} \int_\infty ds' \frac{\text{Im} \, \mathcal{I}(s')}{(3m)^2 (s' - s - i\epsilon)(s' - s_s - i\epsilon)^2} \]

- Spurious singularities pushed to non-physical Riemann sheets and three-body physics influences the amplitude,
- General dispersion procedure for the three-body unitarity formalism is needed

\[b_0 = -\frac{g_{33}}{1 - g_{33} \mathcal{I}_d(s_{th,2})} \]
Including OPE

How does this generalized B-matrix approach compare with EFT?

- **B-matrix formal solution:**
 \[
 \tilde{A}_{22} = \frac{1}{1 - \mathcal{H}_{22}i\rho_2} \mathcal{H}_{22}
 \]

 where the \(\mathcal{H} \) matrix is

 \[
 \mathcal{H}_{22} = B_{22} + B_{23} M_2 \left(\frac{1}{1 - B_{33} M} B_{32} \right)
 \]

 \[
 \mathcal{H}_{22} = g_B^2 \frac{1}{1 + G_S \mathcal{M}_2} \mathcal{M}_2
 \]

- **REFT ladder formal solution:**
 \[
 d = \frac{1}{1 - \mathcal{K}i\rho_2} \mathcal{K}
 \]

 where the \(\mathcal{K} \) matrix is

 \[
 \mathcal{K} = g^2 \frac{1}{1 + G_S \text{P.V.}[\mathcal{M}_2]} (-G_S)
 \]

Those two are matrices defined in different momentum spaces!
N/D approximation

Non-perturbative approximation of the ladder solution

\[A_2 = \frac{N(s)}{D(s)} \]

- **N** - contains left hand cuts,
- **D** - right hand cuts

\[N(s) = \frac{1}{\pi} \int_{-\infty}^{s_{L2}} ds' \frac{\text{Im} A_2(s')}{s' - s - i\epsilon} D(s') , \]

\[D(s) = 1 - \frac{s}{\pi} \int_{(M+m)^2}^{\infty} ds' \frac{\rho_2(s')}{s'(s' - s - i\epsilon)} N(s') \]

\[D(s) = 1 + \frac{s}{\pi^2} \int_{-\infty}^{s_{L2}} ds' \ g(s, s') \ \text{Im} A_2(s') \ D(s') \]
Conclusions

- Systematic procedure for solving the integral equations
- Agreement with previous studies
- Generalization of the B-matrix formalism
- Study of the analytic properties

Future prospects

- Continuing below the two-body threshold and to complex energies
- Understanding the Efimov aspects of the model
- Controlling the regularization scheme/ cutoff dependence
- Formulation of the B-matrix satisfying analyticity
- Generalization to arbitrary spins
THANK YOU

I AM BOUND TO PLEASE THEE WITH MY ANSWERS
For three-body experts – black to move

chessskill.blogspot.com/2020/06/three-pawns-problem.html