Trace anomaly form factors from lattice QCD

arXiv:2401.05496 [hep-lat]

Bigeng Wang

Department of Physics and Astronomy, University of Kentucky

Collaborators: Fangcheng He, Gen Wang, Jian Liang, Terrence Draper, Keh-Fei Liu, Yi-Bo Yang (χ QCD collaboration)

Jefferson Lab Theory Seminar January 29th, 2024

Outline

- Introduction
 - Scale invariance(?), the trace anomaly and hadron mass
 - The "pion mass puzzle" & the mass distribution in the pion
 - Radius and spatial distribution of the trace anomaly
- Calculation of the QCD trace anomaly from lattice QCD (glue part)
 - Numerical setup
 - Extract form factors from 2-point, 3-point correlation functions
- Results
 - Trace anomaly form factors, mass radii, and spatial distributions
- Conclusion and outlook

Scale invariance, trace anomaly and hadron mass

- The Standard Model \mathscr{L}_{SM} has symmetries (invariances under transformations):

 - Non-symmetries: (classically) look like symmetries but actually not! \leftrightarrow anomaly
 - - This is not true with the quantum effects (from QCD): $\partial_{\mu}J^{\mu} \neq 0 \leftrightarrow$ anomaly
- Why do we call it **trace** anomaly?
 - Corresponding Noether current of the classical scale invariance is:
 - The conserved current J^{μ}_{scale} : •

$$\partial_{\mu}J^{\mu}_{\text{scale}} = \partial_{\mu}(x_{\nu}T^{\mu\nu}) = (\partial_{\mu}x_{\nu})$$

• What are the physics related to it?

Bigeng Wang (University of Kentucky)

• Noether's theorem: symmetry \rightarrow conserved current J^{μ} : $\partial_{\mu}J^{\mu} = 0 \rightarrow$ time independent classical charge $\dot{Q} = 0$ • Scale invariance at $m_q = 0: \psi(x) \to \lambda^{3/2} \psi(\lambda x), A^a_\mu(x) \to \lambda A^a_\mu(\lambda x)$, one can find $\mathscr{L} \to \mathscr{L}' = \lambda^4 \mathscr{L}(\lambda x), S \to S$ Figure from Wikipedia $J^{\mu}_{\text{scale}} = x$ momentum flux Energy-momentum tensor (EMT) $(y_{\nu})T^{\mu\nu} + (\partial_{\mu}T^{\mu\nu})x_{\nu} = T^{\mu}_{\mu} \neq 0$

trace

anomalv

Trace anomaly form factors

3

Scale invariance, trace anomaly and hadron mass

- What are the **physics** related to the **trace anomaly**? Hadron mass!
 - the matrix element of the EMT: $\langle H(k) | T^{\mu\nu} | H(k) \rangle = 2k^{\mu}k^{\nu}/2m_{H} c^{-2} \langle \frac{e^{nergy}}{density} \rangle$
 - the trace of EMT yields the mass of the hadron:

 $\langle H(k) | T$

- If $T^{\mu}_{\mu} = 0$, hadrons are massless
- However, $T^{\mu}_{\mu} \neq 0$ and all hadrons are NOT massless: $\langle \mathrm{H}(\mathsf{k}) | T^{\mu}_{\mu} | \mathrm{H}(\mathsf{k}) \rangle = m_{\mathrm{H}} = \sum m_{\mathrm{H}}$

$$\mu^{\mu} | \mathrm{H}(\mathbf{k}) \rangle = m_{\mathrm{H}}$$

$$n_f \langle \overline{\psi}_f \psi_f \rangle_{\mathrm{H}} + \langle \frac{\beta}{2g} F^2 + \sum_f \gamma_m m_f \overline{\psi}_f \psi_f \rangle_{f}$$

the σ term

 $(T^{\mu}_{\mu})^{a}$ trace anomaly from dimensional regularization R. Tarrach, Nucl. Phys. B 196, 45 (1982)

Trace anomaly form factors

shear stress pressure

- **Trace anomaly:** a very important term in the hadron mass!
 - For the **nucleon**, the σ term is small (i.e. ~ 8.5% of the nucleon mass), trace anomaly dominates.

[Liu, PhysRevD.104.076010] **[YB Yang, et al. Phys. Rev. Lett. 121, 212001 (2018)]**

• For the **pion**, the σ term contributes **half of the pion mass.** (Gellmann-Oakes-Renner relation) and *Feynman-Hellman theorem*) therefore the trace anomaly term contributes another half.

Scale invariance, trace anomaly and hadron mass

- The origin of the nucleon mass:
- Calculations of the trace anomaly (highly non-perturbative):
 - With lattice QCD F. He, P. Sun and Y.B. Yang (¿QCD) (PRD 2021, 2101.04942)

 $\langle (T^{\mu}_{\mu})^{a} \rangle$ trace anomaly

EIC at BNL(https://flic.kr/p/2ncjFe7)

A. e. a. Accardi, The European Physical Journal A 52,268 (2016) A. Ali et al. (GlueX), Phys. Rev. Lett. 123, 072001 (2019), arXiv:1905.10811 [nucl-ex] K. A. Mamo and I. Zahed, Phys. Rev. D 106, 086004 (2022), arXiv:2204.08857 [hep-ph] one of the major scientific goals of the Electron-Ion Collider (EIC) D. E. Kharzeev, Phys. Rev. D 104, 054015 (2021), arXiv: 2102.00110 [hep-ph] Y. Hatta, D.-L. Yang, Phys. Rev. D 98, 074003 (2018), arXiv:1808.02163 [hep-ph]

Notivation: the "pion mass puzzle"

$$m_{\pi} = \sum_{f} m_{f} \langle \overline{\psi}_{f} \psi_{f} \rangle_{\pi} + \langle \frac{\beta}{2g} F^{2} + \sum_{f} \gamma_{m} m_{f} \overline{\psi}_{f} \psi_{f} \rangle_{\pi}$$

the σ term

- Using SU(2) chiral perturbation theory:
 - Left hand side: $m_{\pi} \propto \sqrt{m_f}$, for $m_f = m_u = m_d$
 - Right hand side: by using <u>Gellmann-Oakes-Renner relation</u> and <u>Feynman-Hellman theorem</u>

• the
$$\sigma$$
 term: $\frac{1}{2}m_{\pi}\propto\sqrt{m_{f}}$

- Therefore, the trace anomaly term must also $\propto \sqrt{m_f}$.
- Why does the trace anomaly(conformal symmetry breaking) have a chiral-symmetry-related behavior?
- What kind of structure change can facilitate this attribute when approaching the chiral limit? Spatial distributions

 $\langle (T^{\mu}_{\mu})^{a} \rangle$ trace anomaly

K.-F. Liu, Phys. Rev. D 104, 076010 (2021)

K.-F. Liu, arXiv:2302.11600 [hep-ph]

From mass to its spatial distribution

the σ term

 $\langle (T^{\mu}_{\mu})^{a} \rangle$ trace anomaly, RG invariant

Notivation: the "pion mass puzzle"

- the chiral limit?
- As $m_f \rightarrow 0$, the density function $\rho_H(r)$ changes sign.
 - Why not calculate the form factors?
 - Radius, spatial distribution of mass, etc.
 - Experimentally measurable(?)

$$\mu_{\underline{\pi}} = \sum_{f} m_{f} \langle \overline{\psi}_{f} \psi_{f} \rangle_{\pi} + \left(\frac{\beta}{2g} F^{2} + \sum_{f} \gamma_{m} m_{f} \overline{\psi}_{f} \psi_{f} \rangle_{\pi} \right)$$

the σ term $\propto \sqrt{m_{f}} \quad \langle (T_{\mu}^{\mu})^{a} \rangle$ trace anomaly $\propto \sqrt{m_{f}}$

• What kind of structure change can facilitate this attribute when approaching F. He, P. Sun and Y.B. Yang (¿QCD) (PRD 2021, 2101.04942)

Bigeng Wang (University of Kentucky)

From the matrix element to form factor

Bigeng Wang (University of Kentucky)

From the matrix element to form factor

$$T^{\mu}_{\mu} = \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} +$$

the σ term

- Normalization convention: $1 = \int \frac{d^3 p}{(2\pi)^3} |p\rangle \frac{m}{E_p} \langle p|$ •
- Define a dimensionless scalar form factor $\mathscr{F}_{m,H}$, where $Q^2 = -(p'-p)^2$:
 - for spin- $\frac{1}{2}$ particle like the nucleon:

for spin-0 particle like the pion:

 $\langle p', \mathbf{S}' | T^{\mu}_{\mu} | p$

matrix elen

 $\langle p' | T^{\mu}_{\mu}$

• $\mathscr{F}_{m H}(Q^2 = 0) = 1$: the total mass of hadron H (in percentage).

$$\frac{\beta}{2g}F^2 + \sum_f \gamma_m m_f \overline{\psi}_f \psi_f$$

 $\langle (T^{\mu}_{\mu})_{a} \rangle$ trace anomaly, RG invariant

$$|, |p\rangle = \sqrt{\frac{E_p}{m}} a_p^+ |\Omega\rangle$$

- Form factors $\mathscr{F}_{m,H}(Q^2)$
- Mass radius $\langle r^2 \rangle_{\rm m}({\rm H}) = -6 \frac{d \mathcal{F}_{{\rm m},{\rm H}}(Q^2)}{dQ^2}$
- 3-dimensional spatial distribution in

Bigeng Wang (University of Kentucky)

$$\rho_{\rm H}(\mathbf{r}) = \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{m_{\rm H}}{E_{\rm H}} e^{-i\mathbf{\Delta}\cdot\mathbf{r}} \mathcal{F}_{\rm m,H}(Q^2)$$

only valid for the non-relativistic systems $\Delta \gg 1/m$

R. L. Jaffe, Phys. Rev. D 103, 016017 (2021)

- Form factors $\mathscr{F}_{m.H}(Q^2)$
- Mass radius $\langle r^2 \rangle_{\rm m}({\rm H}) = -6 \frac{d \mathcal{F}_{{\rm m},{\rm H}}(Q^2)}{dQ^2}$
- 2-dimensional spatial distribution in the infinite momentum frame (IMF) $P_{z} \rightarrow \infty \text{ and } \mathbf{P} \cdot \mathbf{\Delta} = 0$

$$\Delta = p - p' \qquad \mathbf{P} = p + p'$$

C. Lorcé, H. Moutarde, and A. P. Trawiński, Eur. Phys. J. C 79, 89 (2019), arXiv:1810.09837 [hep-ph]

Trace anomaly form factors

15

From the matrix element to form factor

Bigeng Wang (University of Kentucky)

Outline

- Introduction
 - Scale invariance(?), trace anomaly and hadron mass
 - The "pion mass puzzle" & the mass distribution in the pion
 - Radius and spatial distribution of the trace anomaly
- Calculation of the QCD trace anomaly from lattice QCD (glue part)
 - Numerical setup
 - Extract form factors from 2-point, 3-point correlation functions
 - Results
 - Trace anomaly form factors, mass radii, and spatial distributions
 - Conclusion and outlook

Trace anomaly form factors

- For the nucleon, the σ term is small (i.e. ~ 8.5% of the nucleon mass), the glue part of the trace anomaly dominates.
- For the pion, the trace anomaly term $\sim \frac{1}{2}m_{\pi}$ (Gellmann-Oakes-Renner relation and Feynman-Hellman theorem) assuming γ_m is not large, the glue part dominates the trace anomaly term.
- In this work, we calculate the glue trace anomaly form factors $G_{\rm H}(Q^2)$

[Liu, PhysRevD.104.076010] [YB Yang, et al. Phys. Rev. Lett. 121, 212001 (2018)]

Trace anomaly form factors (glue)

- 2-dimensional spatial distribution in

the infinite momentum frame (IMF) $P_{z} \rightarrow \infty$ and $\mathbf{P} \cdot \mathbf{\Delta} = 0$

$$\Delta = p - p' \qquad \mathbf{P} = p + p'$$

C. Lorcé, H. Moutarde, and A. P. Trawiński, Eur. Phys. J. C 79, 89 (2019), arXiv:1810.09837 [hep-ph]

• Form factors $\mathscr{F}_{m,H}(Q^2) = \mathscr{F}_{\sigma,H}(Q^2) + \mathscr{F}_{ta,H}(Q^2)$ $G_H(Q^2)$ • Mass radius $\langle r^2 \rangle_{\rm m}({\rm H}) = -6 \left. \frac{d\mathcal{F}_{{\rm m},{\rm H}}(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \sim -6 \left. \frac{d\mathcal{G}_{\rm H}(Q^2)}{dQ^2} \right|_{Q^2 \to 0}$ $\rho_{\rm H}^{\rm IMF}(\mathbf{r}_{\perp}) = \left[\frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot \mathbf{r}_{\perp}} \tilde{G}_{\rm H}(Q^2) \Big|_{\mathbf{P} \cdot \Delta = 0}^{P_z \to \infty} \right]$

Bigeng Wang (University of Kentucky)

The path integral in the Minkowski space

Observables from the path integral (Minkowski):

$$\langle O \rangle = \frac{\int \mathscr{D}\phi O e^{iS_{M}(\phi)}}{\int \mathscr{D}\phi e^{iS_{M}(\phi)}} \checkmark$$

E.g. *n*-point correlation functions

$$\langle 0 | T\phi(x_1) \dots \phi(x_n) | 0 \rangle$$

- When the couplings are strong $\alpha_s \sim 1$ \bullet
- Can we calculate without perturbative expansions/non-perturbatively? \bullet

Input parameters

 $m_q, \ldots, \alpha_s, \ldots$

$$Z(J) = \int \mathscr{D}\phi e^{i\int d^4x [\mathscr{L}_0 + \mathscr{L}_1 + J\phi]}$$

$$\frac{\delta}{i\delta x_1} \dots \frac{\delta}{i\delta x_n} Z(J) \bigg|_{J=0}$$

2S, ...

By Joel Holdsworth (Joelholdsworth) - Non-Derived SVG of Radiate gluon.png, originally the work of SilverStar at Feynmann-diagram-gluon-radiation.svg, updated by joelholdsworth., Public Domain, https:// commons.wikimedia.org/w/index.php?curid=1764161

Feynman diagrams **Feynman rules** Perturbative expansions

Trace anomaly form factors

21

The path integral in the Euclidean space

Observables from the path integral (Minkowski):

$$\langle O \rangle = \frac{\int \mathscr{D}\phi O e^{iS_{\mathrm{M}}(\phi)}}{\int \mathscr{D}\phi e^{iS_{\mathrm{M}}(\phi)}} \quad \checkmark \quad Z_{\mathrm{N}}$$

Observables from the path integral (Euclidean):

$$\langle O \rangle = \frac{\int \mathscr{D}\phi O e^{-S_{\rm E}(\phi)}}{\int \mathscr{D}\phi e^{-S_{\rm E}(\phi)}} \quad \longleftarrow \quad Z_{\rm E}$$
 (particular)

Ensemble average: with distribution $\propto e^{-S_E(\phi)}$

$$\langle O \rangle \simeq \frac{1}{N} \sum_{\substack{N \\ N}} O_i \pm \mathcal{O}(\sqrt{N})$$

E.g. *n*-point correlation functions
$$\langle 0 | T\phi(x_1) \dots \phi(x_n) | 0 \rangle$$

Wick's theorem
$$\downarrow^{\vec{p}_i}$$

hadron spectrum, matrix elements ...

Numerical setup with lattice QCD

• Observables from the path integral (Euclidean):

Bigeng Wang (University of Kentucky)

 $S_F($

pectrum, matrix elements ..., at $m_{v,q}$

Renormalization on the lattice

The trace anomaly emerges with the lattice regulation after renormalization:

$$T^{\mu}_{\mu} = \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} + \frac{\beta(g)}{2g} F^{2} + \sum_{f} \gamma_{m}(g) m_{f} \overline{\psi}_{f} \psi_{f}$$

the σ term $\langle (T^{\mu}_{\mu})_{a} \rangle$ trace anomaly, RG invariant

Renormalization method: based on the mass sum rule

F. He, P. Sun and Y.B. Yang (¿QCD) (PRD 2021, 2101.04942) $\frac{\beta(g)}{2g}$ and $\gamma_m(g)$ are independent of the hadron state

 Solve the mass sum rule equations for pseudoscalar(π) and vector meson(ρ) at one valence mass:

$$\begin{split} M_{\rm PS} &- (1+\gamma_m) \langle H_m \rangle_{\rm PS} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\rm PS} = 0, \\ M_{\rm V} &- (1+\gamma_m) \langle H_m \rangle_{\rm V} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\rm V} = 0 \\ \text{and obtain the bare } \frac{\beta(g)}{2g} \text{ and } \gamma_m(g) \end{split}$$

- S. Caracciolo, G. Curci, P. Menotti, and A. Pelissetto, Annals of Physics 197, 119 (1990)
- H. Makino and H. Suzuki, Progress of Theoretical and Experimental Physics 2014, 063B02 (2014)
- M. Dalla Brida, L. Giusti, and M. Pepe, JHEP 04, 043 (2020), arXiv:2002.06897 [hep-lat]

Verify the assumptions: sum rule satisfied for other masses Mixing with lower dimensional operators is negligible

Renormalization on the lattice

The trace anomaly terms need renormalization:

$$T^{\mu}_{\mu} = \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} +$$

$$\frac{\beta(g)}{2g} F^2 + \sum_{f} \gamma_m(g) m_f \overline{\psi}_f \psi_f$$

the σ term $\langle (T^{\mu}_{\mu})_{a} \rangle$ trace anomaly, RG invariant **Renormalization method: based on the mass sum rule**

 $\frac{\beta(g)}{2g}$ and $\gamma_m(g)$ are independent of the hadron state

 Solve the mass sum rule equations for pseudoscalar(π) and vector meson(ρ) at $m_v a \sim 0.3$:

$$\begin{split} M_{\rm PS} &- (1+\gamma_m) \langle H_m \rangle_{\rm PS} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\rm PS} = 0, \\ M_{\rm V} &- (1+\gamma_m) \langle H_m \rangle_{\rm V} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\rm V} = 0 & \sim \mathcal{O}(m_{\rm V}^2 a^2) \\ \text{and obtain the bare } \frac{\beta(g)}{2g} = -0.08(1) \\ \text{F. He, P. Sun and Y.B. Yang } (\chi \text{QCD}) \text{ (PRD 2021, 2101.04942)} \end{split}$$

Bigeng Wang (University of Kentucky)

Ε.

Trace anomaly form factors

 $\delta(m_{y}^{2}a^{2})$

- For the nucleon, $\langle H_m \rangle_N$ is small.
- Solve the mass sum rule equations for nucleon at $m_{\rm v}a \sim 0.016$:

$$M_{\rm N} - \langle H_m \rangle_{\rm N} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\rm N} \simeq 0$$

and obtain the bare
$$\frac{\beta(g)}{2g} = -0.129(6)$$

Numerical setup with lattice QCD

Observables from the path integral (Euclidean):

$$\langle O \rangle = \frac{\int \mathscr{D}\phi Oe^{-S_{\rm E}(\phi)}}{\int \mathscr{D}\phi e^{-S_{\rm E}(\phi)}} \qquad \qquad Z_{E}$$
(particular)
(partiduar)
(particular)
(particular)
(particular)
(partiduar

Bigeng Wang (University of Kentucky)

 $S_F($

$$E(J) = \int \mathscr{D}\phi e^{-\int d^4 x_E \mathscr{L}_E}$$

partition function in statistical mechanics)

pectrum, matrix elements ..., at $m_{v,q}$

chiral extrapolation to $m_{v,q}^{\text{phys}}$

 $G_{\rm H}(Q^2) \langle r^2 \rangle_{\rm m}({\rm H}) \rho^{\rm IMF}({\bf r}_{\perp}) \dots, {\rm at} m_{{\rm v},a}^{\rm phys}$

Trace anomaly form factors from lattice QCD

- What kind of observables do we measure on the lattice?
- To extract the form factors:
 - Three-point correlation functions:

$$C_{\pi,3\text{pt}}(t,\tau;\overrightarrow{p_{i}},\overrightarrow{p_{f}}) = \sum_{\overrightarrow{x_{f}},\overrightarrow{z}} e^{-i\overrightarrow{p_{f}}\cdot\overrightarrow{x_{f}}}e^{i\overrightarrow{q}\cdot\overrightarrow{z}}\langle\chi_{\pi}(t,\tau;\overrightarrow{p_{f}},\overrightarrow{p_{f}})\rangle$$

$$\xrightarrow{t \gg \tau \gg 0} \langle \pi \mid \mathcal{O} \mid \pi \rangle Z_{\vec{p}_i} Z$$

Bigeng Wang (University of Kentucky)

Trace anomaly form factors from lattice QCD

- What kind of observables do we measure on the lattice? \bullet
- To extract the form factors:
 - Three-point correlation functions: $C_{\pi,3\text{pt}}(t,\tau;\overrightarrow{p_i},\overrightarrow{p_f}) = \sum e^{-i\overrightarrow{p_f}\cdot\overrightarrow{x_f}}e^{i\overrightarrow{q}\cdot\overrightarrow{z}}\langle\chi_{\pi}(\overrightarrow{x_f})\rangle$

$$\xrightarrow{t \gg \tau \gg 0} \langle \pi \mid \mathcal{O} \mid \pi \rangle Z_{\vec{p}_i} Z_{\vec{p}_f} \frac{m_{\pi}}{E_{p_i}} e^{-\underline{E_i}\tau - \underline{E_f}(t-\tau)} \\ m_{\pi} G_{\pi}(Q^2) \xrightarrow{t = 0} \frac{m_{\pi}}{E_{p_i}} \frac{m_{\pi}}{E_{p_f}} e^{-\underline{E_i}\tau - \underline{E_f}(t-\tau)}$$

• Two-point correlation functions:

$$C_{\pi,2\text{pt}}(t) = \langle \chi_{\pi}(t)\chi_{\pi}^{\dagger}(0) \rangle \xrightarrow{t \gg 0} \frac{m_{\pi}}{E_{i}} Z_{\vec{p}_{i}}^{2} [e^{-E_{i}t} + e^{-E_{i}(T-t)}]$$

$$\vec{x}_{f}, t) \mathcal{O}(\vec{z}, \tau) \chi_{\pi}^{\dagger}(\vec{0}, 0) \rangle$$

Trace anomaly form factors

 \vec{p}_{i}

Numerical setup

 overlap valence fermions on one ensemble of 2+1-flavor domain-wall

one ensemble of 2+1-flavor domain-wall fermion configurations with Iwasaki gauge action

Joint fit of the two- and three point functions

Three-point functions

 $C_{\rm H,3pt}(\vec{p}_i, \vec{p}_f, t, \tau) = m_{\rm H} \, G_{\rm H}(Q^2) \, \mathcal{K}_{\rm H,3pt}(p_i, p_f) Z_{\vec{p}_i} Z_{\vec{p}_f} e^{-E_i \tau - E_f(t-\tau)}$ $+C_{1}e^{-E_{i}^{1}\tau-E_{f}(t-\tau)}+C_{2}e^{-E_{i}^{1}\tau-E_{f}^{1}(t-\tau)}+C_{3}e^{-E_{i}^{1}\tau-E_{f}^{1}(t-\tau)}$ **3pt-2pt joint fit** $\rightarrow G_{\rm H}(Q^2)$ $C_{\rm H,2pt}(t) = \mathcal{K}_{\rm H,2pt}(E_i) Z_{\vec{p}_i}^2 [e^{-E_i t} + e^{-E_i(T-t)}] + A_1 e^{-E_i^1 t}$ $C_{\rm H,2pt}(t) = \mathcal{K}_{\rm H,2pt}(E_f) Z_{\vec{p}_f}^2 [e^{-E_f t} + e^{-E_f(T-t)}] + A_1 e^{-E_f^1 t}$

Ratio of the two- and three point functions

 t_f

 t_0

$$\frac{C_{\mathrm{H},3pt}(t,\tau;\vec{p}_{i},\vec{p}_{f})}{C_{\mathrm{H},2pt}(t;\vec{p}_{f})} \times \sqrt{\frac{C_{\mathrm{H},2pt}(t-\tau;\vec{p}_{i})C_{\mathrm{H},2pt}(t;\vec{p}_{f})C_{\mathrm{H},2pt}(\tau;\vec{p}_{f})}{C_{\mathrm{H},2pt}(t-\tau;\vec{p}_{f})C_{\mathrm{H},2pt}(t;\vec{p}_{i})C_{\mathrm{H},2pt}(\tau;\vec{p}_{i})}} /$$

$$\left[\frac{m_{\mathrm{H}}\mathcal{K}_{\mathrm{H},3pt}(p_{i},p_{f})}{\sqrt{\mathcal{K}_{\mathrm{H},2pt}(p_{i})\mathcal{K}_{\mathrm{H},2pt}(p_{f})}}\right]$$

$$C_{\rm H}^{2}(Q^{2}) + C_{1}^{\prime\prime}e^{-\Delta E_{i}^{1}\tau} + C_{2}^{\prime\prime}e^{-\Delta E_{f}^{1}(t-\tau)} + C_{3}^{\prime\prime}e^{-\Delta E_{i}^{1}\tau - \Delta E_{f}^{1}(t-\tau)}$$

Compare it with the results from 3pt-2pt joint fit

Extract form factors from the two- and three point functions

$$Q^{2}$$
) + $C_{1}''e^{-\Delta E_{i}^{1}\tau}$ + $C_{2}''e^{-\Delta E_{f}^{1}(t-\tau)}$ + $C_{3}''e^{-\Delta E_{i}^{1}\tau-\Delta E_{f}^{1}(t-\tau)}$
 $G_{\rm H}(Q^{2})$

Extract form factors from the two- and three point functions

Bigeng Wang (University of Kentucky)

Extract form factors from the two- and three point functions

Bigeng Wang (University of Kentucky)

Outline

- Introduction
 - Scale invariance(?), trace anomaly and hadron mass
 - The "pion mass puzzle" & the mass distribution in the pion
 - Radius and spatial distribution of the trace anomaly
- Calculation of the QCD trace anomaly from lattice QCD (glue part)
 - Numerical setup
 - Extract form factors from 2-point, 3-point correlation functions
- Results
 - Trace anomaly form factors, mass radii, and spatial distributions
 - Conclusion and outlook

Bigeng Wang (University of Kentucky)

glue trace anomaly form factor of the pion preliminary

- positive at $Q^2 = 0 \,\mathrm{GeV}^2$ (contribution to the pion mass from glue)
- ullet
- sign change of glue trace anomaly form factor of the pion

Bigeng Wang (University of Kentucky)

The predictions from chiral perturbation theory at small Q^2 region:

$$\mathscr{F}_{\mathrm{ta},\pi}^{\mathrm{ChPT}}(Q^2) \sim \frac{1}{2} - \frac{1}{2m_\pi^2}Q^2$$

[Novikov, Shifman, Z. Phys. C8, 43 (1981)] [Chen, Phys.Rev. D57 (1998) 2837-2846] [Y. Hatta, Private communication]

glue trace anomaly form factor of the pion preliminary

Bigeng Wang (University of Kentucky)

glue part of the trace anomaly density of the pion preliminary

• Form factors $G_{\rm H}(Q^2) \rightarrow \tilde{G}_{\rm H}(Q^2) = G_{\rm H}(Q^2)/G_{\rm H}(Q^2 = 0)$

Fit with functional form: *z*-expansion

[R. J. Hill and G. Paz, Phys. Rev. D 82, 113005 (2010)]

Bigeng Wang (University of Kentucky)

$$\tilde{G}_{\rm H}(Q^2) = \tilde{\mathscr{G}}_{\rm H}(z) = \sum_{k=0}^{k_{\rm max}} a_k z^k,$$
$$z(t, t_{\rm cut}, t_0) = \frac{\sqrt{t_{\rm cut} - t} - \sqrt{t_{\rm cut} - t_0}}{\sqrt{t_{\rm cut} - t} - \sqrt{t_{\rm cut} - t_0}}, t = -Q^2$$

glue trace anomaly spatial distribution of the pion preliminary

2D spatial distribution in the infinite momentum frame (IMF)

$$P_z \to \infty \text{ and } \mathbf{P} \cdot \mathbf{\Delta} = 0$$
 $\rho_{\mathrm{H}}^{\mathrm{IMF}}(\mathbf{r}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i \mathbf{\Delta}_{\perp} \cdot \mathbf{r}_{\perp}} \tilde{G}_{\mathrm{H}}(Q^2) |_{\mathbf{P} \cdot \mathbf{\Delta} = 0}^{P_z \to \infty}$

• sign change of glue trace anomaly spatial distribution of the pion, negative at small r.

Radius of the glue trace anomaly of the pion preliminary

Radius of the glue trace anomaly \bullet

$$\langle r^2 \rangle_{\rm m}({\rm H}) = -6 \left. \frac{d \mathcal{F}_{{\rm m},{\rm H}}(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \sim \langle r_g^2$$

Lattice: chiral extrapolation to the physical pion mass using

$$\langle r_g^2 \rangle_{\text{ta}}(\pi) = a_{\pi}/m_{\pi}^2 + b_{\pi} + c_{\pi} \log\left(\frac{m_{\pi}^2}{m_{\pi,phy}^2}\right)$$

$$\langle r_g^2 \rangle_{\text{ta}}^{\text{puy}}(\pi) = 21.5(5.2)(11.7) \,\text{tm}^2$$

The predictions from chiral perturbation theory at small O^2 region:

$$\langle r^2 \rangle_{\rm m}^{\rm ChPT}(\pi) = \frac{3}{m_\pi^2} \simeq 6 \, {\rm fm}^2$$

Results for the nucleon preliminary

2D spatial distribution in the infinite momentum frame (IMF) $P_7 \rightarrow \infty$ and $\mathbf{P} \cdot \mathbf{\Delta} = 0$

- NO sign change of glue trace anomaly form factor of the nucleon
- positive.

• NO sign change of glue trace anomaly spatial distribution of the nucleon, always

Mass radius of the nucleon preliminary

• Radius of the trace anomaly(glue part)

$$\langle r^2 \rangle_{\rm m}({\rm H}) = -6 \left. \frac{d\mathcal{F}_{{\rm m},{\rm H}}(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \sim \langle r_g^2 \rangle_{Q^2 \to 0}$$

Lattice: chiral extrapolation to the physical pion mass using

$$\langle r_g^2 \rangle_{\text{ta}}(N) = a_N + b_N m_{\pi}^2 + c_N m_{\pi}^2 \log (1 - c_N m_{\pi}^2)$$

$$R_{\rm m} \simeq R_g \equiv \sqrt{\langle r_g^2 \rangle_{\rm ta}^{\rm phys}({\rm N})} = 0.89(10)$$

Trace anomaly form factors and GFF

X. Ji, arXiv:2102.07830 [hep-ph] K.-F. Liu, arXiv:2302.11600 [hep-ph]

Trace Anomaly Form Factors

$$T^{\mu}_{\mu} = \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} + \left[\sum_{f} m_{f} \gamma_{m}(g) \overline{\psi}_{f} \psi_{f} + \frac{\beta(g)}{2g} F^{2}\right]$$

 $(T^{\mu}_{\mu})^{a}$ trace anomaly, RG invariant

Trace part $\frac{\mu\nu}{T^{\alpha}}$

 $A_{q,g}$

Tong, et al., Physics Letters B 823, 136751 (2021) Pefkou, et al., Phys. Rev. D 105, 054509 (2022) et al., (arXiv:2307.11707)

$$1 = \int \frac{d^3 p}{(2\pi)^3} |p\rangle \frac{m}{E_p} \langle p|, \quad |p\rangle = \sqrt{\frac{E_p}{m}} a_p^+ |\Omega\rangle \quad \text{Hackett, e}$$

$$\mathbf{S}' |T_{\mu}^{\mu}|p, \mathbf{S}\rangle = m_{\mathrm{N}} \mathcal{F}_{\mathrm{m,N}}(Q^2) \bar{u}(p', \mathbf{S}') u(p, \mathbf{S}) \quad \mathbf{I}''$$

$$\mathcal{F}_{m,H}(Q^2) = \mathcal{F}_{ta,H}(Q^2) + \mathcal{F}_{\sigma,H}(Q^2)$$
$$\langle r^2 \rangle_{ta} = -6\left(\frac{dA(Q^2)}{dQ^2}\right)$$

Bigeng Wang (University of Kentucky)

 $\langle p',$

Y. Hatta, arXiv:1810.05116 [hep-ph]

Gravitational Form Factors

moments of Generalized Parton Distribution (GPD) $\langle P' | (T_{q,g}^{\mu\nu}) | P \rangle / 2m_{\rm N} = \bar{u}(P') | A_{q,g}(Q^2) \gamma^{(\mu} \bar{P}^{\nu)}$ $+B_{q,g}(Q^2)\frac{\bar{P}^{(\mu}i\sigma^{\nu)\alpha}q_{\alpha}}{2\pi}$
$$\begin{split} &+ D_{q,g}(Q^2) \frac{q^{\mu}q^{\nu} - g^{\mu\nu}q^2}{m_N} \\ &+ \bar{C}_{q,g}(Q^2) m_N \eta^{\mu\nu} \big] u(P) \end{split}$$
 $|p\rangle = \sqrt{2E_p}a_p^+|\Omega\rangle$

$$\langle P' | T^{\mu}_{\mu} | P \rangle / 2m_{\rm N} = \bar{u}(P') \Big[(A(Q^2)m_{\rm N} - B(Q^2) + 3D(Q^2) \frac{Q^2}{m_{\rm N}} \Big] u(P) \Big]$$

$$-+\frac{3D(0)}{M^2}-\frac{d\mathcal{F}_{\sigma}(Q^2)}{dQ^2}$$

Mass radius of the nucleon preliminary

• Our result with lattice QCD

 $R_{\rm m} \simeq R_g \equiv \sqrt{\langle r_g^2 \rangle_{\rm ta}^{\rm phys}}$ (N) = 0.89(10)(07) fm

• A direct dipole fit to the recent GlueX Collaboration (experimental) data:

$$R_{\rm m} \equiv \sqrt{\langle R_{\rm m}^2 \rangle} \simeq R_g = 0.55(3) \,\mathrm{fm}$$

D. E. Kharzeev, Phys. Rev. D 104, 054015 (2021),arXiv:2102.00110 A. Ali et al. (GlueX), Phys. Rev. Lett. 123, 072001 (2019), arXiv:1905.10811 A recent lattice calculation of the quark and glue GFF

$$R_{\rm m} \equiv \sqrt{\langle r^2 \rangle_{\rm m}^{\rm GFF}(N)} = 1.038(98) \,\mathrm{fm}$$

Pefkou, et al., Phys. Rev. D 105, 054509 (2022) Pefkou, Private communication Hackett, et al., (arXiv:2307.11707)

• A holographic GFF calculation with lattice input:

$$R_{\rm m} \simeq R_g = 0.926(8) \, {\rm fm}$$

K. A. Mamo and I. Zahed, Phys. Rev. D 106, 086004 (2022), arXiv:2204.08857 [hep-ph]

• Using the quark (from lattice) and the glue GFF from fitting the near-threshold J/Ψ production at $\xi>0$

$$R_{\rm m} \simeq R_g = 1.20(13) \, {\rm fm}$$

Y. Guo, X. Ji, Y. Liu, and J. Yang, Phys. Rev. D 108, 034003 (2023), arXiv:2305.06992 [hep-ph]

Conclusion and outlook

- We have calculated the trace anomaly form factors of the EMT(glue part) with lattice QCD to reveal the mass distribution within hadrons:
 - For the pion, we find a unique sign change in both $G_{\pi}(Q^2)$ and $ho_{\pi}^{
 m IMF}({f r}_{\perp})$.

$$\langle r_g^2 \rangle_{\text{ta}}^{\text{phys}}(\pi) = 21.5(5.2)(11.7) \, \text{fm}^2$$

Possibly large

- For the nucleon, we find no sign change in both $G_{
m N}(Q^2)$ and $ho_{
m N}^{
m IMF}({f r}_{ot}).$

$$R_{\rm m} \simeq R_g \equiv \sqrt{\langle r_g^2 \rangle_{\rm ta}^{\rm phys}({\rm N})} = 0.89$$

Outlook

- In the future, we will include the quark part for the pion, nucleon and ρ meson.
- Calculations on lattice ensembles with physical quark masses and smaller lattice spacings for extrapolations to the continuum limit.

- ge systematic errors here
- $P(10)(07) \, \text{fm}$

$$T^{\mu}_{\mu} = \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} + \underbrace{\frac{\beta}{2g}}_{\{g\}} F^{2}_{f} + \sum_{f} \gamma_{m} m_{f} \overline{\psi}_{f} \psi_{f}$$

the σ term $\langle (T^{\mu}_{\mu})_{a} \rangle$ trace anomaly, RG invariant $m^{\text{phys}}_{\pi} \quad a \to 0$

Thanks for your attention!