
@ Jefferson Lab  
August 31, 2020

Towards a unification of gluon 
distributions at small and moderate x
Yacine Mehtar-Tani  (BNL/RBRC)

Based on: 2001.06449 and 2006.14569 [hep-ph] 
In collaboration with Renaud Boussarie



Y. Mehtar-Tani @ JLAB

Outline

2

• Introduction 
• BK equation and the NLO crisis  
• Where is x hiding?  
• Digression: transverse gauge links at small x  
• Revisiting the shock-wave approximation  
• Road test: inclusive DIS  
• A novel unintegrated gluon distribution  
• Summary and outlook 



Introduction 



Y. Mehtar-Tani @ JLAB

Proton structure and QCD evolution 
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1
x

log Q2

Q2
s (x) • at large  and moderate  the 

proton can be described as a collection of 
weakly interacting partons  

• partonic interpretation breaks down beyond 
leading twist 

• at small  gluon occupation number 
increases and eventually saturates due to 
non-linear effects (gluon recombination) 

Q2 x ∼ Q2/s

x

DGLAP

BFKL

BK-JIMWLK

[Venugopalan, McLerran (MV), Balitsky, Kovchegov (BK)  
Jallilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (JIMWLK) (1993-2001)]
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DIS kinematics
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DGLAP

• DIS kinematics: hadronic partQ2 Q2 + dQ2

|P⟩

proton

X

q

p

p + q

xBj ≡
Q2

2P ⋅ q
=

Q2

s
Q2 = − q2 > 0

• At leading order we recover the Parton model: 
F2(x) ∼ xq(x)

p = xP + k⊥

• Mass condition 

(p + q)2 = 0

⇒−Q2 + xP−q+ ≃ 0

k⊥ ≪ Q

x = xBj⇒q ≡ (q+, Q2/2q+,0)

P ≡ (0, P−, 0⊥)
• Light-cone variables: 

q+ =
q0 + q3

2
q− =

q0 − q3

2

γ*
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DGLAP: Bjorken limit Q2 ∼ s

6

• DGLAP evolution  resums large collinear logarithms     

• successive emissions are strongly ordered in transverse momentum 

ᾱ log Q/μ = ᾱ∫
Q

μ

dk⊥

k⊥

Q ≫ k⊥1
≫ k⊥2

≫ . . . ≫ μ

k−
1 ∼ k−

2 ∼ . . . ∼ P− ∼ s

• The variable related to x = k−/P− ∼ 1

•   is the inverse formation time scalek− ∼ t−1
f

• It follows that   ‘s  are strongly ordered k+ = k2
⊥/k−

q+ ≫ k+
1 ≫ k+

2 ≫ . . . ≫
μ2

P−

k⊥1

k⊥3

k⊥2

q ≡ (q+, Q2/2q+,0)

P ≡ (0, P−, 0⊥) s = q+P−

[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (1972-77)]
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BFKL: Regge limit Q2 ≪ s
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• BFKL evolution  resums large soft logarithms     

• successive emissions are strongly ordered in longitudinal momenta  

ᾱ log s−1 = ᾱ∫
q+

q+
0

dk+

k+

s ∼ q+ ≫ k+
1 ≫ k+

2 ≫ . . . ≫ q+
0

k−
1 ≪ k−

2 ≪ . . . ≪ P− ∼ s

• And  the variable  x = k−/P− ≪ 1

•   is the inverse formation time scalek− ∼ t−1
f

• Transverse momenta are of same order 

q ≡ (q+, Q2/2q+,0)

P ≡ (0, P−, 0⊥) s = q+P−

k⊥1

k⊥3

k⊥2

Q ∼ k⊥1
∼ k⊥2

∼ . . . ∼ μ

[Balitsky, Fadin, Kuraev, Lipatov, (1976-78)]
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The dipole model in DIS
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Ux ≡ [+∞, − ∞]x = P exp [ig∫
+∞

−∞
dx+A−(x+, x)]

• the relevant d.o.f. in the saturation regime are 
strong classical fields   

• eikonal lines:     and  

g A− ∼ 1

p+ ≫ k+ k− ≪ P−

p

A−A−A−

P P

q

shock wave limit:   tf ≡ Q2/q+ ≫ 1/P− → x = Q2/s ≪ 1

• dominant contribution in DIS: dipole scattering

⟨P | Tr Ux1
U†

x2
|P⟩

• path ordered Wilson line



BK and the NLO crisis 
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• Balitsky-Kovchegov (1996-1999) equation describes the non-linear 
evolution of the dipole scattering amplitude as function of the rapidity  
Y ≡ log

q+

Λ+

x+y+

SY(x − y) ≡
1
Nc

⟨ Tr U( x) U† ( y) ⟩Y

∂
∂Y

SY(x − y) = ᾱ∫ dz
(x − y)2

(x − z)2(z − y)2 [SY(x − z)SY(z − y) − SY(x − y)]

x

y

z

BK equation at LO
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• At NLO BK equation was found to be numerically unstable

 [Lappi and Mäntysaari (2015)]

 [Balitsky and Chirilli (2008)]

BK and the NLO crisis  
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BK and the NLO crisis  
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• This is due to the fact that the rapidity variable a 
  evolves independently from   

• As a result small dipoles that radiate larger 
dipoles  generate large collinear logarithms when 

      NLO > LO

Y ≡ log
q+

Λ+
x

k−
1 ∼ k−

2 ⇒

k−
1 = x2

1k+
1 < k−

2 = x2
2k+

2

x1

x2

k+
1

k+
2

x2
1

x2
2

<
k+

2

k+
1

≪ 1

k+
1 ≫ k+

2

⇒

[Beuf  (2014) Ducloué, Iancu, Mueller, Soyez, Triantafyllopoulos  (2015-2019)]

formation ime ordering
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• Several solutions have been proposed: implementing kinematic bound, 
resummation of double logarithms. However, 

‣ they spoil the renormalization picture established at LO 
‣ exhibit scheme dependence  
‣ no operator definition for systematic order by order calculations  
‣ not discussed at the level of observables: inclusive DIS

[Beuf  (2014) Ducloué, Iancu, Mueller, Soyez, Triantafyllopoulos  (2015-2019)]

BK and the NLO crisis  



Where is x hiding?
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Where is x hiding? 
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• In the shock wave [Balitsky (1996)] approach there is no 
explicit dependence on the longitudinal momentum 
fraction of the gluons in the target  

• The standard trick is to identify rapidity variables  Y = η

σ(xBj, Q2) ∼ e2 ∫
1

0
d z P(z) |φ(r) |2 ⟨TrU(r)U†(0)⟩Y

Y ≡ log
q+

q+
0

• It is instructive  to check the collinear limit

η ≡ log
1

xBj

φ( r) =
r ⋅ ϵλ

|r |
K1 ( z(1 − z) |r |2 Q2)

transverse photon wave function 

r

z = ℓ+/q+

q+

1 − z

cross-section
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Where is x hiding? 
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• In the leading twist: expanding for small dipoles  r⊥ ∼ 1/Q ≪ b⊥

U( b +
r
2

) = U ( b ) + ri ∂i U ( b)

∂i A− ≡ Fi−∂i U ( b) = ∫
+∞

−∞
dx+ ([ +∞ , x+ ] ∂i A−(x+) [ +∞ , x+ ] )b

∫ d b ⟨ Tr U( b +
r
2

) U† ( b −
r
2

) ⟩Y
≈ r2 xg( 1 / r2, x ) + O( r4 )

• we recover the gluon PDF …

where
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Where is x hiding? 
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xg(x , μ2 ) =
2

P− ∫b ∫x+,y+
⟨ Tr [ y+ , x+] Fi− (x+) [ y+ , x+] Fi− ( y+ )⟩Y

• …except for the phase that encodes to  dependence x = k−/P−

• the complete gluon PDF writes  (the integral over  and  cancel against )x+ b ⟨P |P⟩

xg( x , μ2) = 2∫
dξ+

(2π)P−
e i x P−ξ+ ⟨P | Tr [ 0 , ξ+] Fi− (ξ+) [ ξ+ , 0] Fi− ( 0 ) |P⟩

0+ ξ+

Fi−Fi−
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Where is x hiding? 
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• Parametrically we have.   

• Then the phase scales as.   

• In shock wave one assumes:   one can neglect the phase. 

This is the BFKL-BK phase space 

• On the other hand a potentially large collinear logarithm lives in the region 
 

• This might not be so relevant at leading order but at NLO dilute spots in the 
proton wave function may generate large collinear logarithms 

ξ+ = x+ − y+ ∼ 1/P−

i x P− ξ+ ∼ x

xBj ≪ x ≪ 1 ⇒

xBj ≪ x ∼ 1



Digression:  
background field and 
transverse gauge links
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Background field and transverse gauge links
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• consider a target boosted along the  
direction close to the light cone. Due to time 
dilation the target color sources are “frozen” in 
the - direction  

• Yang-Mills equations   can be 
solved exactly (together with the continuity 
equation  ) in covariant gauge 

 (or light-cone gauge )

−z

[Dμ, Fμν] = Jν

[Dμ, Jμ] = 0
∂ ⋅ A = 0 A+ = 0

Jν(x) → J−(x+, x⊥)

x− x+

A−
cov = −

1
∂2

⊥
J− and A+ = A⊥ = 0

A−
cov

target sources

and J+ = J⊥ = 0
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• under an arbitrary gauge rotation  the target field transforms asΩ(x+, x⊥)

A− → Ωx(x+) A−
cov (x+, x) Ω−1

x (x+) −
1
ig

Ωx(x+) ∂− Ω−1
x (x+)

Ai → −
1
ig

Ωx(x+) ∂i Ω−1
x (x+)

• exploiting the residual gauge freedom we can generate a transverse pure gauge 

• N.B.: the partonic picture is manifest in the LC-gauge  (with ) 

• small x observables are (in the dilute/dense limit) more naturally expressed in the wrong LC-
gauge  (with ).  

• in order to connect to the partonic interpretation one needs to deal with transverse fields

A− = 0 A⊥ ≠ 0

A− ≠ 0 A⊥ = 0

Background field and transverse gauge links
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Ux1
= Ux2

− ri ∫
1

0
ds (∂iUx2+sr)

• and noticing that    , one can express the dipole operator (in the 

background field ) as a transverse gauge link: 

1
ig

(∂iUx)Ux ≡ Ai(x)

A−

Ux1
U†

x2
= [x1, x2] = 1 − ig∫

x1

x2

dz Ai(z) [z, x2]

x1

x2

x1

x2

−∞ +∞

−∞ +∞

• geometric interpretation of the all twist resummation

• dipole operator can be expessed in terms of tranverse link operators

Background field and transverse gauge links
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• non-Abelian Stokes theorem: more generally, the dipole operator can be written as a path 
ordered tower of “twisted” field strength tensor (i.e. dressed with future pointing Wilson lines) 

ξ +∞

x1

x1

ξ +∞

z2

tn

z1

t2

t1

zn

C

S

→
F i−(tn, zn)

Ux2
U†

x1
≡ P exp [−ig∫S

dtdz [+∞, x+]x Fi−(x+, x) [x+, + ∞]x]

[Fishbane, Gasiorowicz, Kaus (1981) Wiedemann (2000)  
YMT, Boussarie (2020)] 

Background field and transverse gauge links



Revisiting the Shock Wave 
Approximation
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x⊥
y⊥

Revisiting the Shock Wave Approximation 
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• Under the assumption that all transverse momenta are of same order along 
the ladder, the leading power  is obtained letting  for any particle 
propagating inside the shock wave 

1/s p+ → ∞

x⊥

𝒢p+ ( x+, y+) = [i
∂

∂x+
−

̂p2
⊥

2p+
− gA−]

−1

lim
p+→+∞

𝒢p+ ( x+, x; y+, y) = δ( x − y) Ux(x+, y+)

sock wave limit
propagator
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Revisiting the Shock Wave Approximation 
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• This limit neglects  quantum diffusion 

𝒢0
p+ ( x+, x; y+, y) =

p+

2iπ Δx+
e i (x − y)2 p+

Δx+

• it is important when    (Δ x)2 ∼ Δx+/p+ ∼ s−1

• In effect, the phase relates the transverse dynamics to longitudinal 
dynamics, this is the phase that appears in the definition of PDF’s 

• It encodes the information about ’s in the target. It is expected to be non-
negligible away from the strongly ordered region in . 

k−

k−
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Revisiting the Shock Wave Approximation 
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• Instead of taking the limit   we can simply expand around the 
constant transverse coordinate (classical trajectory) 

p+ → + ∞

X ≡
x + y

2

• At leading power we we recover 
a Wilson line multiplied by a 
phase

𝒢p+ ( x+, x; y+, y) = 𝒢0(x − y, x+ − y+) UX (x+, y+) + . . .

• The ellipses are subleading terms suppressed as  (x − y)i(∂iU)X

• Taking again the limit  we recover the shock wave p+ → + ∞

y⊥

x⊥

X
U X



Road Test: 
Inclusive DIS 
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Inclusive DIS beyond shock wave
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P

q
1. ordering in  

2. gluonic target 

3. leading power in  

k+

k2
⊥/s

k⊥

P ≡ (0+, P− , 0⊥ )

q ≡ (q+, q−, 0⊥)
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• Working assumptions: 

1. We shall assume a large separation between the target modes and the 
quantum fluctuations (here the quark dipole) 

k+ > Λ+ k+ < Λ+

quantum classical  

A−
c (x+, x) ∼ δ(k+)ψq(x)

NB: strong ordering in   is common to small x and leading twist DGLAP  k+

k+
1 =

k−
1

k2
⊥1

≪ k+
2 =

k−
2

k2
⊥2

 [Balitsky and Braun (1988)]

Inclusive DIS beyond shock wave

 [Balitsky and Trasov (2015)]
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• Working assumptions: 

               2. We shall neglect power suppressed terms of the form  

O ( k2
⊥

s )
• Bjorken limit: If    it is  higher twist  

• Regge limit: If   it is suppressed by a powers of the energy 

s ∼ Q2 k⊥/Q

s ≫ Q2

Inclusive DIS beyond shock wave
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• In the shock wave approximation the 
times of the photon splitting into quark 
antiquark pair are integrated form 

 and  which yields 
the photon wave functions 
0 < x+ < + ∞ −∞ < y+ < 0

0+

x+y+

• What are the integration limits of the 
vertices if one relaxes the shock wave 
approximation? 

• What is the longitudinal extent of the shock 
wave ?

x+y+
?

Inclusive DIS beyond shock wave
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• Solution: extracting the first 
and last interactions 
provides a physical 
boundary to the shock 
wave  

• we have 4 contributions  
• This seems involved at first 

glance

x+
1 x+

2

x1

y1

x2

y2

Inclusive DIS beyond shock wave
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• Consider the left side of the diagram first 
• The two gluon fields combine to generate field 

strength tensor 

x

y

x

y

A−(x) − A−(y) = ∫
1

0
ds ri ∂i A−(y + sr)

= ∫
1

0
dzi Fi−(z)

• Where  is a straight line 
trajectory in the transverse plane 

z(s) ≡ s x + (1 − s) y

Inclusive DIS beyond shock wave

r = x − y
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• applying the same trick to the r.h.s. we obtain the following hadronic operator

⟨P | Tr 𝒢( y2, x+
2 ; y1 x+

1 | (1 − z)q+) Fj− ( x+
1 , z1) 𝒢(x1, x+

1 ; x2, x+
2 |zq+) Fi− ( x+

2 , z2) |P⟩

x+
1 x+

2

x1

y1

x2

y2

Fj−(z(s2))
Fi−(z(s1))

Odipole(x1, x2, y1, y2, x+
1 , x+

2 ) ≡ ∫
x1

y1

dzi
1 ∫

x2

y2

dzj
2

𝒢(−z̄q+)

𝒢(zq+)
• performing a gauge rotation 

leads to transverse gauge 
links: explicit gauge 
invariance  

• explicit dependence on + 
momenta of the dipole  and 

 
zq+

(1 − z)q+

Inclusive DIS beyond shock wave
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• DIS cross-section takes now a form similar to that of the shock wave. The wave 
functions are identical  

σ(xBj, Q2) ∼ e2 ∫
1

0
d z P(z) ∫r,b

d r |φ(z(1 − z) |r |2 Q2) |2 ⟨TrU(r)U†(0)⟩Y

σ(xBj, Q2) ∼ e2 ∫
1

0
d z P(z) ∫r1,r2,b1,b2

φ(z(1 − z) |r1 |2 Q2) φ*(z(1 − z) |r2 |2 Q2)

× ei xBjP−(x+
2 −x+

2 ) ⟨P |Odipole(r1, r2, b1, b2, x+
1 , x+

2 |z) |P⟩

P

q

k⊥

Inclusive DIS beyond shock wave
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•  We have constructed a gauge invariant hadronic operator that has explicit 
dependence on longitudinal variables 

• The hard matrix element is composed of the same wave functions as in shock 
wave albeit non-local in transverse position space: dipole transverse size a  
and   are not equal  

• Bialas, Navlet and Peschanski (2000 ) noticed that the dipole model (with 
locality in transverse space) is inconsistent with x dependence  

x+
1

x+
2 r1 ≠ r2

Inclusive DIS beyond shock wave



A Novel Unintegrated 
Gluon Distribution 
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• Now we apply the third working assumption, that is the (modified) eikonal 
propagation  

𝒢p+ ( x+, x2; y+, x1) = 𝒢0(x2 − x1, x+
2 − y+

1 ) UX (x+
2 , x+

1 ) + . . .
x2

X
U X

• On may Fourier transform w.r.t.   u = x2 − x1

𝒢p+ ( x2, x+
1 , X; ℓ ) = ei ℓ2

2zq+ Δx+
UX (x+

2 , x+
1 ) + . . .

• Note the factorization of the phase that encodes the 
dependence on the longitudinal momentum 

•   is the average transverse momentum of the quark  ℓ

x1

Unintegrated Gluon Distribution 
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Factorization formula for DIS at arbitrary x
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• Combining all three phases we obtain  

• This is nothing but Feynman  that we encountered when deriving the 
DGLAP limit 

x

ik−Δx+ ≡ i
ℓ2 + zz̄Q2

2zz̄ q+
Δx+

xF ≡
ℓ2 + zz̄Q2

2zz̄ s
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Factorization formula for DIS at arbitrary x

σ(xBj, Q2) ∼ e2 ∫
1

0
d z P(z) ∫

1

0
dx∫ℓ,k

∂iφ (ℓ −
k
2 ) ∂ jφ* (ℓ +

k
2 ) δ (x − xBj −

ℓ 2

2zz̄q+ )
× xGij(x, k) + O (k2

⊥/s)
•  is the Fourier transform of the photon 

wave function (shock wave) 
• The delta function relates   in the gluon 

distribution to 

φ(ℓ )

x
xBj

q

!− k
2 ! + k

2

γ∗

q − ! + k
2 q − !− k

2

P P

• After integration over the factorized free propagators that lead to the 
Feynman  x phase, we obtain the factorization formula (for the transverse 
photon cross-section), in momentum space, 
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Factorization formula for DIS at arbitrary x

• The  unintegrated gluon distribution   writes xGij(x, k)

( ξ , ξ+ )

Fj−(s′ ξ)

Fi−(sξ)

( 0 , 0+ )

xGij(x, k⊥) ≡ 2∫
dξ+dξ

(2π)3P−
e i x P−ξ+−ik⋅ξ ⟨P | Tr [ 0 , ξ+]ξ Fj− (ξ+, s′ ξ) [ ξ+ , 0]0 Fi− ( 0 , sξ) |P⟩

• integrating over  yields 
 and we recover the 

gluon PDF  
• at small  we recover shock 

wave

k⊥
ξ⊥ = 0

x

ξiξjGij(x = 0,ξ) → ⟨P | Tr Uξ U†
0 |P⟩



Summar and Outlook
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Summary and outlook 
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• We revisited the shock wave approximation in high 
energy scattering by performing a gradient 
expansion around the classical trajectory of partons 

• The leading power accounts for both small and 
moderate x limit 

• We have calculated in this framework gluon induced 
DIS. We have obtained in particular a new 
factorization formula involving a novel unintegrated 
gluon distribution  

• Outlook: quantum evolution, application to other 
observables such as DVCS 

• Potential probe of gluon saturation on the lattice 


