Systematic Extraction of Pion Parton Distributions Using Threshold Resummation

Patrick Barry, Chueng-Ryong Ji, Wally Melnitchouk, and Nobuo Sato
APS April Meeting: Session L12: Hadronic Physics II 4/18/2021
Motivation

• Perform a **global QCD analysis** on available pion data using **factorization theorems** and parametrizing universal **PDFs**

• Pion is the **Goldstone boson** associated with spontaneous symmetry breaking of chiral $SU(2)_L \times SU(2)_R$ symmetry

• Lightest hadron made up of q and \bar{q} constituents

Patrick Barry: barryp@jlab.org
Experiments to Probe Pion Structure

• Drell-Yan (DY)

- Accelerating pion allows for time dilation and longer lifetime

• Leading Neutron (LN)

- Barely striking surface of a target proton knocks out an almost on-shell pion to probe

Patrick Barry: barryp@jlab.org
Datasets -- Kinematics

- Large x_π -- Drell-Yan (DY)
- Small x_π -- Leading Neutron (LN)
- Not much data overlap
- In DY:
 \[x_\pi = \frac{1}{2} \left(x_F + \sqrt{x_F^2 + 4\tau} \right) \]
- In LN:
 \[x_\pi = x_B / \bar{x}_L \]
JAM18 Pion PDFs

- Lightly shaded bands – only Drell-Yan data
- Darkly shaded bands – fit to both Drell-Yan and LN data

Patrick Barry: barryp@jlab.org
JAM20 Pion PDFs

- For the first time, we included large p_T-dependent Drell-Yan data, which follows collinear factorization.
- Large p_T does not dramatically affect the PDF.

N. Cao, PCB, N. Sato, and W. Melnitchouk
Soft Gluon Resummation

- Fixed-target Drell-Yan notoriously has large-x_F contamination of higher orders
- Large logarithms may spoil perturbation
- Focus on corrections to the most important $q\bar{q}$ channel
- Resum contributions to all orders of α_s
Issues with Perturbative Calculations

• If τ is large, can potentially spoil the perturbative calculation

• Improvements can be made by resumming $\log(1 - z)_+$ terms

\[
\hat{\sigma} \sim \delta(1 - z) + \alpha_S(\log(1 - z))_+ \quad \rightarrow \quad \hat{\sigma} \sim \delta(1 - z)[1 + \alpha_S \log (1 - \tau)]
\]
An NLO calculation gathers the $\mathcal{O}(\alpha_s)$ terms

<table>
<thead>
<tr>
<th>Order</th>
<th>LL</th>
<th>NLL</th>
<th>...</th>
<th>N^pLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1</td>
<td>--</td>
<td>...</td>
<td>--</td>
</tr>
<tr>
<td>NLO</td>
<td>$\alpha_s \log(N)^2$</td>
<td>$\alpha_s \log(N)$</td>
<td>...</td>
<td>--</td>
</tr>
<tr>
<td>NNLO</td>
<td>$\alpha_s^2 \log(N)^4$</td>
<td>$\alpha_s^2 (\log(N)^2, \log(N)^3)$</td>
<td>...</td>
<td>--</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N^kLO</td>
<td>$\alpha_s^k \log(N)^{2k}$</td>
<td>$\alpha_s^k (\log(N)^{2k-1}, \log(N)^{2k-2})$</td>
<td>...</td>
<td>$\alpha_s^k \log(N)^{2k-2p}$ + ...</td>
</tr>
</tbody>
</table>
Next-to-Leading + Next-to-Leading Logarithm Order Calculation

<table>
<thead>
<tr>
<th>Order</th>
<th>LL</th>
<th>NLL</th>
<th>N^{\text{pLL}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>NLO</td>
<td>$\alpha_s \log(N)^2$</td>
<td>$\alpha_s \log(N)$</td>
<td>--</td>
</tr>
<tr>
<td>NNLO</td>
<td>$\alpha_s^2 \log(N)^4$</td>
<td>$\alpha_s^2 (\log(N)^2, \log(N)^3)$</td>
<td>--</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N^kLO</td>
<td>$\alpha_s^k \log(N)^{2k}$</td>
<td>$\alpha_s^k (\log(N)^{2k-1}, \log(N)^{2k-2})$</td>
<td>... $\alpha_s^k \log(N)^{2k-2p} + \ldots$</td>
</tr>
</tbody>
</table>

Add the columns to the rows.
Next-to-Leading + Next-to-Leading Logarithm Order Calculation

<table>
<thead>
<tr>
<th></th>
<th>LL</th>
<th>NLO</th>
<th>N^kLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>NLO</td>
<td>$\alpha_s \log(N)^2$</td>
<td>$\alpha_s \log(N)$</td>
<td></td>
</tr>
<tr>
<td>NNLO</td>
<td>$\alpha_s^2 \log(N)^4$</td>
<td>$\alpha_s^2 (\log(N)^2, \log(N)^3)$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>N^kLO</td>
<td>$\alpha_s^k \log(N)^{2k}$</td>
<td>$\alpha_s^k (\log(N)^{2k-1}, \log(N)^{2k-2})$</td>
<td>$\alpha_s^k \log(N)^{2k-2p} + ...$</td>
</tr>
</tbody>
</table>

Make sure only counted once!
- Subtract the matching

Patrick Barry: barryp@jlab.org
Origin of Landau Pole

- Upper Limits imply that k^2_{\perp} will go to 0
- $\alpha_S(\mu^2 = 0)$ is NOT well-defined
- Ambiguities on how to deal with this provide needs for prescriptions

$$\alpha_S C_{\text{soft}}^{(1)}(N) = 2 \frac{C_F}{\pi} \int_0^1 dz \frac{z^{N-1} - 1}{1-z} \int_{Q^2}^{(1-z)^2 Q^2} \frac{dk^2_{\perp}}{k^2_{\perp}} \alpha_S(k^2_{\perp})$$
Methods of Resummation

• Make use of the Minimal Prescription to avoid Landau Pole

• Rapidity distribution \(\frac{d\sigma}{dQ^2 dY} \) adds more complications

• We can perform a Mellin-Fourier transform to account for the rapidity
 • A cosine appears while doing Fourier transform; options:
 1) Take first order expansion, cosine \(\approx 1 \)
 2) Keep cosine intact

• Can additionally perform a Double Mellin transform

• Explore the different methods and analyze effects

Patrick Barry: barryp@jlab.org
Data and Theory Comparison – Drell-Yan

• Cosine method tends to overpredict the data at very large x_F
• Double Mellin method is qualitatively very similar to NLO
• Resummation is largely a high-x_F effect
PDF Results

• Large x behavior in valence depends on prescription

Large x momentum fraction in the valence shifts to low x gluon momentum fraction
Effective β_v parameter

- $q_v(x) \sim (1 - x)^{\beta_v}$ as $x \to 1$
- Threshold resummation does not give universal behavior of β_v
- NLO and double Mellin give $\beta_v \approx 1$
- Cosine and Expansion give $\beta_v > 2$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{effectiv-beta-v-parameter.png}
\caption{Graph showing the effective β_v parameter for different theoretical approaches.}
\end{figure}
Future Work

• Investigate high-x behavior of valence PDF through constraints from the lattice data

• Confront the small-p_T Drell-Yan data in terms of CSS formulations and extract pion TMDs

• Investigate impacts of future experiments on pion and kaon PDFs
Backup
Previous Pion PDFs

• Fits to Drell-Yan, prompt photon, or both

GRS, GRV, and SMRS

Aicher’s valence PDF

xFitter

Patrick Barry: barryp@jlab.org
Drell-Yan (DY)

\[\sigma \propto \sum_{i,j} f_i^{\pi}(x_\pi, \mu) \otimes f_j^A(x_A, \mu) \otimes \hat{\sigma}_{i,j}(x_\pi, x_A, Q/\mu) \]
Drell-Yan (DY) Definitions

Hadronic variable

\[\tau = \frac{Q^2}{\hat{S}} \]

Partonic variable

\[z \equiv \frac{Q^2}{\hat{S}} = \frac{\tau}{x_1 x_2} \]

\(\hat{S} \) is the center of mass momentum squared of incoming partons

Patrick Barry: barryp@jlab.org
$C_{q\bar{q}} = \delta(1 - z) \frac{\delta(y) + \delta(1 - y)}{2}$

- $z = 1$ corresponds to partonic threshold
- All \hat{S} is equal to Q^2
- All energy of hard partons turns into virtuality of photon
NLO Virtual

• Virtual corrections at NLO are proportional to $\delta(1 - z)$
 • Exhibit Born kinematics

\[
C_{q\bar{q}}^{\text{virtual}} = \delta(1 - z) \frac{\delta(y) + \delta(1 - y)}{2} \left[\frac{C_F \alpha_S}{\pi} \left(\frac{3}{2} \ln \frac{Q^2}{\mu^2} + \frac{2\pi^2}{3} - 6 \right) \right]
\]
NLO Real Emission

• Next to leading order, real gluon emissions

\[C^{\text{real}}_{q\bar{q}} = \frac{C_F \alpha_s}{\pi} \left[\frac{\delta(y) + \delta(1 - y)}{2} \right] \left[(1 + z^2) \left(\frac{1}{1 - z} \ln \frac{Q^2(1 - z)^2}{\mu^2 z} \right)_+ + 1 - z \right] + \frac{1}{2} \left[\frac{(1 - z)^2}{z} y(1 - y) \right] \left[\frac{1 + z^2}{1 - z} \left(\left[\frac{1}{y} \right]_+ + \left[\frac{1}{1 - y} \right]_+ \right) - 2(1 - z) \right] \]
NLO Real Emission

- Real quark emissions
- \(C_{qg} = C_{gq} \big|_{y \to 1-y} \)

\[
C_{qg}^{\text{real}} = \frac{T_F \alpha_S}{2\pi} \left[\delta(y) \left[(z^2 + (1 - z)^2) \ln \frac{Q^2(1 - z)^2}{\mu^2 z} + 2z(1 - z) \right]
+ \left[1 + \frac{(1 - z)^2}{z} y(1 - y) \right] \left[(z^2 + (1 - z)^2) \left(\frac{1}{y} \right) + 2z(1 - z) + (1 - z)^2 y \right] \right]
\]
Leading Neutron (LN)

\[
\frac{d\sigma}{dx dQ^2 dy} \sim f_{p \to \pi^+ n}(y) \times \sum_q \int_{x/y}^{1} \frac{d\xi}{\xi} C(\xi) q \left(\frac{x/y}{\xi}, \mu^2 \right)
\]
Large x_L

- x_L is fraction of longitudinal momentum carried by neutron relative to initial proton.
- For t to be close to pion pole, has to go near 0 – happens at large x_L.
- In this region, one pion exchange dominates.
Splitting Function and Regulators

We examine five regulators, and we fit Λ

\mathcal{F} is a UV regulator, which the data chooses

Amplitude for proton to dissociate into a π^+ and neutron:

$$f_{\pi N}(x_L) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_{\perp}^2 \frac{x_L}{x_L^2 D_{\pi N}^2} \left[\frac{k_{\perp}^2 + x_L^2 M^2}{x_L^2 D_{\pi N}^2} \right] |\mathcal{F}|^2,$$

$$D_{\pi N} \equiv t - m_{\pi}^2 = -\frac{1}{1 - y} \left[k_{\perp}^2 + y^2 M^2 + (1 - y)m_{\pi}^2 \right]$$

$$\mathcal{F} = \begin{cases}
(i) \quad \exp \left(\frac{(M^2 - s)}{\Lambda^2} \right) &\text{s-dep. exponential} \\
(ii) \quad \exp \left(\frac{D_{\pi N}}{\Lambda^2} \right) &\text{t-dep. exponential} \\
(iii) \quad (\Lambda^2 - m_{\pi}^2)/(\Lambda^2 - t) &\text{t-dep. monopole} \\
(iv) \quad \tilde{x}_L^{-\alpha(t)} \exp \left(\frac{D_{\pi N}}{\Lambda^2} \right) &\text{Regge} \\
(v) \quad \left[1 - \frac{D_{\pi N}}{\Lambda^2 - t} \right]^{1/2} &\text{Pauli-Villars}
\end{cases}$$

Best fit

Patrick Barry: barryp@jlab.org
Bayesian Inference

- Minimize the χ^2 for each replica

$$\chi^2(a, \text{data}) = \sum_e \left(\sum_i \left[\frac{d_i^e - \sum_k r_k^e \beta_{k,i}^e - t_i^e(a)/n_e}{\alpha_i^e} \right]^2 + \left(\frac{1 - n_e}{\delta n_e} \right)^2 + \sum_k (r_k^e)^2 \right)$$

- Perform N total χ^2 minimizations and compute statistical quantities

Expectation value
$$E[\mathcal{O}] = \frac{1}{N} \sum_k \mathcal{O}(a_k),$$

Variance
$$V[\mathcal{O}] = \frac{1}{N} \sum_k \left[\mathcal{O}(a_k) - E[\mathcal{O}] \right]^2,$$