Tomography of pions and protons from transverse momentum dependent distributions

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Based on: arXiv:2302.01192
What do we know about structures?

- Most well-known structure is through longitudinal structure of hadrons, particularly protons.

Other structures?

• To give deeper insights into color confined systems, we shouldn’t limit ourselves to proton structures

• Pions are also important because of their Goldstone-boson nature while also being made up of quarks and gluons
Available datasets for pion structures

- Much less available data than in the proton case
- Still valuable to study
Available datasets for pion structures

- Much less available data than in the proton case
- Still valuable to study
Pion PDFs in JAM

Drell-Yan (DY)

Leading Neutron (LN)

Threshold resummation in DY

pbarry72@gmail.com
3D structures of hadrons

- Even more challenging is the 3D structure through GPDs and TMDs.
Unpolarized TMD PDF

\[\tilde{f}_{q/N}(x, b_T) = \int \frac{db^-}{4\pi} e^{-ixP^+b^-} \text{Tr} \left[\langle N | \bar{\psi}_q(b)\gamma^+ \mathcal{W}(b, 0)\psi_q(0) | N \rangle \right] \]

\[b \equiv (b^-, 0^+, b_T) \]

- \(b_T \) is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, \(k_T \)
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: \(\tilde{f}_{q/N}(x, b_T) \rightarrow \tilde{f}_{q/N}(x, b_T; \mu, \zeta) \)
Factorization for low-q_T Drell-Yan

• Like collinear observable, a **hard part** with two functions that describe structure of beam and target

• So called “W”-term, valid only at low-q_T
TMD PDF within the b_* prescription

\[b_*(b_T) \equiv \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{\text{max}}^2}}} . \]

\[
\tilde{f}_{q/\mathcal{N}(A)}(x, b_T, \mu_Q, Q^2) = (C \otimes f)_{q/\mathcal{N}(A)}(x; b_*) \\
\times \exp \left\{ -g_{q/\mathcal{N}(A)}(x, b_T) - g_K(b_T) \ln \frac{Q}{Q_0} - S(b_*, Q_0, Q, \mu_Q) \right\}
\]

- Low-b_T: perturbative
- High-b_T: non-perturbative

\[g_{q/\mathcal{N}(A)}: \text{intrinsic non-perturbative structure of the TMD} \]
\[g_K: \text{universal non-perturbative Collins-Soper kernel} \]

Relates the TMD at small-b_T to the **collinear** PDF
\[\Rightarrow \text{TMD is sensitive to collinear PDFs} \]

Controls the perturbative evolution of the TMD
A few details

• Nuclear TMD model linear combination of bound protons and neutrons
 • Include an additional A-dependent nuclear parameter
• We use the MAP collaboration’s parametrization for non-perturbative TMDs
 • Only tested parametrization flexible enough to capture features of Q bins
• Perform a **simultaneous global analysis** of pion TMD and collinear PDFs, with proton (nuclear) TMDs
Note about E615 πA Drell-Yan data

- Provides both $\frac{d\sigma}{dx_F d\sqrt{\tau}}$ (p_T-integrated) and $\frac{d\sigma}{dx_F dp_T}$ (p_T-dependent)
 - Large constraints on π collinear PDFs from p_T-integrated
 - Large constraints on π TMD PDFs from p_T-dependent
- Projections of same events \Rightarrow correlated measurements
- They have the same luminosity uncertainty, so they have the same overall normalization uncertainty
- To account for this, we *equate* the fitted normalizations of the two otherwise independent measurements
 - No other guidance from experiment how the uncertainties are correlated
Note on collinear DY theory

• When equating the normalizations, we found
 • Agreement when using NLO theory on the collinear observables
 • Tension when using NLO+NLL threshold resummed theory on the collinear observables

• We note that in the OPE part of the TMD formalism, we use NLO accuracy
 • We do not use any threshold enhancements on the p_T-dependent observables
Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

<table>
<thead>
<tr>
<th>Process</th>
<th>Experiment</th>
<th>\sqrt{s} (GeV)</th>
<th>χ^2/N</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_T-dep. pA</td>
<td>E288 [90]</td>
<td>19.4</td>
<td>1.07</td>
<td>0.34</td>
</tr>
<tr>
<td>$pA \rightarrow \mu^+\mu^- X$</td>
<td>E288 [90]</td>
<td>23.8</td>
<td>0.99</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>E288 [90]</td>
<td>24.7</td>
<td>0.82</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>E605 [91]</td>
<td>38.8</td>
<td>1.22</td>
<td>1.03</td>
</tr>
<tr>
<td>(Fe/Be)</td>
<td>E772 [92]</td>
<td>38.8</td>
<td>2.54</td>
<td>5.64</td>
</tr>
<tr>
<td>(W/Be)</td>
<td>E866 [93]</td>
<td>38.8</td>
<td>1.10</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>E866 [93]</td>
<td>38.8</td>
<td>0.96</td>
<td>0.15</td>
</tr>
<tr>
<td>q_T-dep. πA</td>
<td>E615 [94]</td>
<td>21.8</td>
<td>1.45</td>
<td>1.85</td>
</tr>
<tr>
<td>$\pi W \rightarrow \mu^+\mu^- X$</td>
<td>E537 [95]</td>
<td>15.3</td>
<td>0.97</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collinear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_T-integ. DY</td>
<td>E615 [94]</td>
<td>21.8</td>
<td>0.90</td>
<td>0.48</td>
</tr>
<tr>
<td>$\pi W \rightarrow \mu^+\mu^- X$</td>
<td>NA10 [96]</td>
<td>19.1</td>
<td>0.59</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>NA10 [96]</td>
<td>23.2</td>
<td>0.92</td>
<td>0.16</td>
</tr>
<tr>
<td>leading neutron</td>
<td>H1 [97]</td>
<td>318.7</td>
<td>0.36</td>
<td>4.59</td>
</tr>
<tr>
<td>$ep \rightarrow e n X$</td>
<td>ZEUS [98]</td>
<td>300.3</td>
<td>1.48</td>
<td>2.15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.12</td>
<td>1.86</td>
<td></td>
</tr>
</tbody>
</table>
The small-q_T data do not constrain much the PDFs.
Resulting TMD PDFs of proton and pion

\[\tilde{f}_{q/N}(b_T|x; Q, Q^2) \equiv \frac{\tilde{f}_{q/N}(x, b_T; Q, Q^2)}{\int d^2b_T \tilde{f}_{q/N}(x, b_T; Q, Q^2)} \]

- Broadening appearing as \(x \) increases
- Up quark in pion is narrower than up quark in proton

\[Q = 6 \text{ GeV} \]

\[x = 0.60, 0.54, 0.48, 0.42, 0.36, 0.30 \]
Resulting average b_T

$$\langle b_T | x \rangle_{q/N} = \int d^2 b_T \; b_T \; \tilde{f}_{q/N}(b_T | x; Q, Q^2)$$

- Average transverse spatial correlation of the up quark in proton is ~ 1.2 times bigger than that of pion
- Pion’s $\langle b_T | x \rangle$ is $4 - 5.2\sigma$ smaller than proton in this range
- Decreases as x decreases
Transverse EMC effect

• Compare the average b_T given x for the up quark in the bound proton to that of the free proton

• Less than 1 by $\sim 5 - 12\%$ over the x range
Outlook

• Future studies needed for theoretical explanations of these phenomena

• Look into threshold corrections in the OPE formalism

• Lattice QCD can in principle calculate any hadronic state – look to kaons, rho mesons, etc.

• Future tagged experiments such as at EIC and JLab 22 GeV can provide measurements for neutrons, pions, and kaons
Backup
Small b_T operator product expansion

• At small b_T, the TMDPDF can be described in terms of its OPE:

$$\tilde{f}_{f/h}(x, b_T; \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{C}_{f/j}(x/\xi, b_T; \zeta_F, \mu) f_{j/h}(\xi; \mu) + \mathcal{O}((\Lambda_{QCD} b_T)^a)$$

• where \tilde{C} are the Wilson coefficients, and $f_{j/h}$ is the collinear PDF

• Breaks down when b_T gets large
\(b_* \) prescription

• A common approach to regulating large \(b_T \) behavior

\[
b_*(b_T) \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\text{max}}^2}}.
\]

• At small \(b_T \), \(b_*(b_T) = b_T \)

• At large \(b_T \), \(b_*(b_T) = b_{\text{max}} \)

Must choose an appropriate value; a transition from perturbative to non-perturbative physics
Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

$$g_K(b_T; b_{\text{max}}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$e^{-g_j/H(x, b_T; b_{\text{max}})} = \frac{\tilde{f}_{j/H}(x, \zeta, \mu)}{f_{j/H}(x, b_*; \zeta, \mu)} e^{g_K(b_T; b_{\text{max}}) \ln(\sqrt{\zeta}/Q_0)}.$$
TMD factorization in Drell-Yan

- In small-q_T region, use the Collins-Soper-Sterman (CSS) formalism and b_* prescription

\[
\frac{d\sigma}{dQ^2 \, dy \, dq_T^2} = \frac{4\pi^2\alpha^2}{9Q^2 s} \sum_{j, j_A, j_B} H^{DY}_{jj}(Q, \mu_Q, a_s(\mu_Q)) \int \frac{d^2b_T}{(2\pi)^2} e^{i q_T \cdot b_T}
\]

\[\times e^{-g_{j/A}(x_A, b_T; b_{\text{max}})} \int_{x_A}^{1} \frac{d\xi_A}{\xi_A} f_{j/A}(\xi_A; \mu_{b_*}) \tilde{C}_{j/A}^{\text{PDF}} \left(\frac{x_A}{\xi_A}, b_*; \mu_{b_*}^2, a_s(\mu_{b_*}) \right) \]

\[\times e^{-g_{j/B}(x_B, b_T; b_{\text{max}})} \int_{x_B}^{1} \frac{d\xi_B}{\xi_B} f_{j/B}(\xi_B; \mu_{b_*}) \tilde{C}_{j/B}^{\text{PDF}} \left(\frac{x_B}{\xi_B}, b_*; \mu_{b_*}^2, a_s(\mu_{b_*}) \right) \]

\[\times \exp \left\{ -g_K(b_T; b_{\text{max}}) \ln \frac{Q^2}{Q_0^2} + \tilde{K}(b_*; \mu_{b_*}) \ln \frac{Q^2}{\mu_{b_*}^2} + \int_{\mu_{b_*}}^{\mu} \frac{d\mu'}{\mu'} \left[2\gamma_j(a_s(\mu')) - \ln \frac{Q^2}{(\mu')^2} \gamma_K(a_s(\mu')) \right] \right\} \]

Can these data constrain the pion collinear PDF?

Non-perturbative pieces

Non-perturbative piece of the CS kernel

Perturbative pieces
MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a complicated form for the non-perturbative function

\[
f_{1NP}(x, b^2_T; \zeta, Q_0) = \frac{g_1(x) e^{-g_1(x) \frac{b^2_T}{4}} + \lambda^2 g^2_{1B}(x) \left[1 - g_{1B}(x) \frac{b^2_T}{4} \right] e^{-g_{1B}(x) \frac{b^2_T}{4}} + \lambda_2^2 g_{1C}(x) e^{-g_{1C}(x) \frac{b^2_T}{4}}}{g_1(x) + \lambda^2 g^2_{1B}(x) + \lambda_2^2 g_{1C}(x)} \left[\frac{\zeta}{Q_0^2} \right]^{g_K(b^2_T)/2}, \tag{38}
\]

\[
g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}} (1 - x)^{\alpha^2_{\{1,2,3\}}}}{\hat{x}^{\sigma_{\{1,2,3\}}} (1 - \hat{x})^{\alpha^2_{\{1,2,3\}}}},
\]

\[
g_K(b^2_T) = -g_2^2 \frac{b_T^2}{2}
\]

• 11 free parameters for each hadron! (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)
Resulting χ^2 for each parametrization

- Tried multiple parametrizations for non-perturbative TMD structures
- MAP parametrization is able to describe better all the datasets
Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton

\[\tilde{f}_{q/A}(x, b_T, \mu, \zeta) = \frac{Z}{A} \tilde{f}_{q/p/A}(x, b_T, \mu, \zeta) + \frac{A - Z}{A} \tilde{f}_{q/n/A}(x, b_T, \mu, \zeta) \]

• Each object on the right side independently obeys the CSS equation
 • Assumption that the bound proton and bound neutron follow TMD factorization

• Make use of isospin symmetry in that \(u/p/A \leftrightarrow d/n/A \), etc.
Building of the nuclear TMD PDF

- Then taking into account the intrinsic non-perturbative, we model the flavor-dependent pieces of the TMD PDF as

\[
(C \otimes f)_{u/A}(x)e^{-g_{u/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}
\]

\[+ \frac{A-Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}\]

and

\[
(C \otimes f)_{d/A}(x)e^{-g_{d/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}
\]

\[+ \frac{A-Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}.
\]
Nuclear TMD parametrization

- Specifically, we include a parametrization similar to Alrashed, et al., Phys. Rev. Lett 129, 242001 (2022).

\[g_{q/N/A} = g_{q/N} \left(1 - a_N \left(A^{1/3} - 1 \right) \right) \]

- Where a_N is an additional parameter to be fit
Bayesian Inference

• Minimize the χ^2 for each replica

$$\chi^2(a, \text{data}) = \sum_e \left(\sum_i \left[\frac{d_i^e - \sum_k r_k^e \beta_{k,i}^e - t_i^e(a)/n_e}{\alpha_i^e} \right]^2 + \left(\frac{1 - n_e}{\delta n_e} \right)^2 + \sum_k (r_k^e)^2 \right).$$

• Perform N total χ^2 minimizations and compute statistical quantities

\begin{align*}
\text{Expectation value} & \quad E[\mathcal{O}] = \frac{1}{N} \sum_k \mathcal{O}(a_k), \\
\text{Variance} & \quad V[\mathcal{O}] = \frac{1}{N} \sum_k \left[\mathcal{O}(a_k) - E[\mathcal{O}] \right]^2.
\end{align*}
Correlations

• Level at which the distributions are correlated with each other

• Different distributions are largely correlated only within themselves
Possible explanation

• At large x, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron
Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system