Unpolarised TMD distributions and their extraction from experimental data

Valerio Bertone IRFU, CEA, Université París-Saclay

June 1, 2020, Jefferson Lab

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

• TMD factorisation and renormalisation.

• TMD evolution:

- Collins-Soper-Sterman (CSS) approach,
- Scimemi-Vladimirov (SV) approach.
- Landau-pole regularisation.

- Recent TMD extractions from data.
- Phenomenology at the LHC and the EIC.

Dialogue on factorisation (1/2)

Q: Why do we need factorisation for hadronic processes at large scales in QCD?

A: To separate, at the level of process *amplitude*, low-scale modes (of the order of the hadron mass) from high-scale modes of the order of the process hard scale.

Q: What's the advantage of factorisation in QCD?

A: Short answer: achieve *predictivity*. Longer answer:

- **1.** exploit *asymptotic freedom* of QCD to compute high-scale contributions using perturbation theory,
- 2. "measure" the low-scale contribution from data of some processes,
- **3.** exploit *universality* to predict some other processes.
- **B:** When do we need *TMD* factorisation in QCD?
- A: When *collinear* factorisation breaks down.

Q: Ok, then when does collinear factorisation break down?

A: When there are *two or more* hard scales ($\gg \Lambda_{QCD}$) widely different from each other.

Dialogue on factorisation (2/2)

- **Q:** What is the problem with having, say, *two* very different hard scales?
- A: Logs of the ratio are *large* and make low-order perturbation theory inapplicable.
- **Q:** What is the origin of these logarithms in QCD?
- **A:** They "interpolate" between different importance regions in momentum space.
- **Q:** How does TMD factorisation solve the problem?
- A: It gives us a recipe to *resum* these logs to all orders in perturbation theory.
- **Q:** How about TMD distributions? What's their role?
- **A:** They are a "byproduct" of TMD factorisation. But importantly they carry information on the longitudinal- *and* transverse-momentum structure of hadrons.
- **Q:** Does (TMD) factorisation hold for all processes in QCD?
- **A:** Unfortunately not. In fact, factorising processes are to be considered more an exception than a rule... but perhaps this is a subject for another dialogue.

 p_A

 p_B

Let us use Drell-Yan production (*i.e. inclusive* production of a lepton pair in hadron-hadron collisions) to sketch the main steps of factorisation:

Let us use Drell-Yan production (*i.e. inclusive* production of a lepton pair in hadron-hadron collisions) to sketch the main steps of factorisation:

- For each *single* graph, identify the regions in the integration momentum space where the integrand is large:
 - *pinched* propagators (massless theory) \Rightarrow Landau criterion and reduced graphs,
 - soft modes (S): $k \sim Q(\lambda^2, \lambda^2, \lambda^2)$
 - \bullet (anti)collinear modes (**A** and **B**): $k \sim$

$$egin{aligned} Q(1,\lambda^2,\lambda)\ Q(\lambda^2,1,\lambda) \end{aligned}$$

7

in hard modes (**H**): $k \sim Q(1, 1, 1)$

- Apply Libby-Sterman power counting to identify the **asymptote**:
 - i at **leading power** this means all reduced graphs that scale like $Q^{4-N_{\mathbf{ext}}}$
 - possible super-leading graphs must cancel for the process to be factorisable.
- The (well-known) result (in a covariant gauge) is:

- Apply Libby-Sterman power counting to identify the **asymptote**:
 - igie at **leading power** this means all reduced graphs that scale like $Q^{4-N_{ ext{ext}}}$
 - possible super-leading graphs must cancel for the process to be factorisable.
- The (well-known) result (in a covariant gauge) is:

- Apply Libby-Sterman power counting to identify the **asymptote**:
 - igie at **leading power** this means all reduced graphs that scale like $Q^{4-N_{ ext{ext}}}$
 - possible super-leading graphs must cancel for the process to be factorisable.
- The (well-known) result (in a covariant gauge) is:

- Apply Libby-Sterman power counting to identify the **asymptote**:
 - igie at **leading power** this means all reduced graphs that scale like $Q^{4-N_{ ext{ext}}}$
 - possible super-leading graphs must cancel for the process to be factorisable.
- The (well-known) result (in a covariant gauge) is:

- Apply Libby-Sterman power counting to identify the **asymptote**:
 - igitarrow at **leading power** this means all reduced graphs that scale like $Q^{4-N_{ ext{ext}}}$
 - possible super-leading graphs must cancel for the process to be factorisable.
- The (well-known) result (in a covariant gauge) is:

- Apply Libby-Sterman power counting to identify the **asymptote**:
 - igie at **leading power** this means all reduced graphs that scale like $Q^{4-N_{ ext{ext}}}$
 - possible super-leading graphs must cancel for the process to be factorisable.
- The (well-known) result (in a covariant gauge) is:

- In brief, factorisation is finally achieved by:
 - use Grammer-Yennie-like approximations for each soft/collinear gluon with momentum k to write, for example:

$$S^{\mu \dots} g_{\mu
u} A^{
u \dots} \sim (\mathbf{k} \cdot \mathbf{S}^{\dots}) rac{1}{n \cdot \mathbf{k}} (n \cdot A^{\dots})$$

i this allows one to use **Ward identities** and introduces **Wilson lines**.

• A recursive application of this argument leads to factorisation of the amplitude: p_A

- Upon squaring, factorisation leads to the operator definition of:
 - gauge invariant (unsubtracted) parton-distribution function (**PDF**):

and soft function:

If $q_T \ll Q$ we *cannot* integrate over k_T because this would mean neglecting transverse momenta in the *other* blobs that are of the order or larger than q_T . Therefore, we need to **treat** k_T **exactly**: this is the very essence of TMD factorisation. 15

TMD renormalisation

• Both PDF and soft function are affected by **UV** divergencies that are removed by renormalising strong coupling α_s and wave functions:

• the UV renormalisation causes the introduction of the scale μ .

• PDF and soft function are singularly affected by **rapidity** divergences:

• whose *ad hoc* regularisation introduces the scale ζ .

• However, the following combination is free of divergencies: $f(x, k_T, \mu, \zeta) = Z^{UV}(\mu) f^{(0)}(x, k_T, \mu, \zeta) \sqrt{S^{(0)}(k_T, \mu, \zeta)}$

The final **LP** factorised formula for the cross sections takes the form:

$$egin{aligned} rac{d\sigma}{dq_T} &\propto & H(Q,\mu)\int d^2k_{TA}d^2k_{TB}f_A(x,k_{TA},\mu,\zeta_A)f_B(x,k_{TB},\mu,\zeta_B)\delta^{(2)}(q_T-k_{TA}-k_{TB}) \ &\propto & H(Q,\mu)\int d^2b_T e^{ib_T\cdot q_T}f_A(x,b_T,\mu,\zeta_A)f_B(x,b_T,\mu,\zeta_B) \end{aligned}$$

• Important constraints on the scales: $\mu \sim Q$ and $\zeta_A \zeta_B = Q^4$.

TMD evolution

• The removal of UV and rapidity divergencies allows one to write **two** evolution equations for the TMD, along with the cross derivative:

$$\frac{d\ln f}{d\ln \mu} = \gamma(\mu, \zeta) , \quad \frac{d^2 \ln f}{d\ln \mu d\ln \sqrt{\zeta}} = \begin{cases} \frac{d\gamma}{d\ln \sqrt{\zeta}} \\ \frac{d \ln f}{d\ln \sqrt{\zeta}} \end{cases} = K(\mu) \end{cases}$$

• To solve these equations we need to fix **two pairs of** (*i.e.* **four**) **scales**:

- **initial** scales: (μ_0, ζ_0)
- **final** scales: (μ, ζ)

The final solution reads:

$$f(\mu, \boldsymbol{\zeta}) = R\left[(\mu, \boldsymbol{\zeta}) \leftarrow (\mu_0, \boldsymbol{\zeta}_0)
ight] f(\mu_0, \boldsymbol{\zeta}_0)$$

$$R\left[(\mu, \boldsymbol{\zeta}) \leftarrow (\mu_0, \boldsymbol{\zeta}_0)\right] = \exp\left\{K(\mu_0) \ln \frac{\sqrt{\boldsymbol{\zeta}}}{\sqrt{\boldsymbol{\zeta}_0}} + \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu')) \ln \frac{\sqrt{\boldsymbol{\zeta}}}{\mu'}\right]\right\}$$

• We know how to choose (μ, ζ) to compute a cross section.

• A question remains: how do we *sensibly* choose (μ_0, ζ_0) ?

TMD evolution à la CSS

A sensible choice of the scales is important to allow truncated perturbation theory to be reliable:

no large unresummed logarithms should be introduced,

each scale has to be set in the **vicinity of its "natural" value**.

• In TMD factorisation $(q_T \ll Q)$ for DY the relevant scales are q_T and Q:

$$i$$
 natural to expect $\mu_0 \sim \sqrt{\zeta_0} \sim q_T \sim b_T^{-1}$ and $\mu \sim \sqrt{\zeta} \sim Q$

 $\mathbf{\bullet}$ In the $\overline{\mathrm{MS}}$ scheme **central scales** are usually chosen to be:

$$\mu_0 = \sqrt{\zeta_0} = rac{2e^{-\gamma_E}}{b_T} \equiv \mu_b \quad ext{and} \quad \mu = \sqrt{\zeta} = Q$$

This particular choice **nullifies** all unresummed logs.

Modest variations around these values give an estimate of higher-order corrections.

TMD evolution à la SV

- In [1803.11089] SV introduced the concept of **optimal TMD**.
- Motivation: within truncated perturbation theory, the pathindependence of the TMD evolution is violated.
- This derives from the violation by *subleading* terms of the equation:

$$\frac{dK}{d\ln\mu} \neq \gamma_K(\alpha_s(\mu))$$

given to the choice to truncate to order $N \gamma_K$ (as necessary) and also K:

$$\gamma_{K}(\alpha_{s}(\mu)) = \sum_{n=0}^{N} \alpha_{s}^{n+1}(\mu) \gamma_{K}^{(0)} \text{ and } K(\mu) = \sum_{n=0}^{N} \alpha_{s}^{n+1}(\mu) \sum_{k=0}^{n} \ln^{k} (\mu b_{T}) d^{(n,k)}$$

- This observation led SV to define the **optimal TMD** as the TMD on the plane (μ^2, ζ) at the saddle point of the vector field $E = (\gamma, K)$.
 - for any given value of b_T , the optimal TMD is scale independent.
 - The TMD at any scale can be computed as a shift along an equipotential line together with a single evolution evolution in ζ .

TMD evolution à la SV

TMD evolution à la SV

- Another ingredient of the TMD evolution \hat{a} la SV is the ζ -prescription.
- Purpose: eliminate **double logs** from the *matching functions C*:

 $f(\mu_0,\zeta_0)=C(\mu_0,\zeta_0)\otimes f_{\mathrm{coll}}(\mu_0)$

by exploiting the arbitrariness of ζ_0 assuming $\zeta_0 \doteq \zeta_0(\mu_0)$ and imposing: $\frac{d}{d \ln \mu_0} f(\mu_0, \zeta_0(\mu_0)) = 0$

This differential equation is the solved for $\ln(\zeta_0)$ order-by-order in α_s :

quark:
$$\mathbf{l}_{\zeta_{\mu}} = \frac{\mathbf{L}_{\mu}}{2} - \frac{3}{2} + a_{s} \Big[\frac{11C_{A} - 4T_{F}N_{f}}{36} \mathbf{L}_{\mu}^{2} + C_{F} \left(-\frac{3}{4} + \pi^{2} - 12\zeta_{3} \right) + C_{A} \left(\frac{649}{108} - \frac{17\pi^{2}}{12} + \frac{19}{2}\zeta_{3} \right) + T_{F}N_{f} \left(-\frac{53}{27} + \frac{\pi^{2}}{3} \right) \Big] + \mathcal{O}(a_{s}^{3}).$$

$$\begin{split} \mathbf{l}_{\zeta_{\mu}} &= \frac{\mathbf{L}_{\mu}}{2} - \frac{11}{6} + \frac{2}{3} \frac{T_F N_f}{C_A} + a_s \Big[\frac{11C_A - 4T_F N_f}{36} \mathbf{L}_{\mu}^2 \\ &+ C_A \left(\frac{247}{54} - \frac{11\pi^2}{36} - \frac{5\zeta_3}{2} \right) + T_F N_f \left(-\frac{16}{3} + \frac{\pi^2}{9} \right) + \left(2C_F + \frac{40}{27} T_F N_f \right) \frac{T_f N_f}{C_A} \Big] + \mathcal{O}(a_s^3). \end{split}$$
Scimemi, Vladimirov [1706.01473]

TMD non-perturbative effects thus connected with **low-energy** region: $\stackrel{6}{
}$ no matter how large Q is.

Non-perturbative component

- When integrating over b_T , **large values of** b_T give raise to low scales in the **non-perturbative** region.
- Introduce the so-called **b***- prescription: $\mathbf{e.g.} \ b_*(b_T) = \frac{b_T}{\sqrt{1+b_T^2/b_{\max}^2}} \stackrel{\text{for equation}}{\overset{\text{for equation}}{\overset{\text{for$
 - with b_{max} such that $1/b_{\text{max}} \gg \Lambda_{\text{QCD}}$.
- Then rewrite the TMD as:

$$f(x, b_T, \mu, \zeta) = \left[\frac{f(x, b_T, \mu, \zeta)}{f(x, b_*(b_T), \mu, \zeta)}\right] f(x, b_*(b_T), \mu, \zeta) \equiv f_{\text{NP}}(x, b_T, \zeta) f(x, b_*(b_T), \mu, \zeta)$$
Non-perturbative

- Properties of **f_{NP}**:
 - \bullet dependence on μ drops,
 - dependence on ζ is know: $f_{\rm NP}(x, b_T, \zeta) = \widetilde{f}_{\rm NP}(x, b_T) \exp \left| \frac{g_K(b_T) \ln \left(\frac{\sqrt{\zeta}}{Q_0} \right)}{\left| \frac{1}{Q_0} \right|} \right|$
 - for non-perturbative origin but strictly connected to the particular choice of b*23

Perturbative

- The operational version (for unpolarised DY) à la CSS • At small values of $q_{\rm T}$, the DY cross section in TMD factorisation reads: $\frac{d\sigma}{dq_T} = \sigma_0 H(Q,Q) \int_0^\infty db_T \, \frac{b_T J_0(q_T b_T)}{b_T J_0(q_T b_T)} f_A(x_1, b_T, Q, Q^2) f_B(x_2, b_T, Q, Q^2)$ • Defining $\mu_{b_*} = \frac{2e^{-\gamma_E}}{b_*(b_T)}$, the single TMD distributions are given by: $f(x, b_T, Q, Q^2) = C(x, \mu_{b_*}, \mu_{b_*}^2) \otimes f_{\mathrm{coll}}(x, \mu_{b_*})$ Matching onto collinear distributions $\times \quad \exp\left\{K(\mu_{b_*})\ln\frac{Q}{\mu_{b_*}} + \int_{\mu_b}^Q \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu'))\ln\frac{Q}{\mu'}\right]\right\}$ Perturbative evolution
 - $\times \quad \widetilde{f}_{\rm NP}(x, b_T) \exp \left[g_K(b_T) \ln \left(\frac{Q}{Q_0} \right) \right]$ TMD non-perturbative contribution
- Matching functions and anomalous dimensions are know from perturbation theory,
- collinear distributions are (accurately) known from dedicated fits,
- in the TMD non-pert. contribution has to be **determined from data** at small q_{T} .²⁴

- Leading-power TMD factorisation has been **proven** to hold also for:
 - Semi-inclusive DIS allow values of the p_{T} of the produced hadron:

• double-inclusive e^+e^- annihilation where the two hadrons are almost back-to-back:

Necessary to replace PDFs with fragmentation functions (FFs) where appropriate.
25

Most recent TMD extractions

Pavia2019 [1912.07550]:

Transverse-momentum-dependent parton distributions up to N³LL from Drell-Yan data

based on the CSS formalism

Alessandro Bacchetta,^{*a,b*} Valerio Bertone,^{*a,b*} Chiara Bissolotti,^{*a,b*} Giuseppe Bozzi,^{*a,b*} Filippo Delcarro,^{*c*} Fulvio Piacenza,^{*a,b*} and Marco Radici^{*b*}

^a Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia
^b INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
^c Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA *E-mail:* alessandro.bacchetta@unipv.it, valerio.bertone@cern.ch,
chiara.bissolotti01@universitadipavia.it, giuseppe.bozzi@unipv.it,
delcarro@jlab.org, fulvio.piacenza01@universitadipavia.it,
marco.radici@pv.infn.it

SV2019 [1912.06532]:

based on the SV formalism

Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum

Ignazio Scimemi¹ Alexey Vladimirov²

¹Departamento de Física Teórica and IPARCOS

- Universidad Complutense de Madrid,
- Plaza de Ciencias 1, Ciudad Universitaria, 28040 Madrid, Spain

²Institut für Theoretische Physik,

Universität Regensburg, D-93040 Regensburg, Germany

Pavia2019 *Dataset*

- DY data only:
 - fixed-target low-energy DY,
 - 🍯 STAR data
 - LHC and Tevatron data,
 - 🍯 353 data points,
 - selection cut $q_{\rm T}$ / Q < 0.2.

Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	Q [GeV]	$y \text{ or } x_F$	Lepton cuts	Ref.
E605	50	$Ed^3\sigma/d^3q$	38.8	7 - 18	$x_F = 0.1$	-	[79]
E288 200 GeV	30	$Ed^3\sigma/d^3q$	19.4	4 - 9	y = 0.40	-	[80]
E288 300 GeV	39	$Ed^3\sigma/d^3q$	23.8	4 - 12	y = 0.21	-	[80]
E288 400 GeV	61	$Ed^3\sigma/d^3q$	27.4	5 - 14	y = 0.03	-	[80]
STAR 510	7	$d\sigma/dq_T$	510	73 - 114	y < 1	$p_{T\ell} > 25 \text{ GeV}$ $ \eta_{\ell} < 1$	-
CDF Run I	25	$d\sigma/dq_T$	1800	66 - 116	Inclusive	-	[81]
CDF Run II	26	$d\sigma/dq_T$	1960	66 - 116	Inclusive	-	[82]
D0 Run I	12	$d\sigma/dq_T$	1800	75 - 105	Inclusive	-	[83]
D0 Run II	5	$(1/\sigma)d\sigma/dq_T$	1960	70 - 110	Inclusive	-	[84]
D0 Run II (μ)	3	$(1/\sigma)d\sigma/dq_T$	1960	65 - 115	y < 1.7	$p_{T\ell} > 15 \text{ GeV}$ $ \eta_{\ell} < 1.7$	[85]
LHCb 7 TeV	7	$d\sigma/dq_T$	7000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[86]
LHCb 8 TeV	7	$d\sigma/dq_T$	8000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[87]
LHCb 13 TeV	7	$d\sigma/dq_T$	13000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[92]
CMS 7 TeV	4	$(1/\sigma)d\sigma/dq_T$	7000	60 - 120	y < 2.1	$\begin{vmatrix} p_{T\ell} > 20 \text{ GeV} \\ \eta_{\ell} < 2.1 \end{vmatrix}$	[88]
CMS 8 TeV	4	$(1/\sigma)d\sigma/dq_T$	8000	60 - 120	y < 2.1	$p_{T\ell} > 15 \text{ GeV}$ $ \eta_{\ell} < 2.1$	[89]
ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/dq_T$	7000	66 - 116	y < 1 1 < y < 2 2 < y < 2.4	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[93]
ATLAS 8 TeV on-peak	6 6 6 6 6	$(1/\sigma)d\sigma/dq_T$	8000	66 - 116	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{split}$	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[90]
ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/dq_T$	8000	46 - 66 116 - 150	y < 2.4	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[90]
Total	353	-	-	-	-	-	-

- **9 free parameters** to fit to data.
- Perturbative accuracies: NLL', NNLL, NNLL', N³LL
- **Monte Carlo** method for the experimental error propagation.

Pavia2019 *Fit quality*

Experiment		$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^{2}/N_{\rm dat}$	$\chi^2/N_{\rm dat}$
	7 GeV < Q < 8 GeV	0.419	0.068	0.487
	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.995	0.034	1.029
E605	$10.5~{\rm GeV} < Q < 11.5~{\rm GeV}$	0.191	0.137	0.328
	$11.5~{\rm GeV} < Q < 13.5~{\rm GeV}$	0.491	0.284	0.775
	$13.5~{\rm GeV} < Q < 18~{\rm GeV}$	0.491	0.385	0.877
	$4~{\rm GeV} < Q < 5~{\rm GeV}$	0.213	0.649	0.862
	$5~{\rm GeV} < Q < 6~{\rm GeV}$	0.673	0.292	0.965
$\rm E288~200~GeV$	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.133	0.141	0.275
	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.254	0.014	0.268
	$8 {\rm GeV} < Q < 9 {\rm GeV}$	0.652	0.024	0.676
	4 GeV < Q < 5 GeV	0.231	0.555	0.785
	5 GeV < Q < 6 GeV	0.502	0.204	0.706
E288 300 GeV	6 GeV < Q < 7 GeV	0.315	0.063	0.378
1200 000 001	7 GeV < Q < 8 GeV	0.056	0.030	0.086
	$8 {\rm GeV} < Q < 9 {\rm GeV}$	0.530	0.017	0.547
	$11~{\rm GeV} < Q < 12~{\rm GeV}$	1.047	0.167	1.215
	5 GeV < Q < 6 GeV	0.312	0.065	0.377
	$6 {\rm GeV} < Q < 7 {\rm GeV}$	0.100	0.005	0.105
	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.018	0.011	0.029
E288 400 GeV	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.437	0.039	0.477
	$11~{\rm GeV} < Q < 12~{\rm GeV}$	0.637	0.036	0.673
	12 GeV < Q < 13 GeV	0.788	0.028	0.816
	13 GeV < Q < 14 GeV	1.064	0.044	1.107
STAR		0.782	0.054	0.836
CDF Run I		0.480	0.058	0.538
CDF Run II		0.959	0.001	0.959
D0 Run I		0.711	0.043	0.753
D0 Run II		1.325	0.612	1.937
D0 Run II (μ)		3.196	0.023	3.218
LHCb 7 TeV		1.069	0.194	1.263
LHCb 8 TeV		0.460	0.075	0.535
LHCb 13 TeV		0.735	0.020	0.755
CMS 7 TeV		2.131	0.000	2.131
CMS 8 TeV		1.405	0.007	1.412
	0 < y < 1	2.581	0.028	2.609
ATLAS 7 TeV	1 < y < 2	4.333	1.032	5.365
	2 < y < 2.4	3.561	0.378	3.939
	0 < y < 0.4	1.924	0.337	2.262
	0.4 < y < 0.8	2.342	0.247	2.590
ATLAS 8 TeV	0.8 < y < 1.2	0.917	0.061	0.978
on-peak	1.2 < y < 1.6	0.912	0.095	1.006
	1.6 < y < 2	0.721	0.092	0.814
	2 < y < 2.4	0.932	0.348	1.280
ATLAS 8 TeV	$46~{\rm GeV} < Q < 66~{\rm GeV}$	2.138	0.745	2.883
		0 501	0.002	0 504
off-peak	116 GeV < Q < 150 GeV	0.501	0.003	0.504

Pavia2019 Perturbative convergence

Pavia2019 Perturbative convergence

SV2019 Dataset

Both DY and SIDIS data:

- fixed-target low-energy DY,
- 🍯 PHENIX data,
- LHC and Tevatron data,
- HERMES and COMPASS,
- 457 + 582 = 1039 data points.

SIDIS	$\langle Q \rangle \geq 2 \mathrm{Ge}$

$$\text{eV} \quad \delta \equiv \frac{\langle q_T \rangle}{\langle Q \rangle} < 0.25$$

	-			
Experiment	Reaction	ref.	Kinematics	$N_{ m pt}$
I				after cuts
	$p \to \pi^+$			24
	$p \to \pi^-$		$0.023{<}x{<}0.6~(6~{ m bins})$	24
	$p \to K^+$		$0.2{<}z{<}0.8~(6~{ m bins})$	24
HEBMES	$p \to K^-$] [<u>5</u> 2]	$1.0 {<} \mathrm{Q} {<} \sqrt{20} \mathrm{GeV}$	24
	$D \to \pi^+$			24
	$D \to \pi^-$		$W^2 > 10 \text{GeV}^2$	24
	$D \to K^+$		$0.1 {<} y {<} 0.85$	24
	$D \to K^-$			24
COMPASS	$d \to h^+$	[50]	$0.003{<}x{<}0.4~(8~{ m bins})$	195
	$d \rightarrow h^{-}$		$0.2{<}z{<}0.8~(4~{ m bins})$	195
			$1.0 {<} Q \simeq 9 \text{GeV} (5 \text{ bins})$	
Total				582

DY	$\delta \equiv$	$\frac{\langle q_T \rangle}{\langle Q \rangle}$	< 0.1	$\delta < 0.25$	if δ^2	$^{2} < \sigma$
Experiment	ref.	\sqrt{s} [GeV]	Q [GeV]	y/x_F	fiducial region	$N_{\rm pt}$ after cuts
E288 (200)	[64]	19.4	4 - 9 in 1 GeV bins*	$0.1 < x_F < 0.7$	-	43
E288 (300)	[64]	23.8	4 - 12 in 1 GeV bins*	$-0.09 < x_F < 0.51$	-	53
E288 (400)	[64]	27.4	5 - 14 in 1 GeV bins*	$-0.27 < x_F < 0.33$	-	76
E605	[65]	38.8	7 - 18 in 5 bins*	$-0.1 < x_F < 0.2$	-	53
E772	[66]	38.8	5 - 15 in 8 bins*	$0.1 < x_F < 0.3$	-	35
PHENIX	[67]	200	4.8 - 8.2	1.2 < y < 2.2	-	3
CDF (run1)	[68]	1800	66 - 116	-	-	33
CDF (run2)	[69]	1960	66 - 116	-	-	39
D0 (run1)	[70]	1800	75 - 105	-	-	16
D0 (run2)	[71]	1960	70 - 110	-	-	8
D0 $(run2)_{\mu}$	[72]	1960	65 - 115	y < 1.7	$p_T > 15 \text{ GeV}$ $ \eta < 1.7$	3
ATLAS (7TeV)	[45]	7000	66 - 116	$\begin{split} y < 1 \\ 1 < y < 2 \\ 2 < y < 2.4 \end{split}$	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	15
ATLAS (8TeV)	[46]	8000	66 - 116	y < 2.4in 6 bins	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	30
ATLAS (8TeV)	[46]	8000	46 - 66	y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	3
ATLAS (8TeV)	[46]	8000	116 - 150	y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	7
CMS (7TeV)	[47]	7000	60 - 120	y < 2.1	$p_T > 20 \text{ GeV}$ $ \eta < 2.1$	8
CMS (8TeV)	[48]	8000	60 - 120	y < 2.1	$p_T > 20 \text{ GeV}$ $ \eta < 2.1$	8
LHCb (7TeV)	[73]	7000	60 - 120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$	8
LHCb (8TeV)	[74]	8000	60 - 120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$	7
LHCb (13TeV)	[75]	13000	60 - 120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$	9
Total						457

*Bins with $9 \leq Q \leq 11$ are omitted due to the Υ resonance.

SV2019 *Kinematic coverage*

 \bullet *b** prescription:

$$b_*(b_T) = \sqrt{\frac{b_T^2 B_{\rm NP}^2}{b_T^2 + B_{\rm NP}^2}}$$

- Non-perturbative function f_{NP} :
 - $\begin{array}{ll} \bullet & \text{evolution:} \\ g_K(b_T) = -c_0 b_T b_*(b_T) & \rightarrow \end{array} \begin{array}{ll} \left\{ \begin{array}{ll} -c_0 b_T^2 & \text{for } b_T \to 0 \\ -c_0 B_{\text{NP}} b_T & \text{for } b_T \to \infty \end{array} \right. \end{array}$
 - PDFs and FFs:

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right)$$

$$D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2(1-z)}{\sqrt{1+\eta_3(b/z)^2}}\frac{b^2}{z^2}\right)\left(1+\eta_4\frac{b^2}{z^2}\right)$$

- **11 free parameters** to fit to data.
- Perturbative accuracies: NNLL'(NNLO), N³LL (N³L0)
- **Monte Carlo** method for the experimental error propagation.

SV2019 *Fit quality*

- \oint Remarkably good total χ^2 ,

Important achievement:

simultaneous description of SIDIS and DY data within the same fit at high perturbative order.

		NNI	LO	$N^{3}I$	O
Data set	N_{pt}	χ^2/N_{pt}	$\langle d/\sigma \rangle$	χ^2/N_{pt}	$\langle d/\sigma \rangle$
CDF run1	33	0.66	8.4%	0.67	7.8%
CDF run2	39	1.28	2.8%	1.41	2.1%
D0 run1	16	0.72	0.1%	0.78	-0.5%
D0 run2	8	1.38	-	1.64	-
D0 run2 (μ)	3	0.62	-	0.69	-
Tevatron total	99	0.97		1.06	
ATLAS 7TeV 0.0< y <1.0	5	1.66	-	0.81	-
ATLAS 7TeV 1.0< y <2.0	5	5.94	-	4.09	-
ATLAS 7TeV 2.0< y <2.4	5	1.49	-	1.26	-
ATLAS 8TeV $0.0 < y < 0.4$	5	2.51	3.5%	3.40	2.8%
ATLAS 8TeV $0.4 < y < 0.8$	5	2.95	3.5%	3.03	2.7%
ATLAS 8TeV 0.8< y <1.2	5	1.30	3.7%	1.45	2.9%
ATLAS 8TeV 1.2< y <1.6	5	2.03	4.2%	1.53	3.4%
ATLAS 8TeV 1.6< y <2.0	5	1.47	4.9%	0.70	4.1%
ATLAS 8TeV 2.0< y <2.4	5	2.64	5.6%	2.10	4.8%
ATLAS 8TeV $46 < Q < 66 GeV$	3	0.31	1.1%	0.31	0.2%
ATLAS 8TeV $116 < Q < 150 GeV$	7	0.84	1.9%	0.97	1.2%
ATLAS total	55	2.12		1.82	
CMS 7TeV	8	1.25	-	1.24	-
CMS 8TeV	8	0.77	-	0.76	-
CMS total	16	1.01		1.00	
LHCb 7TeV	8	2.68	5.8%	2.37	5.2%
LHCb 8TeV	7	4.81	5.8%	4.16	5.1%
LHCb 13TeV	9	0.91	6.4%	0.81	5.7%
LHCb total	24	2.63		2.31	
High energy DY total	194	1.51		1.42	
PHE200	3	0.28	0.2%	0.29	-0.3%
E228-200	43	1.00	35.7%	1.12	35.0%
E228-300	53	0.90	29.2%	1.01	28.3%
E228-400	76	0.86	20.6%	0.96	19.5%
E772	35	1.84	9.5%	1.91	8.5%
E605	53	0.57	21.3%	0.60	20.1%
Low energy DV total	263	0.96	21.070	1.04	201170
	205	0.50	1 507	1.04	0.007
HERMES $(p \rightarrow \pi^+)$	24	2.20	1.7%	3.06	2.2%
HERMES $(p \to \pi^{-})$	24	1.12	0.6%	1.45	0.9%
HERMES $(p \to K^+)$	24	0.71	-0.1%	0.66	0.0%
HERMES $(p \to K)$	24	0.69	0.0%	0.66	0.0%
HERMES $(d \rightarrow \pi^+)$	24	0.57	0.3%	0.78	0.8%
HERMES $(d \to \pi^-)$	24	0.74	0.5%	0.96	0.7%
HERMES $(a \to K^+)$	24	0.52	-0.1%	0.53	0.0%
HERMES $(d \to K^-)$	24	1.27	0.0%	1.17	0.1%
HERMES total	192	0.98	0.00	1.16	F - 0-1
COMPASS $(d \rightarrow h^+)$	195	0.61	3.3%	0.76	5.1%
COMPASS $(d \to h^-)$	195	0.68	-2.3%	0.92	-0.5%
COMPASS total	390	0.65		0.84	
SIDIS total	582	0.76		0.95	
Total	1039	0.95		1.06	

TMDs at the LHC The W mass

- A precise determination of the *W* mass plays an important role in testing the Standard Model and thus for **BSM** physics.
- This is a central task of the **LHC physics**.
- In order to minimise experimental systematic effects, the most promising procedure relies on the measurement of the W/Z ratio cross section:
 - the W mass is basically determined through template fits of:

$$rac{d\sigma^W}{dq_T} = \left(rac{d\sigma^W/dq_T}{d\sigma^Z/dq_T}
ight)_{
m exp.} \left(rac{d\sigma^Z}{dq_T}
ight)_{
m th.}$$

- Therefore, an accurate and reliable prediction of the **Z** spectrum is essential.
- **TMD-based predictions** are currently playing an important role within the LHC electroweak working group along **other formalisms**.

TMDs at the LHC The W mass

TMDs at the LHC

Linearly polarised gluon and the Higgs boson

• The *linearly polarised* gluon TMD PDF h_T contributes to the *unpolarised* low- q_T spectrum of Higgs production in gluon fusion:

$$\frac{d\sigma}{dyd^2\boldsymbol{q}_T} = \frac{\sigma_{gg\to H}}{(2\pi)^2} \int d^2\boldsymbol{b} \ e^{-i(\boldsymbol{b}\boldsymbol{q}_T)} \Big(f_{1,g}(x_A, \boldsymbol{b}) f_{1,g}(x_B, \boldsymbol{b}) + h_{1,g}^{\perp}(x_A, \boldsymbol{b}) h_{1,g}^{\perp}(x_B, \boldsymbol{b}) \Big)$$

• Despite the linearly polarised gluon enters beyond NNLL, its effect on the cross section can be sizeable, particularly at low $q_{\rm T}$, but below current data accuracy:

TMDs at the EIC

- The EIC has now been **approved** and there is a lot of ferment aiming at defining the **basic physics goals** and the consequent **detector requirements**.
- An accurate knowledge of TMDs (polarised and unpolarised) is of extreme importance to this purpose.

From A.Vladimirov's slides at the last YR SIDIS WG meeting

TMDs at the EIC

- An important step is the definition of the relevant observables to be measure and the respective binning.
- TMDs are crucial to take this step.
- Binning in x and Q^2 under discussion:

TMDs at the EIC

Resummation formalisms

\bullet Different formulations of the q_T spectrum:

$$egin{aligned} &\left(rac{d\sigma}{dq_T}
ight)_{ ext{res.}} \propto \left\{egin{aligned} &e^{2S}\left[f_1\otimes \mathcal{H}\otimes f_2
ight] &: ext{Resum.} \ &H imes F_1 imes F_2 &: ext{TMD} &+ \mathcal{O}\left[\left(rac{q_T}{Q}
ight)^m
ight] \ &H imes B_1 imes B_2 imes S &: ext{SCET} \end{aligned}
ight.$$

Dictionary:

 $\mathcal{H} = HC_1C_2$

 $F_i = e^S C_i \otimes f_i$

$$F_i = \sqrt{S} imes B_i$$

Mequivalent for *exponentiating* processes.

Logarithmic counting

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$$

$$egin{aligned} F_f(x, \mathrm{b}_T, \mu, \zeta) &= \sum_j C_{f/j}(c, b_T; \mu_b, \zeta) \otimes f_j(x, \mu_b) \ & imes & \exp\left\{K(b_T, \mu_b) \ln rac{\sqrt{\zeta}}{\mu_b} + \int_{\mu_b}^{\mu} rac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln rac{\sqrt{\zeta}}{\mu'}
ight]
ight\} \end{aligned}$$

Accuracy	γκ	γ _F	K	$C_{f j}$	H
LL	α_s	_	_	1	1
NLL	α_s^2	$lpha_s$	$lpha_s$	1	1
NLL'	α_s^2	$lpha_s$	$lpha_s$	$lpha_s$	$lpha_s$
N ² LL	$\alpha_s{}^3$	α_s^2	α_s^2	$lpha_s$	$lpha_s$
N ² LL'	$\alpha_s{}^3$	α_s^2	α_s^2	α_s^2	α_s^2
N ³ LL	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^2	α_s^2
N ³ LL'	α_s^4	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^3 48

Additive matching and counting

• Accurate predictions for all q_T 's by **additive matching**, order by order in perturbation theory, of collinear and TMD calculations:

 $\left(\frac{d\sigma}{dq_T}\right)_{\text{add match}} = \left(\frac{d\sigma}{dq_T}\right)_{\text{res}} + \left(\frac{d\sigma}{dq_T}\right)_{\text{f}} - \left(\frac{d\sigma}{dq_T}\right)_{\text{d}} - \left(\frac{d\sigma}{d$

In order for the match to actually take place:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \xrightarrow{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{d.c.}} \xleftarrow{q_T \ll Q} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}}$$

Therefore, the "fixed-order" parts have to match in the relevant limits:

Log Accuracy	Minimal f.o. accuracy
NLL'	α_{s} (LO)
N ² LL	α_{s} (LO)
N ² LL'	α_{s^2} (NLO)
N ³ LL	α_{s^2} (NLO)
N ³ LL'	α_{s^3} (NNLO)

Experimental uncertainties

the central value of the *i-th* measurement

Slide by C. Bissolotti

Experimental uncertainties

$$m_{i} \pm \sigma_{i,\text{stat}} \pm \sigma_{i,\text{unc}} \pm \sigma_{i,\text{corr}}^{(1)} \pm \dots \pm \sigma_{i,\text{corr}}^{(k)}$$
uncorrelated correlated additive multiplicative

$$\chi^{2} = \sum_{i,j=1}^{n} (m_{i} - t_{i}) V_{ij}^{-1} (m_{j} - t_{j})$$

$$\sigma_{i,\text{corr}}^{(l)} \equiv \delta_{i,\text{corr}}^{(l)} m_{i}$$
covariance matrix

$$V_{ij} = s_i^2 \delta_{ij} + \left(\sum_{l=1}^{k_a} \delta_{i,\text{add}}^{(l)} \delta_{j,\text{add}}^{(l)} + \sum_{l=1}^{k_m} \delta_{i,\text{mult}}^{(l)} \delta_{j,\text{mult}}^{(l)}\right) m_i m_j$$

Slide by C. Bissolotti

recover the form of the uncorrelated definition

penalty term

Slide by C. Bissolotti

Pavia 2019

Flavour dependence of TMD PDFs [arXiv:1807.02101]

A possible **flavour dependence** of the intrinsic p_T should not be neglected:

• possible effect on the determination of M_W (PDG: M_W =80.379 ± 0.012 GeV).

Introduce a NP function that depends on the quark flavour:

$$f_{\rm NP}(b_T) \to f_{\rm NP}^{(a)}(b_T) = \exp\left[-\left(g_{\rm evo}\ln\frac{Q^2}{Q_0^2} + g_a\right)b_T^2\right]$$

a universal non-perturbative correction to the TMD evolution is also introduced.

Template fits of M_W performed to sets of **pseudo-data** of p_{Tl} and M_T distributions with ATLAS and CDF kinematics and experimental uncertainties:

pseudo-data generated by varying f_{NP} in a range such that $W-q_T$ distributions are all **stat. equivalent**.

- Shifts comparable to the word-average uncertainty.
- Flavour dependence of the intrinsic p_T may be required for a precise determination of M_{W_2}
- Data from flavour-sensitive processes such as SIDIS from COMPASS will shed new light on the flavour decomposition of the unpolarised TMD PDFs.

M_W shifts in MeV

