Transversely polarized Lambda production within a TMD approach

from e^+e^- to SIDIS and hadronic processes

Marco Zaccheddu

Cake Seminar 04/24/2024

Lambda Transverse Polarization: longstanding problem!

Lambda Transverse Polarization: longstanding problem!

Discovered in unpolarized pN collisions [G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976)] [K.J. Keller et al., Phys. Rev. Lett. 41, 607 (1978)]

Lambda Transverse Polarization: longstanding problem!

Collinear pQCD not able to describe the size of the Polarization (at leading-twist) $P_T \simeq 1 - 2 \%$ Discovered in unpolarized pN collisions [K.J. Keller et al., Phys. Rev. Lett. 36, 1113 (1976)] [K.J. Keller et al., Phys. Rev. Lett. 41, 607 (1978)]

Lambda Transverse Polarization: longstanding problem!

Collinear pQCD not able to describe the size of the Polarization (at leading-twist) $P_T \simeq 1-2 \ \%$

Extension of the Collinear pQCD with the introduction of transverse momentum dependent fragmentation function (TMD-FFs)

Polarizing TMD-FF introduced

[P.J. Mulders and R.D. Tangerman, Nucl. Phys. B461, 197 (1996)]

Studied phenomenologically in a simplified TMD approach and with collinear twist 3 PDFs.

Observation of Transverse $\Lambda/\overline{\Lambda}$ Hyperon Polarization in e^+e^- Annihilation at Belle

• 2 data set $@\sqrt{s} = 10.58 \text{ GeV}$

[Y. Guan et al., Phys. Rev. Lett. 122. 042001 (2019)]

peron Double hadron production:

- $e^+e^- \rightarrow \Lambda \pi/K + X$: 128 points bins of the energy fractions $z_{\Lambda} z_{\pi,K}$ Single-inclusive hadron production:
- $e^+e^- \rightarrow \Lambda(jet) + X$: 32 points $\Lambda(jet)$, in bins of $z_{\Lambda} p_{\perp}$

Observation of Transverse $\Lambda/\overline{\Lambda}$ Hyperon Polarization in e^+e^- Annihilation at Belle

• 2 data set $@\sqrt{s} = 10.58 \text{ GeV}$

[Y. Guan et al., Phys. Rev. Lett. 122. 042001 (2019)]

yperon Double hadron production:

- $e^+e^- \rightarrow \Lambda \pi/K + X$: 128 points bins of the energy fractions $z_{\Lambda} z_{\pi,K}$ Single-inclusive hadron production:
- $e^+e^- \rightarrow \Lambda(jet) + X$: 32 points $\Lambda(jet)$, in bins of $z_{\Lambda} p_{\perp}$

Phenomenological analysis:

Fixed scale:

- D'Alesio, Murgia, MZ; *Phys.Rev.D* 102 (2020) 5, 054001
- Callos, Kang, Terry; *Phys.Rev.D* 102 (2020) 9, 096007
- Chen, Liang, Pan, Song, Wei; *Phys.Lett.B* 816 (2021) 136217

Reanalysis with TMD evolution:

Transverse A polarization in e +e – annihilations and in SIDIS processes at the EIC within TMD factorization

• D'Alesio, Gamberg, Murgia, MZ; JHEP 12 (2022) 074

Transverse Λ polarization in unpolarized pp \rightarrow jet $\Lambda \uparrow X$

• D'Alesio, Gamberg, Murgia, MZ; *Phys.Rev.D* 108 (2023) 9, 094004

Contents:

- TMD Fragmentation Functions
- Convolutions and Polarization: $e^+e^- \rightarrow h^{\uparrow}_1 h_2 X$
- Fit results: Belle 2-h
- SIDIS predictions and Intrinsic Charm
- Lambda in jet: $pp \rightarrow \Lambda jet X$
- Conclusions

TMD Fragmentation Functions for quarks

8 independent TMD F	Fragmentation Functions
---------------------	-------------------------

		Hadron				
	Pol. States	U	L	Т		
Q	U	D_{1} Unpolarized FF		D_{1T}^{\perp} Polarizing FF		
u a r	L		G_{1L}	G_{1T}		
k	т	H_1^\perp Collins FF	H_{1L}^{\perp}	H_1/H_{1T}^{\perp}		

Polarization:

$$P_n^{h_1}(z_{h_1}, z_{h_2}) = \frac{M_1 \int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_1\left[\widetilde{D}_{1T}^{\perp(1)}\widetilde{\overline{D}}_1\right]}{\int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_0\left[\widetilde{D}_1\widetilde{\overline{D}}_1\right]}$$

Convolutions:

$$\begin{aligned} \mathcal{B}_{0}\Big[\widetilde{D}\widetilde{\bar{D}}\Big] &= \frac{1}{z_{1}^{2}z_{2}^{2}}\sum_{q}e_{q}^{2}\int\frac{db_{T}}{2\pi}\,b_{T}J_{0}(b_{T}\,q_{T})\,d_{q/h_{1}}(z_{1};\bar{\mu}_{b})\,d_{\bar{q}/h_{2}}(z_{2};\bar{\mu}_{b}) \\ &\times M_{D_{1}}(b_{c}(b_{T}),z_{1})\,M_{D_{2}}(b_{c}(b_{T}),z_{2})\,e^{-g_{K}(b_{c}(b_{T});b_{\max})\ln\left(\frac{Q^{2}z_{1}z_{2}}{M_{1}M_{2}}\right)-S_{\mathrm{pert}}(b_{*};\bar{\mu}_{b})} \\ \mathcal{B}_{1}\Big[\widetilde{D}_{1T}^{\perp(1)}\widetilde{\bar{D}}_{1}\Big] &= \frac{1}{z_{1}^{2}z_{2}^{2}}\sum_{q}e_{q}^{2}\int\frac{db_{T}}{(2\pi)}\,b_{T}^{2}J_{1}(b_{T}\,q_{T})D_{1T}^{\perp(1)}(z_{1};\bar{\mu}_{b})\,d_{\bar{q}/h_{2}}(z_{2};\bar{\mu}_{b}) \\ &\times M_{D_{1}}^{\perp}(b_{c}(b_{T}),z_{1})\,M_{D_{2}}(b_{c}(b_{T}),z_{2})\,e^{-g_{K}(b_{c}(b_{T});b_{\max})\ln\left(\frac{Q^{2}z_{1}z_{2}}{M_{1}M_{2}}\right)-S_{\mathrm{pert}}(b_{*};\bar{\mu}_{b})}\,,\end{aligned}$$

Polarization:

$$P_n^{h_1}(z_{h_1}, z_{h_2}) = \frac{M_1 \int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_1\left[\widetilde{D}_{1T}^{\perp(1)}\widetilde{\overline{D}}_1\right]}{\int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_0\left[\widetilde{D}_1\widetilde{\overline{D}}_1\right]}$$

Unpolarized FFs: DSS set for π/K AKK set for Λ

Polarization:

$$P_n^{h_1}(z_{h_1}, z_{h_2}) = \frac{M_1 \int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_1\left[\widetilde{D}_{1T}^{\perp(1)}\widetilde{\overline{D}}_1\right]}{\int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_0\left[\widetilde{D}_1\widetilde{\overline{D}}_1\right]}$$

Unpolarized FFs: DSS set for π/K AKK set for Λ

Non-perturbative functions from Bacchetta et al., *JHEP* 06 (2017) 081

Polarization:

$$P_n^{h_1}(z_{h_1}, z_{h_2}) = \frac{M_1 \int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_1\left[\widetilde{D}_{1T}^{\perp(1)}\widetilde{\overline{D}}_1\right]}{\int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_0\left[\widetilde{D}_1\widetilde{\overline{D}}_1\right]}$$

Unpolarized FFs: DSS set for π/K AKK set for Λ

Non-perturbative functions from Bacchetta et al., *JHEP* 06 (2017) 081

Marco Zaccheddu – Cake Seminar

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points

Data selection:

• $\Lambda + \pi/K$: $z_{\pi,K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points

Functions to be extracted:

Polarizing FF first moment

$$\widetilde{D}_{1T,\Lambda/q}^{\perp(1)}(z;\mu_b) = \mathcal{N}_q^p(z) d_{q/\Lambda}(z;\mu_b) \\ \mathcal{N}_q^p(z) = N_q z^{a_q} (1-z)^{b_q} \frac{(a_q+b_q)^{(a_q+b_q)}}{a_a^{a_q} b_a^{b_q}}$$

Polarizing FF non-perturbative function

$$M_{D,\Lambda}^{\perp}(b_T, z) = \exp\left(-\frac{\langle p_{\perp}^2 \rangle_{\rm p} b_T^2}{4z_p^2}\right)$$

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points

Functions to be extracted:

Flavors considered:

Polarizing FF first moment

$$\widetilde{D}_{1T,\Lambda/q}^{\perp(1)}(z;\mu_b) = \mathcal{N}_q^p(z) d_{q/\Lambda}(z;\mu_b)$$
$$\mathcal{N}_q^p(z) = N_q z^{a_q} (1-z)^{b_q} \frac{(a_q+b_q)^{(a_q+b_q)}}{a_q^{a_q} b_q^{b_q}}$$

Polarizing FF non-perturbative function

$$M_{D,\Lambda}^{\perp}(b_T, z) = \exp\left(-\frac{\langle p_{\perp}^2 \rangle_{\rm p} b_T^2}{4z_p^2}\right)$$

u, d, s
$$P_T^h \propto \frac{\sum_q e_q^2 D_{1T,q}^\perp \bar{D}_{1,\bar{q}}}{\sum_q e_q^2 D_{1,q} \bar{D}_{1,\bar{q}}}$$
u, d, s

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points

Functions to be extracted:

Flavors considered:

Polarizing FF first moment

$$\widetilde{D}_{1T,\Lambda/q}^{\perp(1)}(z;\mu_b) = \mathcal{N}_q^p(z) d_{q/\Lambda}(z;\mu_b)$$
$$\mathcal{N}_q^p(z) = N_q z^{a_q} (1-z)^{b_q} \frac{(a_q + b_q)^{(a_q + b_q)}}{a_q^{a_q} b_q^{b_q}}$$

Polarizing FF non-perturbative function

$$M_{D,\Lambda}^{\perp}(b_T, z) = \exp\left(-\frac{\langle p_{\perp}^2 \rangle_{\rm p} b_T^2}{4z_p^2}\right)$$

u, d, s
$$P_T^h \propto \frac{\displaystyle\sum_q e_q^2 D_{1T,q}^\perp \bar{D}_{1,\bar{q}}}{\displaystyle\sum_q e_q^2 D_{1,q} \bar{D}_{1,\bar{q}}}$$
u, d, s

u, d, s
$$P_T^h \propto \frac{\displaystyle\sum_q e_q^2 D_{1T,q}^\perp \bar{D}_{1,\bar{q}}}{\displaystyle\sum_q e_q^2 D_{1,q} \bar{D}_{1,\bar{q}}}$$
u, d, s + charm

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points

Functions to be extracted:

Flavors considered:

Polarizing FF first moment

$$\widetilde{D}_{1T,\Lambda/q}^{\perp(1)}(z;\mu_b) = \mathcal{N}_q^p(z) d_{q/\Lambda}(z;\mu_b)$$
$$\mathcal{N}_q^p(z) = N_q z^{a_q} (1-z)^{b_q} \frac{(a_q + b_q)^{(a_q + b_q)}}{a_q^{a_q} b_q^{b_q}}$$

Polarizing FF non-perturbative function

$$M_{D,\Lambda}^{\perp}(b_T, z) = \exp\left(-\frac{\langle p_{\perp}^2 \rangle_{\rm p} b_T^2}{4z_p^2}\right)$$

u, d, s
$$P_T^h \propto \frac{\sum_q e_q^2 D_{1T,q}^\perp \bar{D}_{1,\bar{q}}}{\sum_q e_q^2 D_{1,q} \bar{D}_{1,\bar{q}}}$$
u, d, s

Isospin symmetry

- No SU(2): N_u, N_d, N_s, N_{sea}
- SU(2): $N_u = N_d$, $N_{\overline{u}} = N_{\overline{d}}$, N_s , $N_{\overline{s}}$

See also: Chen, Liang, Pan, Song, Wei; Phys.Lett.B 816 (2021) 136217

Scenarios considered:

- 1. No Charm, No SU(2) sym. pFFs for: *up*, *down strange and sea*;
- 2. Charm, No SU(2) sym.pFFs for: *up*, *down strange and sea*;
- 3. Charm, SU(2) sym. pFFs for: *up/down*, *up/down*, *strange*, *strange*

Scenarios considered:	χ^2_{dof}
	96 points
 No Charm, No SU(2) sym. pFFs for: up, down strange and sea; 	1,174
 Charm, No SU(2) sym. pFFs for: up, down strange and sea; 	1,259
3. Charm, SU(2) sym. pFFs for: <i>up/down</i> , up /down, strange, strange	1,361

Scenarios considered:	χ^2_{dof}	χ^2_{dof}
	96 points	128 points
 No Charm, No SU(2) sym. pFFs for: up, down strange and sea; 	1,174	1,903
 Charm, No SU(2) sym. pFFs for: up, down strange and sea; 	1,259	1,622
3. Charm, SU(2) sym. pFFs for: <i>up/down, up/down, strange, strange</i>	1,361	1,645

- pFFs are different in magnitude due to the charm contribution;
- *up* pFF is positive;
- First moments are compatible, except for the strange f.m.
- Similar size for the Gaussian width.

First moments: (3) scenario

(3) Charm, SU2

- *up/down* pFFs are positive;
- $\overline{up}/\overline{down}$ pFFs are negative;
- strange/strange
 pFFs are negative;
- *up* & *strange* compatible with (1,2) scn.
- The negative sea contribution is larger in size;
- Similar size for the Gaussian width.

- All scenarios can describe $\Lambda \pi^{\pm}, \overline{\Lambda} \pi^{\pm}, \Lambda K^{-}, \overline{\Lambda} K^{+}$ data;
- Scenario (1) cannot describe ΛK^+ , $\overline{\Lambda}K^-$ data with $z_K > 0.5$;
- With the Charm contribution we obtain similar good fits and description

 Z_K

 $\Lambda + K^+$

0.75

Some remarks:

- Charm contribution in the unpolarized C.S. is necessary; Attempts were made to include this contribution also in the polarized c.s.
- We cannot distinguish between the (2) and (3) scenarios.
 If Normalization factors are free,
 up & down come out opposite, violating the SU(2) symmetry.

Investigate the polarization in:

 e^+e^- at different energies \rightarrow we cannot distinguish between (2) & (3) scenarios

Investigate the polarization in:

 e^+e^- at different energies \rightarrow we cannot distinguish between (2) & (3) scenarios

Processes to explore:

- SIDIS
- Lambda in jet production in proton-proton collisions

Convolutions:

$$\mathcal{B}_{0}\left[\widetilde{f}_{1}\widetilde{D}_{1}\right] = \frac{1}{z^{2}} \sum_{q} e_{q}^{2} \int \frac{db_{T}}{(2\pi)} b_{T} J_{0}(b_{T} q_{T}) f_{N/q}(x; \bar{\mu}_{b}) d_{q/h}(z; \bar{\mu}_{b}) \times M_{f_{1}}(b_{c}(b_{T}), x) M_{D_{h}}(b_{c}(b_{T}), z) e^{-g_{K}(b_{c}(b_{T}); b_{\max}) \ln\left(\frac{Q^{2}z}{xM_{P}M_{h}}\right) - S_{\text{pert}}(b_{*}; \bar{\mu}_{b})}$$

$$\mathcal{B}_{1}\left[\tilde{f}_{1}\tilde{D}_{1T}^{\perp(1)}\right] = \frac{1}{z^{2}}\sum_{q}e_{q}^{2}\int\frac{db_{T}}{(2\pi)}b_{T}^{2}J_{1}(b_{T}\,q_{T})\,f_{N/q}(x;\bar{\mu}_{b})\,D_{1T,q}^{\perp(1)}(z;\bar{\mu}_{b}) \times M_{f_{1}}(b_{c}(b_{T}),x)M_{D_{1}}^{\perp}(b_{c}(b_{T}),z)\,e^{-g_{K}(b_{c}(b_{T});b_{\max})\ln\left(\frac{Q^{2}z}{xM_{P}M_{h}}\right)-S_{\mathrm{pert}}(b_{*};\bar{\mu}_{b})}$$

Polarization:

$$P_n^{h_1}(x_B, z_h) = \frac{M_1 \int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_1\left[\widetilde{f}_1 \widetilde{D}_{1T}^{\perp(1)}\right]}{\int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_0\left[\widetilde{f}_1 \widetilde{D}_1\right]}$$

Marco Zaccheddu – Cake Seminar

× $M_{f_1}(b_c(b_T), x) M_{D_1}^{\perp}(b_c(b_T), z) e^{-g_K(b_c(b_T); b_{\max}) \ln\left(\frac{Q^2 z}{x M_P M_h}\right) - S_{\text{pert}}(b_*; \bar{\mu}_b)}$

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

The charm contribution in the fragmentation process is relevant

Intrinsic Charm (IC) component in the proton:

•CT14nnloIC set with BHPS model [T.-J. Hou et al., *JHEP* 02 (2018) 059] •NNPDF4.0nnlo set [NNPDF Coll., *Eur.Phys.J.C* 82 (2022) 5, 428]

(2) Scenario: $x_B = 0.35$ $x_B = 0.45$ $x_B = 0.6$ 0.25 12) No IC $e^-p \rightarrow e^-\Lambda X$ (2) BHPS IC Polarization 0.00 0.0 (2) NNPDF (a) -0.2√*s_{ep}* = 28.6 GeV $e^-p \rightarrow e^-\overline{\Lambda}X$ 0.7 0.3 0.7 0.3 0.3 0.5 0.5 0.5 0.7 Marco Zaccheddu – Cake Seminar 04/24/2024

(2) Charm, No SU2

- BHPS and NNPDF: similar polarization of previous predictions
- Same behavior is present for greater values of the c.m. energy.

37

(3) Scenario:

(3) Charm, SU2

- Estimates vary significantly as x_B increases;
- $\overline{\Lambda}$ estimates with BHPS and NNPDF different from the previous ones;
- Λ :decreases to zero
- Λ : NNPDF become negative

Preliminary STAR data: arxiv/2402.01168

$$A(p_A) B(p_B) \to \operatorname{jet}(p_j) \Lambda^{\uparrow}(p_\Lambda) X \qquad \sqrt{s} = 200 \,\mathrm{GeV}$$

Kinematic cuts:

 $p_{\perp\Lambda} \leq 1.6 \,\text{GeV}/c, \quad 0 \leq z \leq 1,$ $8 \leq p_{jT} \leq 25 \,\text{GeV}/c \,\text{with} \, \langle p_{jT} \rangle = 11 \,\text{GeV}/c,$ $|\eta_j| \leq 1.0, \ p_{T\Lambda} \leq 10 \,\text{GeV}/c, \ |\eta_{\Lambda}| \leq 1.5$

Anti- k_T algorithm with cone radius R = 0.6

Polarization:
$$P_T^{\Lambda}(p_j, \xi, p_{\perp \Lambda}) = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{d\sigma_{\rm unp}}$$

$$d\Delta\sigma = \sum_{a,b,c,d} \int dx_a dx_b \frac{\alpha_s^2}{\hat{s}} f_{a/A}(x_a) f_{b/B}(x_b)$$
$$\times |\overline{M}|^2 \delta(\hat{s} + \hat{t} + \hat{u}) \Delta D_{\Lambda^{\uparrow}/c}(\xi, p_{\perp\Lambda})$$

Unpolarized functions: CT14nnlo set for proton AKK set for Λ

Polarizing FF

$$\Delta D_{\Lambda^{\uparrow}/c}(\xi, p_{\perp}) = \frac{p_{\perp\Lambda}}{\xi m_{\Lambda}} D_{1T}^{\perp c}(\xi, p_{\perp})$$

$$d\sigma_{\rm unp} = \sum_{a,b,c,d} \int dx_a dx_b \, \frac{\alpha_s^2}{\hat{s}} f_{a/A}(x_a) f_{b/B}(x_b) \\ \times |\overline{M}|^2 \delta(\hat{s} + \hat{t} + \hat{u}) \, D_{\Lambda/c}(\xi, p_{\perp\Lambda})$$

- Collinear PDFs
- Transverse momentum dependence only in the Fragmentation Function

The behaviour in z is driven by the relative contribution of the polFFs:

• In Sc. 1 and 2 only the up is positive \rightarrow leads to a negative value of the polarization

In Sc . 3 both up and down are positive \rightarrow leads to positive value of the polarization at small z and negative at intermediate values.

• Lambda-bar: the polarization is negative and is driven by the negative sign of the sea polFFs.

The behaviour in z is driven by the relative contribution of the polFFs:

• In Sc. 1 and 2 only the up is positive \rightarrow leads to a negative value of the polarization

In Sc . 3 both up and down are positive \rightarrow leads to positive value of the polarization at small z and negative at intermediate values.

• Lambda-bar: the polarization is negative and is driven by the negative sign of the sea polFFs.

Similar comments as for the z behavior.

Similar comments as for the z behavior.

04/24/2024

Some remarks:

- No Intrinsic Charm effects;
- General agreement with data but errors bars prevent drawing a strong conclusion.

Potential role of the gluon polFF:

- UnpFF contribution to unpolarized cross sec. is about 50%;
- Since quark contribution to polarization is about 5-8%;
- \rightarrow Gluon polFF can be only around 10% of its positivity bound
- \rightarrow First hint on the size of the gluon polFF, at a qualitative level

In e^+e^- and SIDIS we cannot access directly the gluon FF, since it enters only at NLO

Conclusions

- Double hadron production in e⁺e⁻: Fit results
 Charm is necessary!
 - (2) and (3) scenarios cannot be distinguished \rightarrow open issues!
- SIDIS:

predictions for the transverse Lambda polarization (2) and (3) scenarios predictions are different and can be distinguished

• $pp \rightarrow \Lambda jet X$: estimates compared with STAR data first hint on the size of the gluon polFF

Backup

- Universality of the polarizing FF (provided that factorization holds)
- Role of the charm contribution and SU(2) isospin symmetry;
- Gluon TMD unpolarized and polarizing Fragmentation Function

$$g_{K}^{q} = g_{2} \frac{b_{T}^{2}}{2}, g_{K}^{g} = \frac{C_{A}}{C_{F}} g_{K}^{q}$$

Single-inclusive Polarization

If we include 1-h data

Polarizing	Unpolarized	g_K	$\chi^2_{dof}(2\text{-h})$	$\chi^2_{dof}(2-h + 1-h)$
Gaussian	Power-Law	Logarithmic	1.192	2.813
Power-Law	Power-Law	Logarithmic	1.21	2.39

Different combinations of NP functions fits give $\chi^2_{dof} = [2.4 - 5.4]$

Different factorization or different hadronic model?

Combined Fit: Double Model

- Same parametrization for $D_{1T}^{\perp(1)}(b_T)$
- Two set of parameters for hadron models

With Power-Law model

Gaussian		Power-Law			
$\chi^2_{dof} = 1.801$		$\chi^2_{dof} = 1.565$			
	2-h	1 - h		2-h	1-h
$\langle p_{\perp}^2 \rangle_p$	0.04	0.2	p	1.352	1.623
			m	0.151	0.48

Combined Fit: Double Model

- 2-h Power-Law model
- 1-h Power-Law model

collinear limit

- Both models have same value at small b_T -
- In p_{\perp} space: same value at large p_{\perp}
- 2-h wider than 1-h: different behaviour at large b_T
- In p_{\perp} space: different value at small p_{\perp}
- Possible different contribution from Soft gluons

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

- (1) & (2) scenarios: polarization of similar size and behavior;
- Λ pol. decreases and becomes negative;
- $\overline{\Lambda}$ is always negative;
- $\sqrt{s_{ep}}$ =28,6 pol. has the same size, for greater values there is a general reduction as x_B grows.

- (3) scenario: similar size;
- Λ pol. similar or slightly greater size;
- $\overline{\Lambda}$ most significant difference;

The charm contribution in the fragmentation process is relevant

Intrinsic Charm (IC) component in the proton:

•CT14nnloIC set with BHPS model [T.-J. Hou et al., JHEP 02 (2018) 059]

•NNPDF4.0nnlo set [NNPDF Coll., Eur.Phys.J.C 82 (2022) 5, 428]

The charm contribution in the fragmentation process is relevant

Intrinsic Charm (IC) component in the proton:
CT14nnloIC set with BHPS model [T.-J. Hou et al., JHEP 02 (2018) 059]
NNPDF4.0nnlo set [NNPDF Coll., Eur.Phys.J.C 82 (2022) 5, 428]

(2) Scenario:

• Same behavior is present for greater values of the c.m. energy.

(3) Scenario:

- Estimates vary significantly as x_B increases;
- $\overline{\Lambda}$ estimates with BHPS and NNPDF different from the previous ones;
- Λ :decreases to zero
- Λ : NNPDF become negative

 Λ : the predictions are compatible

•

• $\overline{\Lambda}$: within (2) and (3) are still different

The behaviour in z is driven by the relative contribution of the polFFs:

- In Sc. 2 only the up is positive
- In Sc . 3 both up and down are positive

This results into a positive value of the polarization in Sc. 3 at small z Becoming negaTive at intermediate values.

For anti Lambda: in both scenarios the polarization is negative and is driven By the negative sign of the sea polFFs.

No IC effects

General agreement with data The large experimental error bars prevent Us to draw strong conclusions