Compton amplitude and the from a lattice QCD calculation

K. Utku Can
CSSM, The University of Adelaide

PRD102 (2020), 114505
PRD107 (2023) 5, 054503 and preliminary work

JLab Theory Seminar
9 August 2023

in Collaboration with

CSSM/QCDSF/UKQCD:

- UK:
- Adelaide:
- M. Batelaan (current PhD)
- A. Hannaford-Gunn (current PhD)
- E. Sankey (past Honours)
- R. Smail (current PhD)
- K. Somfleth (past PhD)
- R. D. Young
- J. M. Zanotti
- R. Horsley (Edinburgh)
- P. E. L. Rakow (Liverpool)
- Germany:
- H. Perlt (Leipzig)
- G. Schierholz (DESY, Hamburg)
- H. Stüben (Hamburg)
- Japan:
- Y. Nakamura (RIKEN, Kobe)

Introduction

$$
\mathscr{L}=\sum_{q} \bar{\psi}_{q}\left(i D-m_{q} \Psi_{q}-\frac{1}{4} F_{F_{\mu}} F^{\mu \mu}\right.
$$

- Renormalisable non-Abelian $S U(3)$ gauge field theory
- Asymptotically free theory, perturbative methods applicable at $Q \gg \Lambda_{Q C D}$
- Confinement leads to hadrons: nonperturbative realm

Introduction

Deep $\left(Q^{2} \gg M^{2}\right)$ inelastic $\left(W^{2} \gg M^{2}\right)$ scattering

- Inclusive process, $\sum_{X}|X\rangle\langle X|$
- Crucial for understanding the hadron structure
- Theoretical formulation relies on Parton Distribution Functions (PDFs)

Introduction

- Operator Product Expansion (OPE) and the Factorisation theorem are key concepts

OPE: $Q^{2} \gg M^{2}$, the leading twist term dominates the cross section

Introduction

- Nucleon structure (leading twist)
- Structure functions from first principles
- Understanding the behaviour in the high- and low-x regions
- In the parton model

$$
\begin{aligned}
F_{2} & \propto(q+\bar{q}) \\
F_{3}^{\gamma Z} & \propto(q-\bar{q}) \\
F_{2}^{W-} & \propto u+\bar{d}+\bar{s}+c \ldots \\
F_{3}^{W-} & \propto u-\bar{d}-\bar{s}+c \ldots
\end{aligned}
$$

| Introduction

- Scaling
- Q^{2} cuts of global QCD analyses
- Power corrections / Higher twist effects
- Target mass corrections
- Twist-4 contributions

| Lattice QCD

ab initio

Two key equations:

$$
\lim _{T \rightarrow \infty}\left\langle\hat{O}_{2}(t) \hat{O}_{1}(0)\right\rangle_{T}=\sum_{h}\langle 0| \hat{O}_{2}|h\rangle\langle h| \hat{O}_{1}|0\rangle e^{-E_{h} t}
$$

Hadron d.o.f.
$\left\langle\hat{O}_{2}(t) \hat{O}_{1}(0)\right\rangle=\frac{\int \mathcal{D}[\Psi] e^{-S_{E}[\Psi]} O_{2}[\Psi(\vec{x}, t)] O_{1}[\Psi(\vec{x}, 0)]}{\int \mathcal{D}[\Psi] e^{-S_{E}[\Psi]}}$
Quark-gluon d.o.f.Discretise the space-time continuum"Measure" quantities by computersPath integral has infinite dimensionsUse tools of the stat. physics: Importance Sampling
non-perturbative method

$$
\langle\mathcal{O}\rangle=\frac{\int \mathcal{D}[\Psi] e^{-S_{E}[\Psi]} \mathcal{O}[\Psi]}{\int \mathcal{D}[\Psi] e^{-S_{E}[\Psi]}}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \mathcal{O}\left[U_{n}\right]
$$

Take the continuum limit, $a \rightarrow 0, V \rightarrow \infty, m_{\pi}^{\text {lat. }} \rightarrow m_{\pi}^{\text {phys. }}$

LQCD landscape

results @ physical pion mass results extrapolated to physical pion mass results @ non-physical pion mass

- QCDSF-UKQCD-CSSM Collaboration

- Extended to nucleon F_{3}, and g_{1}, g_{2}
- Study of power corrections
- Forward Compton Amplitude \& the Nucleon Structure Functions
- Application of the Feynman-Hellmann Theorem
- Moments of the Nucleon Structure Functions

Credit: D Dominguez / CER

- Outlook: Polarised, parity violating ...

Forward Compton Amplitude

DIS and the Hadronic Tensor

\|Forward Compton Amplitude

DIS Cross Section ~ Hadronic Tensor

[^0]
Nucleon Structure Functions

- we can write down dispersion relations and connect Compton SFs to DIS SFs:

$$
\begin{aligned}
& \mathscr{F}_{1}\left(\omega, Q^{2}\right)-\mathscr{F}_{1}\left(0, Q^{2}\right)=2 \omega^{2} \int_{0}^{1} d x \frac{2 x F_{1}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}-i \epsilon} \\
& \mathscr{F}_{2}\left(\omega, Q^{2}\right) \\
&=4 \omega \int_{0}^{1} d x \frac{F_{2}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}-i \epsilon}
\end{aligned}
$$

$$
\begin{aligned}
\underbrace{\mathscr{F}_{L}\left(\omega, Q^{2}\right)+\mathscr{F}_{1}\left(0, Q^{2}\right)}_{\equiv \mathscr{F}_{L}\left(\omega, Q^{2}\right)} & =\frac{8 M_{N}^{2}}{Q^{2}} \int_{0}^{1} d x F_{2}\left(x, Q^{2}\right) \\
& +2 \omega^{2} \int_{0}^{1} d x \frac{F_{L}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}-i \epsilon}
\end{aligned}
$$

Compton Amplitude is an analytic function in the unphysical region $\left|\omega_{0}\right|<1$

Nucleon Structure Functions

- using the Taylor expansion, $\frac{1}{1-(x \omega)^{2}}=\sum_{n=1}^{\infty}(x \omega)^{2 n-2}$

$$
\left\lfloor=\frac{2 p \cdot q}{Q^{2}} \equiv x^{-1}\right.
$$

$\overline{\mathscr{F}}_{1, L}\left(\omega, Q^{2}\right)=\sum_{n=0}^{\infty} 2 \omega^{2 n} M_{2 n}^{(1, L)}\left(Q^{2}\right)$, where $M_{2 n}^{(1)}\left(Q^{2}\right)=2 \int_{0}^{1} d x x^{2 n-1} F_{1}\left(x, Q^{2}\right)$, and $\quad M_{0}^{(1)}\left(Q^{2}\right)=0$
$\mathscr{F}_{2}\left(\omega, Q^{2}\right)=\sum_{n=1}^{\infty} 4 \omega^{2 n-1} M_{2 n}^{(2)}\left(Q^{2}\right)$, where $M_{2 n}^{(2, L)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{2 n-2} F_{2, L}\left(x, Q^{2}\right)$, and $\quad M_{0}^{(L)}\left(Q^{2}\right)=\frac{4 M_{N}^{2}}{Q^{2}} M_{2}^{(2)}\left(Q^{2}\right)$

- $\mu=\nu=3$ and $p_{3}=q_{3}=0$

$$
\Longrightarrow \quad \mathscr{F}_{1}\left(\omega, Q^{2}\right)=T_{33}(p, q)
$$

$$
\mu=\nu=0 \text { and } p_{3}=q_{3}=q_{0}=0 \quad \Longrightarrow \quad \frac{\mathscr{F}_{2}\left(\omega, Q^{2}\right)}{\omega}=\left[T_{00}(p, q)+T_{33}(p, q)\right] \frac{Q^{2}}{2 E_{N}^{2}}
$$

$$
\mathscr{F}_{L}\left(\omega, Q^{2}\right)=-\mathscr{F}_{1}\left(\omega, Q^{2}\right)+\left(\frac{\omega}{2}+\frac{2 M_{N}^{2}}{\omega Q^{2}}\right) \mathscr{F}_{2}\left(\omega, Q^{2}\right)
$$

Shape of the Compton Amplitude

Structure functions

Compton Amplitudes

Feynman-Hellmann Theorem

@ 2nd order

FH Theorem at 1st order

in Quantum Mechanics:

$$
\frac{\partial E_{\lambda}}{\partial \lambda}=\left\langle\phi_{\lambda}\right| \frac{\partial H_{\lambda}}{\partial \lambda}\left|\phi_{\lambda}\right\rangle \quad \begin{aligned}
& \mathrm{H}_{\lambda}: \text { perturbed Hamiltonian of the system } \\
& \mathrm{E}_{\lambda}: \text { energy eigenvalue of the perturbed system } \\
& \phi_{\lambda}: \text { eigenfunction of the perturbed system }
\end{aligned}
$$

expectation value of the perturbed system is related to the shift in the energy eigenvalue
in Lattice QCD: energy shifts in the presence of a weak external field

$$
S \rightarrow \underset{\text { real parameter }}{S(\lambda)=S+\lambda} \int^{4} x \mathcal{O}(x) \xrightarrow{\rightarrow} \stackrel{\text { e.g. local bilinear operator }}{\rightarrow}(x) \Gamma_{\mu} q(x) \quad, \Gamma_{\mu} \in\left\{\mathbf{1}, \gamma_{\mu}, \gamma_{5} \gamma_{\mu}, \ldots\right\}
$$

@ 1st order

$$
\frac{\partial E_{\lambda}}{\partial \lambda}=\frac{1}{2 E_{\lambda}}\langle\langle 0| \mathcal{O} \mid 0\rangle \quad \xrightarrow{\left\lvert\, \begin{array}{ll}
\mathbf{E}_{\lambda} \rightarrow \text { spectroscopy, 2-pt function }
\end{array}\right.} \begin{aligned}
& \text { Applications: } \\
& \circ \sigma-\text { terms } \\
& \langle 0| \mathcal{O}|0\rangle \rightarrow \text { determine 3-pt }
\end{aligned}
$$

Compton amplitude via the FH relation at 2 nd order

- unpolarised Compton Amplitude
$T_{\mu \mu}(p, q)=\int d^{4} z e^{i \mathbf{q} \cdot \mathbf{z}}\langle N(p)| \mathscr{T}\left\{J_{\mu}(z) J_{\mu}(0)\right\}|N(p)\rangle$

- Action modification

$$
J_{\mu}(z)=\sum_{q} e_{q} \bar{q}(z) \gamma_{\mu} q(z)
$$

$$
S \rightarrow S(\lambda)=S+\lambda \int d^{4} z\left(e^{i \mathbf{q} \cdot \mathbf{z}}+e^{-i \mathbf{q} \cdot \mathbf{z}}\right) J_{\mu}(z)
$$

- $2^{\text {nd }}$ order derivatives of the 2 -pt correlator, $G_{\lambda}^{(2)}(\mathbf{p} ; t)$, in the presence of the external field

$$
\begin{aligned}
&\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\left(\frac{\partial^{2} A_{\lambda}(\mathbf{p})}{\partial \lambda^{2}}-t A(\mathbf{p}) \frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right) e^{-E_{N}(\mathbf{p}) t} \quad \text { from spectral decomposition } \\
&\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\frac{A(\mathbf{p})}{2 E_{N}(\mathbf{p})} t e^{-E_{N}(\mathbf{p}) t} \int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right)\langle N(\mathbf{p})| \mathcal{T}\{\mathcal{J}(z) \mathcal{J}(0)\}|N(\mathbf{p})\rangle \\
& \quad \text { from path integral }
\end{aligned}
$$

$$
\left.\frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right|_{\lambda=0}=-\frac{1}{2 E_{N}(\mathbf{p})} \overbrace{\int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right)\langle N(\mathbf{p})| \mathcal{J}(z) \mathcal{J}(0)|N(\mathbf{p})\rangle}^{T_{\mu \mu}(p, q)}+(q \rightarrow-q)
$$

Compton amplitude via the FH relation at 2nd order

- relevant contribution comes from the ordering where the currents are sandwiched

- under the condition $|\omega|<1$, $E_{X}(\mathbf{p}+n \mathbf{q}) \gtrsim E_{N}(\mathbf{p})$, so the intermediate states cannot go on-shell
- ground state dominance is ensured in the large time limit

Moments of the Nucleon Structure Functions

Simulation Details

QCDSF/UKQCD configurations $\binom{32^{3} \times 64}{48^{3} \times 96}, 2+1$ flavor $(\mathrm{u} / \mathrm{d}+\mathrm{s})$ $\beta=\binom{5.50}{5.65}$, NP-improved Clover action Phys. Rev. D 79, 094507 (2009), arXiv:0901.3302 [hep-lat]
$m_{\pi} \sim\left[\begin{array}{l}470 \\ 420\end{array}\right] \mathrm{MeV}, \sim \mathrm{SU}(3)$ sym.
$m_{\pi} L \sim\left[\begin{array}{c}5.6 \\ 6.9\end{array}\right] \quad a=\left[\begin{array}{c}0.074 \\ 0.068\end{array}\right] \mathrm{fm}$

Unmodified
QCD background

FH implementation at the valence quark level

- Valence u/d quark props with modified action, $S(\lambda)$
- Local EM current insertion, $J_{\mu}(x)=Z_{V} \bar{q}(x) \gamma_{\mu} q(x)$
- 4 Distinct field strengths, $\lambda=[\pm 0.0125, \pm 0.025]$
- Several current momenta in the range, $1.5 \lesssim Q^{2} \lesssim 7 \mathrm{GeV}^{2}$
- Up to $\mathcal{O}\left(10^{4}\right)$ measurements for each pair of Q^{2} and λ
- Access to a range of $\omega=2 p \cdot q / Q^{2}$ values for $\operatorname{several}(p, q)$ pairs
- An inversion for each q and λ, varying p is relatively cheap
- Connected 2-pt correlators calculated only, no disconnected

|Strategy | Energy shifts

Extract energy shifts for each λ

- Get the 2 nd order derivative

Ratio of perturbed to unperturbed 2-pt functions

$$
\begin{aligned}
R_{\lambda}^{e}(\mathbf{p}, t) & \equiv \frac{G_{+\lambda}^{(2)}(\mathbf{p}, t) G_{-\lambda}^{(2)}(\mathbf{p}, t)}{\left(G^{(2)}(\mathbf{p}, t)\right)^{2}} \\
& \xrightarrow{t \gg 0} A_{\lambda}(\mathbf{p}) e^{-2 \Delta E_{N_{\lambda}}^{e}(\mathbf{p}) t}
\end{aligned}
$$

Isolates 2nd-order energy shift by construct considering,

$$
\begin{aligned}
G_{\lambda}^{(2)}(\mathbf{p} ; t) & \sim A_{\lambda}(\mathbf{p}) e^{-E_{N_{\lambda}}(\mathbf{p}) t} \\
E_{N_{\lambda}}(\mathbf{p}) & =E_{N}(\mathbf{p})+\left.\lambda \frac{\partial E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda}\right|_{\lambda=0}+\left.\frac{\lambda^{2}}{2!} \frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial^{2} \lambda}\right|_{\lambda=0}+\mathcal{O}\left(\lambda^{3}\right) \\
& =E_{N}(\mathbf{p})+\Delta E_{N}^{o}(\mathbf{p})+\Delta E_{N}^{e}(\mathbf{p})
\end{aligned}
$$

\mathscr{F}_{1} Compton amplitude

$a=0.074 \mathrm{fm}$
$m_{\pi} \sim 470 \mathrm{MeV}$
$32^{3} \times 64,2+1$ flavour

Moments | Fit
 $a=0.074 \mathrm{fm}$
 $m_{\pi} \sim 470 \mathrm{MeV}$
 $32^{3} \times 64,2+1$ flavour
 Remember:
 $T_{33}(p, q)=\sum_{n=1}^{\infty} 2 \omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right)$
 $T_{33}(p, q)=\mathscr{F}_{1}\left(\omega, Q^{2}\right)$

$$
\begin{array}{r}
\overline{\mathscr{F}}_{1}\left(\omega, Q^{2}\right)=4\left(\omega^{2} M_{2}^{(1)}\left(Q^{2}\right)+\omega^{4} M_{4}^{(1)}\left(Q^{2}\right)\right. \\
\left.+\cdots+\omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right)+\cdots \cdot \cdot\right)
\end{array}
$$

- Enforce monotonic decreasing of moments for u and d only, not necessarily true for $u-d$

$$
M_{2}^{(1)}\left(Q^{2}\right) \geq M_{4}^{(1)}\left(Q^{2}\right) \geq \cdots \geq M_{2 n}^{(1)}\left(Q^{2}\right) \geq \cdots \geq 0
$$

We truncate at $n=6$
No dependence to truncation order for $3 \leq n \leq 10$

- Bayesian approach by MCMC method - least-squares fluctuates,

Sample the moments from Uniform priors individually for u - and d-quark

$$
\begin{aligned}
& M_{2}^{(1)}\left(Q^{2}\right) \sim \mathscr{U}(0,1) \\
& M_{2 n}^{(1)}\left(Q^{2}\right) \sim \mathscr{U}\left(0, M_{2 n-2}^{(1)}\left(Q^{2}\right)\right)
\end{aligned}
$$

tricky to impose monotonic deceasing and positivity bound
Multivariate Likelihood function, $\exp \left(-\chi^{2} / 2\right)$

$$
\chi^{2}=\sum_{i, j}\left[\overline{\mathscr{F}}_{1, i}-\overline{\mathscr{F}}_{1} o b s\left(\omega_{i}\right)\right] C_{i j}^{-1}\left[{\overline{\mathscr{F}^{\prime}}}_{1, j}-\overline{\mathscr{F}}_{1} o b s\left(\omega_{j}\right)\right]
$$

$$
\begin{aligned}
& a=0.074 \mathrm{fm} \\
& m_{\pi} \sim 470 \mathrm{MeV} \\
& 32^{3} \times 64,2+1 \text { flavour }
\end{aligned}
$$

$a=0.074 \mathrm{fm}$ $m_{\pi} \sim 470 \mathrm{MeV}$
$32^{3} \times 64,2+1$ flavour

Moments \mid proton F_{2}

- Unique ability to study the Q^{2} dependence of the moments!

- Global PDF-fit cuts $\sim 1-10 \mathrm{GeV}^{2}$
- Need $Q^{2}>10 \mathrm{GeV}^{2}$ data to reliably extract partonic moments
- Power corrections below $\sim 3 \mathrm{GeV}^{2}$?
- Modelling via
- $M_{2}^{(2)}\left(Q^{2}\right)=M_{2}^{(2)}+C_{2}^{(2)} / Q^{2}$

Moments
 proton F_{L}

- Unique ability to study the moments of F_{L} !

Possible for the first time in a lattice QCD simulation!

- Direct: Fit to data points
- Determines upper bounds
- Twist-2: Use the moments of F_{2} :
- $M_{2}^{(L), Q C D}\left(Q^{2}\right)=\frac{4}{9 \pi} \alpha_{s}\left(Q^{2}\right) M_{2}^{(2)}\left(Q^{2}\right)$
- Better precision, good agreement with exp. behaviour

Outlook

- Confronting F_{2} with pheno. - Polarised g_{1}, g_{2}
- parity-violating unpolarised F_{3}
F_{2} moments vs. (JAM, AJM)

Outlook

- Confronting F_{2} with pheno.
- Polarised g_{1}, g_{2}
- parity-violating unpolarised F_{3}

Polarised Structure Functions

$$
T_{[\mu \nu]}(p, q, s)=i \varepsilon^{\mu \nu \alpha \beta} \frac{q_{\alpha}}{p \cdot q}\left[s_{\beta} \tilde{g}_{1}\left(\omega, Q^{2}\right)+\left(s_{\beta}-\frac{s \cdot q}{p \cdot q} p_{\beta}\right) \tilde{g}_{2}\left(\omega, Q^{2}\right)\right]
$$

- Similar to the unpolarised case, we can extract \tilde{g}_{1} and \tilde{g}_{2}
- via an OPE analysis: the first moment of $g_{1}(x)$ is related to axial current matrix elements

$$
\Gamma_{1}\left(Q^{2}\right)=\int_{0}^{1} g_{1}^{(u-d)}\left(x, Q^{2}\right) d x=\underbrace{(\Delta u-\Delta d)}_{\equiv g_{A}} C_{1}\left(\alpha_{s}\left(Q^{2}\right)\right)
$$

where, $C_{1}\left(\alpha_{s}\left(Q^{2}\right)\right)=1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}-\mathcal{O}\left(\alpha_{s}^{2}\right)$

- $g_{2}(x)$ is twist- 3 , holds information on quark-gluon correlations
- Wandzura-Wilczek decomposition

$$
g_{2}\left(x, Q^{2}\right)=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} g_{1}\left(y, Q^{2}\right) d y+\bar{g}_{2}\left(x, Q^{2}\right)
$$

- The Buckhardt - Cottingham sum rule

$$
\int_{0}^{1} g_{2}\left(x, Q^{2}\right) d x=0
$$

| Polarised Structure Functions

$48^{3} \times 96,2+1$ flavour
$a=0.068 \mathrm{fm}$
$m_{\pi} \sim 420 \mathrm{MeV}$

Outlook

- Confronting F_{2} with pheno.
- Polarised g_{1}, g_{2}
- parity-violating unpolarised F_{3}

Motivation

- Leading theoretical uncertainty in:
- Weak charge of the proton,

$$
\begin{aligned}
Q_{W} & =\left(1+\Delta_{\rho}+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right) \\
& +\square_{A A}^{W W}+\square_{A A}^{Z Z}+\square_{V A}^{\gamma Z}
\end{aligned}
$$

- CKM matrix element extracted from superallowed neutron β decays,

$$
\begin{aligned}
& \left|V_{u d}\right|^{2}=\frac{0.97148(20)}{1+\Delta_{R}^{V} \text { pat. }} \text {, } \\
& \text { K. Shiells, P.G. Blunden, W. Melnitchouk } \\
& \text { PRD104, } 033003 \text { (2021) [2012.01580] }
\end{aligned}
$$

Motivation

$$
\square_{A}^{\alpha}=\nu_{e} \frac{3 a_{E V}}{2 \pi} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \frac{M_{z}^{2}}{M_{z}^{2}+Q^{2}} \int_{0}^{1} d x x_{3}^{\eta_{3}^{2}}\left(x, Q^{2}\right)
$$

First moment of F_{3}
$\square_{V A}^{\gamma W}=\frac{3 \alpha_{E M}}{2 \pi} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}} \int_{0}^{1} d x F_{3}^{(0)}\left(x, Q^{2}\right)$

$$
F_{3}^{(0)}=F_{3}^{\gamma Z, p}-F_{3}^{\gamma Z, n}
$$

Motivation

- Box diagrams proportional to an integral over the whole Q^{2} range

$$
\square_{A}^{\gamma Z / W} \propto \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} M_{1}^{(3)}\left(Q^{2}\right)(\ldots)
$$

- Low- Q^{2} (non-perturbative) regime dominates the integral
- F_{3} is experimentally poorly determined in low Q^{2}
- Lattice approach is ideal for a high-precision determination of $M_{1}^{(3)}\left(Q^{2}\right)$

Names Forward Compton Amplitude

$$
T_{\mu \nu}(p, q)=i \int d^{4} z e^{i q \cdot z} \rho_{s s^{\prime}}\left\langle p, s^{\prime}\right| \mathscr{T}\left\{J_{\mu}^{V}(z) J_{\nu}^{A}(0)\right\}|p, s\rangle, \text { spin avg. } \rho_{s s^{\prime}}=\frac{1}{2} \delta_{s s^{\prime}}
$$

$$
=-g_{\mu \nu} \mathscr{F}_{1}\left(\omega, Q^{2}\right)+\frac{p_{\mu} p_{\nu}}{p \cdot q} \mathscr{F}_{2}\left(\omega, Q^{2}\right)+i \varepsilon^{\mu \nu \alpha \beta} \frac{p_{\alpha} q_{\beta}}{2 p \cdot q} \mathscr{F}_{3}\left(\omega, Q^{2}\right)
$$

allowed terms because parity is violated

$$
+\frac{q_{\mu} q_{\nu}}{p \cdot q} \mathscr{F}_{4}\left(\omega, Q^{2}\right)+\frac{p_{[\mu} q_{\nu_{j}}}{p \cdot q} \mathscr{F}_{5}\left(\omega, Q^{2}\right)+\frac{p_{[\mu} q_{\nu_{j}}}{p \cdot q} \mathscr{F}_{6}\left(\omega, Q^{2}\right)
$$

$$
\begin{array}{r}
\omega=\frac{2 p \cdot q}{Q^{2}} \\
\varepsilon^{0123}=1
\end{array}
$$

\mathscr{F}_{3} Compton Amplitude

$\| \mathscr{F}_{3}$ Compton Amplitude

Summary

A versatile approach: $F_{1}, F_{2}, F_{L}, F_{3}$, and g_{1} and g_{2}

- Systematic investigation of power corrections, higher-twist effects and scaling is within reach
- Exploratory calculation of $\mathscr{F}_{3}\left(\omega, Q^{2}\right)$

O A good chance to study the discretisation errors

Summary

- In the long run:
- Make contact with phenomenology: incorporate lattice Compton amplitude in global QCD fits
- High-precision box-diagram estimates
- Recover the x-dependence of PDFs

Backup
$48^{3} \times 96,2+1$ flavour
$a=0.068 \mathrm{fm}$
$m_{\pi} \sim 420 \mathrm{MeV}$

- Bayesian approach by MCMC method Sample the moments from Uniform priors individually for u - and d-quark

$$
\begin{aligned}
M_{2}\left(Q^{2}\right) & \sim \mathscr{U}(0,1) \\
M_{2 n}\left(Q^{2}\right) & \sim \mathscr{U}\left(0, M_{2 n-2}\left(Q^{2}\right)\right)
\end{aligned}
$$

$$
\overline{\mathscr{F}}_{1}^{q q}\left(\omega, Q^{2}\right)=2 \sum_{n=1}^{\infty} M_{2 n}^{(1)}\left(Q^{2}\right) \omega^{2 n}
$$

$$
\begin{array}{r}
\frac{\mathscr{F}_{2}^{q q}\left(\omega, Q^{2}\right)}{\omega}=\frac{\tau}{1+\tau \omega^{2}} \sum_{n=0}^{\infty} 4 \omega^{2 n}\left[M_{2 n}^{(1)}+M_{2 n}^{(L)}\right]\left(Q^{2}\right), \text { where } \\
\tau=\frac{Q^{2}}{4 M_{N}^{2}}
\end{array}
$$

- Enforce monotonic decreasing of moments for $u u$ and $d d$ only, $|u d|^{2} \leq 4 u u * d d$

$$
M_{2}\left(Q^{2}\right) \geq M_{4}\left(Q^{2}\right) \geq \cdots \geq M_{2 n}\left(Q^{2}\right) \geq \cdots \geq 0
$$

We truncate at $n=6$
No dependence to truncation order for $3 \leq n \leq 10$

Normal Likelihood function, $\exp \left(-\chi^{2} / 2\right)$
$x^{2}=\sum_{i} \frac{\left(\overline{\mathscr{F}}_{i}-\overline{\mathscr{F}}^{\prime o b s}\left(\omega_{i}\right)\right)^{2}}{\sigma_{i}^{2}}$
stat. errors via a bootstrap analysis

| Nucleon Structure Functions $\mid F_{3}$

- for $\mu \neq \nu$ and $p_{\mu}=q_{\mu}=0$, and $\beta \neq 0$, we isolate,

$$
T_{\mu \nu}(p, q)=i \varepsilon^{\mu \nu \alpha \beta} \frac{p_{\alpha} q_{\beta}}{2 p \cdot q} \mathscr{F}_{3}\left(\omega, Q^{2}\right)
$$

- we can write down dispersion relations and connect Compton SFs to DIS SFs:

$$
\mathscr{F}_{3}\left(\omega, Q^{2}\right)=4 \omega \int d x \frac{F_{3}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}}
$$

Compton Amplitude is an analytic function in the unphysical region $\left|\omega_{0}\right|<1$

Nucleon Structure Functions $\mid F_{3}$

- using the Taylor expansion, $\frac{1}{1-(x \omega)^{2}}=\sum_{n=1}^{\infty}(x \omega)^{2 n-2}$

$$
\left\lfloor\frac{2 p \cdot q}{Q^{2}} \equiv x^{-1}\right.
$$

$$
\mathscr{F}_{3}\left(\omega, Q^{2}\right)=4 \sum_{n=1,2, \ldots} \omega^{2 n-1} M_{2 n-1}^{(3)}\left(Q^{2}\right)
$$

Mellin moments
$M_{2 n-1}^{(3)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{2 n-2} F_{3}\left(x, Q^{2}\right), \quad$ for $n=1,2,3, \ldots$

Compton amplitude via the FH relation at 2 nd order

- unpolarised Compton Amplitude
$T_{\mu \nu}(p, q)=\int d^{4} z e^{i q \cdot z}\langle N(p)| \mathscr{T}\left\{J_{\mu}^{V}(z) J_{\nu}^{A}(0)\right\}|N(p)\rangle$

- Action modification
- $2^{\text {nd }}$ order mixed derivatives of the 2-pt correlator, $G_{\lambda}^{(2)}(\mathbf{p} ; t)$, in the presence of the external field

$$
S \rightarrow S(\lambda)=S+\lambda_{1} \int d^{4} z \cos (q \cdot z) J_{\mu}^{V}(z)
$$

$\left.\frac{\partial^{2} G_{\lambda}^{(2)}(p ; t)}{\partial \lambda_{1} \partial \lambda_{2}}\right|_{\lambda=0}=\left[\frac{\partial^{2} A_{\lambda}(p)}{\partial \lambda_{1} \partial \lambda_{2}}-t A(p) \frac{\partial^{2} E_{N_{\lambda}}(p)}{\partial \lambda_{1} \partial \lambda_{2}}\right] e^{-E_{N}(p) t}$ from spectral decomposition

$$
+\lambda_{2} \int d^{4} y \sin (q \cdot y) J_{\nu}^{A}(z)
$$

local V, A currents
$J_{\mu}^{V}(z)=Z_{V} \sum_{q} e_{q} \bar{q}(z) \gamma_{\mu} q(z)$
$J_{\nu}^{A}(z)=Z_{A} \sum_{q} \bar{q}(z) \gamma_{\nu} \gamma_{5} q(z)$
$\left.\frac{\partial^{2} G_{\lambda}^{(2)}(p ; t)}{\partial \lambda_{1} \partial \lambda_{2}}\right|_{\lambda=0}=-t \sum_{s, s^{\prime}} i A_{s s^{\prime}}(p) \frac{e^{-E_{N}(p) t}}{E_{N}(p)}\left[\int d^{4} z e^{i q \cdot z}\left\langle N_{s}(p)\right| J_{\mu}(z) J_{\nu}(0)\left|N_{s^{\prime}}(p)\right\rangle-(q \rightarrow-q)+\ldots\right]$

- equate the time-enhanced terms:

$$
\left.\frac{\partial^{2} E_{N}^{\lambda}(p)}{\partial \lambda_{1} \partial \lambda_{2}}\right|_{\lambda=0}=\frac{i}{2 E_{N}(p)}[\overbrace{\int d^{4} z e^{i q \cdot z}\left\langle N_{s}(p)\right| J_{\mu}(z) J_{\nu}(0)\left|N_{s^{\prime}}(p)\right\rangle}^{T_{\mu \nu}(q)}-(q \rightarrow-q)]
$$

Compton amplitude is related to the second-order energy shift

Simulation Details $\mid F_{3}$

QCDSF/UKQCD configurations
$48^{3} \times 96,2+1$ flavor $(u / d+s)$ $\beta=5.65$ Symanzik improved gauge

NP-improved Clover action Phys. Rev. D 79, 094507 (2009), arXiv:0901.3302 [hep-lat] $m_{\pi} \sim 420 \mathrm{MeV}, \mathrm{SU}(3) \mathrm{sym}$.

$$
m_{\pi} L \sim 6.9 \quad a=0.068 \mathrm{fm}
$$

FH implementation at the valence quark level

- Valence u/d quark props with modified action, $S(\lambda)$
- Local V, A current insertions, $J_{\mu}^{V[A]}(x)=Z_{V[A]} \bar{q}(x) \gamma_{\mu}\left[\gamma_{5}\right] q(x)$
- 4 Distinct field strengths, $\lambda=[\pm 0.0125, \pm 0.025]$
- Presently, 1 current momenta $Q^{2} \sim 5 \mathrm{GeV}^{2}$
- Roughly 500 measurements
- Access to a range of $\omega=2 p \cdot q / Q^{2}$ values for $\operatorname{several}(p, q)$ pairs
- An inversion for each q and λ, varying p is relatively cheap
- Connected 2-pt correlators calculated only, no disconnected

\mid Moments \mid Fit details $\mid F_{3}$

- Bayesian approach by MCMC method

Sample the moments from Uniform priors individually for u - and d-quark
$M_{1}\left(Q^{2}\right) \sim|\mathcal{N}(0,5)| \begin{aligned} & \text { positive half, long tail } \\ & \text { uninformative prior }\end{aligned}$ $M_{2 n+1}\left(Q^{2}\right) \sim \mathscr{U}\left(0, M_{2 n-1}\left(Q^{2}\right)\right) \begin{aligned} & \text { positive, } \begin{array}{l}\text { bounded from above } \\ \text { by the previous moment }\end{array}\end{aligned}$

Maximise the multivariate Likelihood function, $\exp \left(-\chi^{2} / 2\right)$

$$
\chi^{2}=\sum_{i, j}\left[\mathscr{F}_{3, i}-\mathscr{F}_{3}^{o b s}\left(\omega_{i}\right)\right] C_{i j}^{-1}\left[\mathscr{F}_{3, j}-\mathscr{F}_{3}^{o b s}\left(\omega_{j}\right)\right]
$$

i, j runs through all the ω values of all flavour contributions

[^0]: Forward Compton Amplitude ~ Compton Tensor

