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Introduction

Renormalisable non-Abelian  gauge field theory 

Asymptotically free theory, perturbative methods 
applicable at  

Confinement leads to hadrons: nonperturbative realm  

SU(3)

Q ≫ ΛQCD

L =
X

q

 ̄q (i�
µ@µ � gs�

µAµ �mq) q �
1

2
Tr[Fµ⌫F

µ⌫ ]

Fµ⌫ = @µA⌫ � @⌫Aµ + igs[Aµ, A⌫ ]

ℒ = ∑
q

ψ̄q(iD − mq)ψq −
1
4

FμνFμν



Introduction
Inclusive process,  

Crucial for understanding the 
hadron structure 

Theoretical formulation relies on 
Parton Distribution Functions 
(PDFs)

∑ |X⟩⟨X |Deep  inelastic  scattering(Q2 ≫ M2) (W2 ≫ M2)

3.1 Deep Inelastic Scattering 16
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Figure 3.1: The Feynman diagram for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

• the virtual photon exchanged by the electron and nucleon has momentum q = k�k0.

Given these variables, it is useful to define some Lorentz scalars.

• ⌫ = P ·q

M
, which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ = k0 � k00.

• Q =
p

�q2, which is always real, since qµ is spacelike. This is the momentum
transferred to the nucleon.

• x = Q
2

2P ·q
, the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum transfer to energy transfer.

• ! = x�1, the inverse Bjorken variable. This variable is particularly useful for the
OPE.

• M , the nucleon mass.

• mf the mass of a quark of flavour f .

• M2

X
= (P + q)2, the invariant mass of the outgoing state X.

Physical Region of Scalars

Now we will determine what the physically allowed region is for each Lorentz scalar defined
above.

First, note that in the nucleon’s rest frame the electron transfers energy to the proton
and hence ⌫ � 0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q = k�k0 and k and k0 are future-pointing timelike vectors, we can use the
inverse Minkowski triangle inequality to get q2 = (k � k0)2  |k2 � k02| = m2

e�
� m2

e�
= 0

(see appendix A). Therefore, q is a spacelike vector, and hence �q2 = Q2 � 0. The region
for inelastic scattering starts at Q2 & 2GeV2.

In inelastic scattering, the momentum transfer to the nucleon is very large, and hence
M2

X
= (P + q)2 & M2. Therefore,

P 2 + 2P · q � Q2 & P 2 ) 2P · q & Q2 ) ! =
2P · q

Q2
& 1. (3.1)

Hence the physical region of x is [0, 1], and for ! it is [1, 1).

p p

X



Introduction
Operator Product Expansion 
(OPE) and the Factorisation 
theorem are key concepts 

 d2σ ∝ ∑
q

Cq ⊗ q + 𝒪(M2/Q2)
Soft scale: 

Non-perturbative 
PDFs

Hard scale: 
Perturbatively 

calculable

PDFhard scale 
coeff.factorisation 

theorem

OPE: , the leading twist term  
        dominates the cross section

Q2 ≫ M2



Introduction PDG 2020

Nucleon structure (leading twist) 

Structure functions from first principles  
Understanding the behaviour in the high- and low-x 
regions 

In the parton model 

 
 

 
 

F2 ∝ (q + q̄)

FγZ
3 ∝ (q − q̄)

FW−
2 ∝ u + d̄ + s̄ + c…

FW−
3 ∝ u − d̄ − s̄ + c…



Introduction
Scaling 

 cuts of global QCD analyses 

Power corrections / Higher twist 
effects  

Target mass corrections  

Twist-4 contributions

Q2

PDG 2020



Discretise the space-time continuum 
“Measure” quantities by computers 
Path integral has infinite dimensions 
Use tools of the stat. physics: Importance Sampling 
 

 
Take the continuum limit, , , a → 0 V → ∞ mlat.

π → mphys.
π

Lattice QCD
Two key equations:

ab initio  
non-perturbative method

lim
T��

�
Ô2(t)Ô1(0)

�
T

=
�

h

�
0|Ô2|h

��
h|Ô1|0

�
e�Eht

Hadron d.o.f.

Quark-gluon d.o.f.

�
Ô2(t)Ô1(0)

�
=

�
D[�]e�SE [�]O2[�(�x, t)]O1[�(�x, 0)]�

D[�]e�SE [�]

t

x

q q

q
O1[ (~x, 0)]

O2[ (~x, t)]
q q

q



Lattice PDFs/GPDs: dynamical progress

Krzysztof Cichy Extracting GPDs from lattice QCD – INT 2022 – 4 / 25

LQCD landscape

QCDSF-UKQCD-CSSM Collaboration 
Extended to nucleon , and ,  
Study of power corrections

F3 g1 g2

© K. Cichy, INT-22-83W



Outline

Credit: D Dominguez / CERN

Forward Compton Amplitude &  
    the Nucleon Structure Functions

Application of the Feynman-Hellmann Theorem

Moments of the Nucleon Structure Functions

Outlook: Polarised, parity violating …



Forward Compton Amplitude
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Figure
3.1: The Feynman diagram

for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

•
the virtual photon exchanged by the electron and nucleon has momentum

q =
k�k 0.

Given these variables, it is useful to define some Lorentz scalars.

•
⌫ =

P
·q

M , which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ =
k 0�

k 00
.

•
Q

= p
�q 2, which

is always real, since
q µ

is spacelike.
This is the

momentum

transferred to the nucleon.

•
x =

Q 2
2P

·q , the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum
transfer to energy transfer.

•
!

=
x �

1
, the inverse Bjorken

variable.
This variable is particularly

useful for the

OPE.•
M

, the nucleon mass.

•
m
f the mass of a quark of flavour f .

•
M

2
X =

(P
+

q) 2, the invariant mass of the outgoing state X.

Physical Region
of Scalars

Now
we will determine what the physically allowed region is for each Lorentz scalar defined

above.First, note that in the nucleon’s rest frame the electron transfers energy to the proton

and hence ⌫ �
0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q =
k�k 0

and k and k 0
are future-pointing timelike vectors, we can use the
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Hence the physical region of x is [0, 1], and for !
it is [1,1
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Figure
3.1: The Feynman diagram

for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

•
the virtual photon exchanged by the electron and nucleon has momentum

q =
k�k 0.

Given these variables, it is useful to define some Lorentz scalars.

•
⌫ =

P
·q

M , which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ =
k 0�

k 00
.

•
Q

= p
�q 2, which

is always real, since
q µ

is spacelike.
This is the

momentum

transferred to the nucleon.

•
x =

Q 2
2P

·q , the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum
transfer to energy transfer.

•
!

=
x �

1
, the inverse Bjorken

variable.
This variable is particularly

useful for the

OPE.•
M

, the nucleon mass.

•
m
f the mass of a quark of flavour f .

•
M

2
X =

(P
+

q) 2, the invariant mass of the outgoing state X.

Physical Region
of Scalars

Now
we will determine what the physically allowed region is for each Lorentz scalar defined

above.First, note that in the nucleon’s rest frame the electron transfers energy to the proton

and hence ⌫ �
0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q =
k�k 0

and k and k 0
are future-pointing timelike vectors, we can use the

inverse M
inkowski triangle inequality to get q 2

=
(k �

k 0) 2 |k 2�
k 02| =

m 2
e� �

m 2
e� =

0

(see appendix A). Therefore, q is a spacelike vector, and hence �q 2

=
Q 2

�
0. The region

for inelastic scattering starts at Q 2&
2GeV 2

.

In inelastic scattering, the momentum
transfer to the nucleon is very large, and hence

M
2

X =
(P

+
q) 2&

M
2
. Therefore,

P 2

+
2P · q �

Q 2&
P 2

)
2P · q &

Q 2

)
!

= 2P · qQ 2 &
1.

(3.1)

Hence the physical region of x is [0, 1], and for !
it is [1,1

).

𝒪 ( M2
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1
Q2 )
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DIS and the Hadronic Tensor
Forward Compton Amplitude & the Nucleon Structure Functions

Deep  inelastic  scattering (DIS)(Q2 ≫ M2) (W2 ≫ M2) dσ ∼ Lμν
j Wj

μν

leptonic tensor hadronic tensor

 (neutral) orW (charged)j = γ, Z, and γZ

<latexit sha1_base64="qfiOjRukCzgot9FWTJDHIEBb+FY="></latexit>
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Figure 3.1: The Feynman diagram for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

• the virtual photon exchanged by the electron and nucleon has momentum q = k�k0.

Given these variables, it is useful to define some Lorentz scalars.

• ⌫ = P ·q

M
, which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ = k0 � k00.

• Q =
p

�q2, which is always real, since qµ is spacelike. This is the momentum
transferred to the nucleon.

• x = Q
2

2P ·q
, the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum transfer to energy transfer.

• ! = x�1, the inverse Bjorken variable. This variable is particularly useful for the
OPE.

• M , the nucleon mass.

• mf the mass of a quark of flavour f .

• M2

X
= (P + q)2, the invariant mass of the outgoing state X.

Physical Region of Scalars

Now we will determine what the physically allowed region is for each Lorentz scalar defined
above.

First, note that in the nucleon’s rest frame the electron transfers energy to the proton
and hence ⌫ � 0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q = k�k0 and k and k0 are future-pointing timelike vectors, we can use the
inverse Minkowski triangle inequality to get q2 = (k � k0)2  |k2 � k02| = m2

e�
� m2

e�
= 0

(see appendix A). Therefore, q is a spacelike vector, and hence �q2 = Q2 � 0. The region
for inelastic scattering starts at Q2 & 2GeV2.

In inelastic scattering, the momentum transfer to the nucleon is very large, and hence
M2

X
= (P + q)2 & M2. Therefore,

P 2 + 2P · q � Q2 & P 2 ) 2P · q & Q2 ) ! =
2P · q

Q2
& 1. (3.1)

Hence the physical region of x is [0, 1], and for ! it is [1, 1).

p p
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Wµ⌫ =
1

4⇡

Z
d4zeiq·z⇢ss0hp, s0|[Jµ(z), J⌫(0)]|p, si

of higher twist under renormalization, be it in a soft
renormalization scheme like MS or in a cutoff scheme
like the lattice [1,30,31]. On the lattice the result is that the
leading-twist Wilson coefficients diverge as 1=a2 (a being
the lattice constant). This divergence must be canceled with
that of the higher-twist operator matrix element, which
demands a nonperturbative calculation of the Wilson
coefficients. The usefulness of the OPE comes from the
assumption that the nonperturbative physics is contained in
the operator matrix elements, known as factorization, while
the Wilson coefficients are calculable in perturbation
theory. This fundamental property is threatened by the
presence of power divergences. Another shortcoming of
present calculations is that the structure functions at
medium to small Bjorken x are dominated by Regge and
Pomeron exchange, which are peripheral processes that
proceed far off the light-cone [32,33]. Several attempts
have been made to extend the OPE into the Regge regime
[34,35] without much success [36]. TheWilson coefficients
can be computed on the lattice, in principle, as presented in
Refs. [8,37,38]. It should be noted though that the hyper-
cubic lattice can only accommodate operators of spin four
or less, which thwarts any prediction of the Wilson
coefficients for the higher moments on the lattice.
The structure of hadrons relevant for deep-inelastic

scattering are completely characterized by the Compton
amplitude. In the present work, we build upon a recent
paper [12] outlining a procedure to determine nucleon
structure functions from a lattice QCD calculation of the
forward Compton amplitude. By working with the physical
amplitude, this approach overcomes issues of operator
mixing and renormalization, and the restriction to light-
cone operators [32,33]. By working with the physical
amplitude, there is no need to resort to the OPE, facing
problems of factorization and renormalization, nor is the
calculation bound to light cone kinematics. However, if we
were to map the OPE upon the Compton amplitude, as far
as this is possible, we will find Wilson coefficients and
operators being properly renormalized, including mixing
effects. If the Compton amplitude is known sufficiently
accurately, we can expect to obtain nucleon structure
functions in closed form [12], including power corrections.
The strategy is most similar to those considered in
Refs. [7,9,20,39], and shares features with other approaches
to inclusive processes [20,40–44].
Here we establish the theoretical foundation of the

approach and present results for the Compton amplitude
across a range of kinematics. The calculations are per-
formed at the SU(3) flavor symmetric point [45] at an
unphysical pion mass. Results are reported on the lowest
four moments of the unpolarized structure functions of the
nucleon for photon momenta Q2 ranging from approx-
imately 3–7 GeV2. The variation of Q2 demonstrates the
potential to provide a quantitative test of the twist expan-
sion on the lattice for the first time.

In terms of the practical computation, the determination
of the Compton amplitude takes advantage of the Feynman-
Hellmann [46–50] approach to hadron structure—see also
Refs. [51–57]. The use of Feynman-Hellmann provides an
alternative to computing the 3- or 4-point functions. Here
we also present a derivation of the second-order Feynman-
Hellmann theorem necessary for the present work—a
related derivation has been presented in Ref. [58].
This paper is organized as follows: formal definitions of

the Compton amplitude and the structure functions, along
with the connection between the OPE and the dispersion
relation are given in Sec. II. We explicitly derive the second
order Feynman-Hellmann theorem in Sec. III. Our lattice
setup and the implementation details are given in Sec. IV.
Results for the Compton amplitude and the moments of the
structure functions are presented in Sec. V. We summarize
our findings in Sec. VI.

II. FORWARD COMPTON AMPLITUDE
AND THE STRUCTURE FUNCTIONS

A. Notation

At leading order in the electromagnetic interaction, the
general description for the inclusive scattering of a charged
lepton from a hadronic target, e.g., eN → e0X, is encoded
in the hadron tensor. Conventionally, the hadron tensor is
expressed as a matrix element of the commutator of
electromagnetic current operators [59–61],1

Wμνðp; qÞ ¼
1

4π

Z
d4zeiq·zρss0 hp; s0j½J μðzÞ;J νð0Þ%jp; si;

ð1Þ

for a hadron of momentum p and (virtual) photon momen-
tum q. For the present discussion, we will only consider
spin-averaged observables by taking ρss0 ¼ 1

2 δss0 . The cur-
rent operator takes the familiar form as the charge-weighted
sum of the quark vector currents, J μ ¼

P
f QfJ

f
μ, withQf

being the charge of quark flavor f. The flavor decomposition
will be discussed in further detail in a later section.
The spin-averaged nucleon tensor can be decomposed as

Wμνðp;qÞ¼
!
−gμνþ

qμqν
q2

"
F1ðx;Q2Þ

þ
!
pμ−

p ·q
q2

qμ

"!
pν−

p ·q
q2

qν

"
F2ðx;Q2Þ

p ·q
;

ð2Þ

which is defined such that Lorentz-invariant structure
functions, F1;2, match onto their conventional partonic
interpretation in the deep inelastic scaling region. These

1In this section, we work in Minkowski space.
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Tμν(p, q) = i∫ d4z eiq⋅zρss′ 
⟨p, s′ |𝒯{Jμ(z)Jν(0)} |p, s⟩

= (−gμν +
qμqν

q2 ) ℱ1(ω, Q2) + (pμ −
p ⋅ q
q2

qμ) (pν −
p ⋅ q
q2

qν) ℱ2(ω, Q2)
p ⋅ q

Forward Compton Amplitude
Forward Compton Amplitude & the Nucleon Structure Functions

, spin avg. ⇢ss0 =
1

2
�ss0
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Compton Structure Functions (SF)

ω =
2p ⋅ q

Q2

∼
N(p)

J𝜇(q)

2 Im

Forward Compton Amplitude ~ Compton Tensor

N(p)

J𝜇(q)
2

DIS Cross Section ~ Hadronic Tensor

Same Lorentz 

decom
positio

n as 

the Hadronic 

Tensor



we can write down dispersion relations and connect  
Compton SFs to DIS SFs:

Nucleon Structure Functions
Forward Compton Amplitude & the Nucleon Structure Functions

ℱ1(ω, Q2) − ℱ1(0,Q2) = 2ω2 ∫
1

0
dx

2x F1(x, Q2)
1 − x2ω2 − iϵ

ℱ2(ω, Q2) = 4ω∫
1

0
dx

F2(x, Q2)
1 − x2ω2 − iϵ

ℱL(ω, Q2) + ℱ1(0,Q2) =
8M2

N

Q2 ∫
1

0
dxF2(x, Q2)

+2ω2 ∫
1

0
dx

FL(x, Q2)
1 − x2ω2 − iϵ

Im ω

ω0 1-1 Re ω

ω = x−1

Compton Amplitude is an 
analytic function in the 
unphysical region |ω0 | < 1

inelastic cut

≡ ℱ1(ω, Q2)

≡ ℱL(ω, Q2)



Nucleon Structure Functions
Forward Compton Amplitude & the Nucleon Structure Functions

ω =
2p ⋅ q

Q2
≡ x−1using the Taylor expansion, 

1
1 − (xω)2

=
∞

∑
n=1

(xω)2n−2

ℱ1,L(ω, Q2) =
∞

∑
n=0

2ω2nM(1,L)
2n (Q2) M(1)

2n (Q2) = 2∫
1

0
dx x2n−1F1(x, Q2) M(1)

0 (Q2) = 0

ℱ2(ω, Q2) =
∞

∑
n=1

4ω2n−1M(2)
2n (Q2) M(2,L)

2n (Q2) = ∫
1

0
dx x2n−2F2,L(x, Q2) M(L)

0 (Q2) =
4M2

N

Q2
M(2)

2 (Q2)

, where

, where

, and

, and

  and          μ = ν = 3 p3 = q3 = 0 ⟹ ℱ1(ω, Q2) = T33(p, q)

  and  μ = ν = 0 p3 = q3 = q0 = 0 ⟹
ℱ2(ω, Q2)

ω
= [T00(p, q) + T33(p, q)] Q2

2E2
N

ℱL(ω, Q2) = − ℱ1(ω, Q2) + ( ω
2

+
2M2

N

ωQ2 ) ℱ2(ω, Q2)



Shape of the Compton Amplitude
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dispersion relation
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Feynman-Hellmann Theorem
λ

@ 2nd order



Application of the Feynman-Hellmann Theorem

∂Eλ

∂λ
= ⟨ϕλ |

∂Hλ

∂λ
|ϕλ⟩

H𝜆: perturbed Hamiltonian of the system 
E𝜆: energy eigenvalue of the perturbed system 
𝜙𝜆:  eigenfunction of the perturbed system

in Quantum Mechanics:

expectation value of the perturbed system is related to the shift in the energy eigenvalue

S → S(λ) = S + λ∫ d4x 𝒪(x)
e.g. local bilinear operator

q̄(x)Γμq(x) , Γμ ∈ {1, γμ, γ5γμ, …}
real parameter

∂Eλ

∂λ
=

1
2Eλ

⟨0 |𝒪 |0⟩

@ 1st order
E𝜆 → spectroscopy, 2-pt function

<0|𝓞|0> → determine 3-pt 

FH Theorem at 1st order

in Lattice QCD: energy shifts in the presence of a weak external field

Applications: 
 - terms 

Form factors
σ



Tμμ(p, q) = ∫ d4zeiq⋅z⟨N(p) |𝒯{Jμ(z)Jμ(0)} |N(p)⟩ S → S(λ) = S + λ∫ d4z (eiq⋅z + e−iq⋅z) Jμ(z)

Action modification
Jμ(z) = ∑q eqq̄(z)γμq(z)
local EM current

N(p)

J𝜇(q)unpolarised Compton Amplitude

from spectral decomposition 

<latexit sha1_base64="Cy+Lg2/Iv3otJqkzO7/A4uVdP1s="></latexit>

@2G(2)
� (p; t)

@�2

�����
�=0

=
A(p)

2EN (p)
te�EN (p)t

Z
d4z(eiq·z + e�iq·z)hN(p)|T {J (z)J (0)}|N(p)i

from path integral 

2nd order derivatives of the 2-pt correlator, , in the presence of the external fieldG(2)
λ (p; t)

<latexit sha1_base64="1ScOIKq+zI4jTTBBRymyBQt5lWk="></latexit>

@2EN�(p)

@�2

����
�=0

= � 1

2EN (p)

Tµµ(p,q)z }| {Z
d4z(eiq·z + e�iq·z)hN(p)|J (z)J (0)|N(p)i

equate the time-enhanced terms:

Compton amplitude is related to the second-order energy shift

+ (q → − q)

Compton amplitude via the FH relation at 2nd order
kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]Application of the Feynman-Hellmann Theorem



relevant contribution comes from the ordering where the currents are sandwiched

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

χ (0)χ(t)
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J (y4)
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J (z4) ∼ e−EN(p)t ∫
t
dΔ e−(EX(p + q) − EN(p))Δ (t − Δ)

under the condition , 
,  

so the intermediate states 
cannot go on-shell 

ground state dominance is 
ensured in the large time limit

|ω | < 1
EX(p + nq) ≳ EN(p)

of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
lattice 4-point functions [56,57].
In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,

SðλÞ ¼ Sþ λ
Z

d4zðeiq·z þ e−iq·zÞJ μðzÞ; ð22Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be

∂2ENλ
ðpÞ

∂λ2
!!!!
λ¼0

¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð23Þ

where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,

Gð2Þ
λ ðp; tÞ≡

Z
d3xe−ip·xΓhΩλjχðx; tÞχ̄ð0ÞjΩλi; ð24Þ

where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.

LATTICE QCD EVALUATION OF THE COMPTON AMPLITUDE … PHYS. REV. D 102, 114505 (2020)

114505-5

EX(p + q)
EN(p)

EX(p + 2q)

EX(p − q) dispersion relation 

E = m2
N + (p + nq)2

 thresholdNπ

discrete set of states

of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
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where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be
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where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,
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λ ðp; tÞ≡
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where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,
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whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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. In the example plotted, if the
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asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
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external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
lattice 4-point functions [56,57].
In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,

SðλÞ ¼ Sþ λ
Z

d4zðeiq·z þ e−iq·zÞJ μðzÞ; ð22Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be

∂2ENλ
ðpÞ

∂λ2
!!!!
λ¼0

¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð23Þ

where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,

Gð2Þ
λ ðp; tÞ≡

Z
d3xe−ip·xΓhΩλjχðx; tÞχ̄ð0ÞjΩλi; ð24Þ

where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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|ω | = 0.59
Δ = z4 − y4

 e.g.

Compton amplitude via the FH relation at 2nd order
Application of the Feynman-Hellmann Theorem
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where F1 and F2 are the deep-inelastic structure functions
of the nucleon. Using the OPE, one can express F 1 and F 2

in terms of moments of F1 and F2, which are amenable to
calculation on the Euclidean lattice. Alternatively, F 1 and
F 2 can be written as dispersion integrals over ω, which
leads to the same expressions.
Let us first consider the OPE of F 1 and F 2. After some

simple algebra we obtain [7]

Tμνðp;qÞ¼
X∞

n¼2;4;$$$

!"
δμν−

qμqν
q2

#
4ωn

Z
1

0
dxxn−1F1ðx;q2Þ

þ
"
pμ−

p ·q
q2

qμ

#"
pν−

p ·q
q2

qν

#
8

2p ·q
ωn−1

×
Z

1

0
dxxn−2F2ðx;q2Þ

$
: ð5Þ

The series
P

k∈NðωxÞ2k in Eq. (5) is geometric and sums up
to ½1 − ðωxÞ2'−1, which leads to the alternate expression

Tμνðp; qÞ ¼
"
δμν −

qμqν
q2

#
4ω

Z
1

0
dx

ωx
1 − ðωxÞ2

F1ðx; q2Þ

þ
"
pμ −

p · q
q2

qμ

#"
pν −

p · q
q2

qν

#
8ω

2p · q

×
Z

1

0
dx

1

1 − ðωxÞ2
F2ðx; q2Þ: ð6Þ

In the limit where F1ðx; q2Þ and F2ðx; q2Þ become inde-
pendent of q2 we have the Callan-Gross rela-
tion F2ðxÞ ¼ 2xF1ðxÞ.
Alternatively, we can express F 1 and F 2 directly in

terms of the structure functions F1 and F2, circumventing
the OPE. The amplitudes F 1 and F 2 have cuts at −∞ ≤
ω ≤ −1 and 1 ≤ ω ≤ ∞ with discontinuities (4). This leads
to once subtracted dispersion relations

F 1ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F1ðω̄;q2Þ
ω̄ðω̄−ωÞ

−
F1ðω̄;q2Þ
ω̄ðω̄þωÞ

#
þF 1ð0;q2Þ;

F 2ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F2ðω̄;q2Þ
ω̄ðω̄−ωÞ

þF2ðω̄;q2Þ
ω̄ðω̄þωÞ

#
: ð7Þ

While F 2ð0; q2Þ ¼ 0, the subtraction constant F 1ð0; q2Þ
contains information on the magnetic polarizability of the
nucleon and the proton-neutron electromagnetic mass shift
[8]. In the following equations we shall discard it, as it has
no counterpart in F1, nor is it accounted for by the OPE. It
can be computed like any other value of F 1 though and, if
necessary, has to be subtracted from F 1ðω; q2Þ. (So, for
example, from the data underlying Fig. 6.) Substituting ω̄
by 1=x, we finally obtain

F 1ðω; q2Þ ¼ 4ω2

Z
1

0
dxx

F1ðx; q2Þ
1 − ðωxÞ2

;

F 2ðω; q2Þ ¼ 4ω
Z

1

0
dx

F2ðx; q2Þ
1 − ðωxÞ2

; ð8Þ

where we have identified F1ðω̄; q2Þ and F2ðω̄; q2Þ with
F1ðx; q2Þ and F2ðx; q2Þ, respectively. If we insert Eq. (8)
into Eq. (3), we obtain Eq. (6), in agreement with the OPE
resummed. It should be noted that the structure functions
F1ðx; q2Þ and F2ðx; q2Þ include higher twist contributions,
as we have not made any assumptions on F 1 and F 2 other
than on the analytic structure.
To simplify the numerical calculation, we may choose

μ ¼ ν ¼ 3 and p3 ¼ q3 ¼ q4 ¼ 0. We then have

T33ðp; qÞ ¼
X∞

n¼2;4;$$$
4ωn

Z
1

0
dxxn−1F1ðx; q2Þ ð9Þ

and, alternatively,

T33ðp; qÞ ¼ 4ω
Z

1

0
dx

ωx
1 − ðωxÞ2

F1ðx; q2Þ: ð10Þ

For jωj > 1 the principal value has to be taken. The matrix
element T33ðp; qÞ can be computed most efficiently,
including singlet matrix elements, by a simple extension
of existing implementations of the Feynman-Hellmann
technique to lattice QCD [9]. For simplicity, we consider
the local vector current only. The appropriate renormaliza-
tion factor ZV can be computed unambiguously [10]. No
further renormalization is needed. To compute the
Compton amplitude from the Feynman-Hellmann relation,
we introduce the perturbation to the Lagrangian

LðxÞ → LðxÞ þ λJ 3ðxÞ;
J 3ðxÞ ¼ ZV cosðq⃗ · x⃗Þefψ̄fðxÞγ3ψfðxÞ; ð11Þ

where ψf is the quark field of flavor f ¼ u; d; s;… to which
the photon is attached, and ef is its electric charge. Note
that λ has dimension mass. Taking the second derivative
of the nucleon two-point function hNðp⃗; tÞN̄ðp⃗; 0Þiλ ≃
Cλe−Eλðp;qÞt with respect to λ on both sides, we obtain

−2Eλðp; qÞ
∂2

∂λ2 Eλðp; qÞjλ¼0 ¼ T33ðp; qÞ: ð12Þ

The derivation of Eq. (12) would go beyond the scope of this
Letter and will be presented in a separate publication.
Provided we compute at sufficiently large q2, standard
factorization theorems state that the Compton amplitude
will be dominated by the “handbag” diagram shown in the
left panel of Fig. 1. Nevertheless, the amplitude does
encompass all contributions, including the power-suppressed

FIG. 1. The so-called “handbag” diagram (left panel) and cats-
ears diagram (right panel).
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where F1 and F2 are the deep-inelastic structure functions
of the nucleon. Using the OPE, one can express F 1 and F 2

in terms of moments of F1 and F2, which are amenable to
calculation on the Euclidean lattice. Alternatively, F 1 and
F 2 can be written as dispersion integrals over ω, which
leads to the same expressions.
Let us first consider the OPE of F 1 and F 2. After some

simple algebra we obtain [7]

Tμνðp;qÞ¼
X∞

n¼2;4;$$$

!"
δμν−
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#
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þ
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p ·q
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#"
pν−

p ·q
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#
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2p ·q
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×
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$
: ð5Þ

The series
P

k∈NðωxÞ2k in Eq. (5) is geometric and sums up
to ½1 − ðωxÞ2'−1, which leads to the alternate expression
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F2ðx; q2Þ: ð6Þ

In the limit where F1ðx; q2Þ and F2ðx; q2Þ become inde-
pendent of q2 we have the Callan-Gross rela-
tion F2ðxÞ ¼ 2xF1ðxÞ.
Alternatively, we can express F 1 and F 2 directly in

terms of the structure functions F1 and F2, circumventing
the OPE. The amplitudes F 1 and F 2 have cuts at −∞ ≤
ω ≤ −1 and 1 ≤ ω ≤ ∞ with discontinuities (4). This leads
to once subtracted dispersion relations

F 1ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F1ðω̄;q2Þ
ω̄ðω̄−ωÞ
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F1ðω̄;q2Þ
ω̄ðω̄þωÞ
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ω̄ðω̄þωÞ

#
: ð7Þ

While F 2ð0; q2Þ ¼ 0, the subtraction constant F 1ð0; q2Þ
contains information on the magnetic polarizability of the
nucleon and the proton-neutron electromagnetic mass shift
[8]. In the following equations we shall discard it, as it has
no counterpart in F1, nor is it accounted for by the OPE. It
can be computed like any other value of F 1 though and, if
necessary, has to be subtracted from F 1ðω; q2Þ. (So, for
example, from the data underlying Fig. 6.) Substituting ω̄
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1 − ðωxÞ2
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F 2ðω; q2Þ ¼ 4ω
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dx
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1 − ðωxÞ2

; ð8Þ

where we have identified F1ðω̄; q2Þ and F2ðω̄; q2Þ with
F1ðx; q2Þ and F2ðx; q2Þ, respectively. If we insert Eq. (8)
into Eq. (3), we obtain Eq. (6), in agreement with the OPE
resummed. It should be noted that the structure functions
F1ðx; q2Þ and F2ðx; q2Þ include higher twist contributions,
as we have not made any assumptions on F 1 and F 2 other
than on the analytic structure.
To simplify the numerical calculation, we may choose

μ ¼ ν ¼ 3 and p3 ¼ q3 ¼ q4 ¼ 0. We then have
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4ωn

Z
1

0
dxxn−1F1ðx; q2Þ ð9Þ
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F1ðx; q2Þ: ð10Þ

For jωj > 1 the principal value has to be taken. The matrix
element T33ðp; qÞ can be computed most efficiently,
including singlet matrix elements, by a simple extension
of existing implementations of the Feynman-Hellmann
technique to lattice QCD [9]. For simplicity, we consider
the local vector current only. The appropriate renormaliza-
tion factor ZV can be computed unambiguously [10]. No
further renormalization is needed. To compute the
Compton amplitude from the Feynman-Hellmann relation,
we introduce the perturbation to the Lagrangian

LðxÞ → LðxÞ þ λJ 3ðxÞ;
J 3ðxÞ ¼ ZV cosðq⃗ · x⃗Þefψ̄fðxÞγ3ψfðxÞ; ð11Þ

where ψf is the quark field of flavor f ¼ u; d; s;… to which
the photon is attached, and ef is its electric charge. Note
that λ has dimension mass. Taking the second derivative
of the nucleon two-point function hNðp⃗; tÞN̄ðp⃗; 0Þiλ ≃
Cλe−Eλðp;qÞt with respect to λ on both sides, we obtain

−2Eλðp; qÞ
∂2

∂λ2 Eλðp; qÞjλ¼0 ¼ T33ðp; qÞ: ð12Þ

The derivation of Eq. (12) would go beyond the scope of this
Letter and will be presented in a separate publication.
Provided we compute at sufficiently large q2, standard
factorization theorems state that the Compton amplitude
will be dominated by the “handbag” diagram shown in the
left panel of Fig. 1. Nevertheless, the amplitude does
encompass all contributions, including the power-suppressed

FIG. 1. The so-called “handbag” diagram (left panel) and cats-
ears diagram (right panel).
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Polarised Structure Functions
T[μν](p, q, s) = iεμναβ qα

p ⋅ q [sβ g̃1(ω, Q2) + (sβ −
s ⋅ q
p ⋅ q

pβ) g̃2(ω, Q2)]
Similar to the unpolarised case, we can 
extract  and   
via an OPE analysis: the first moment of 

 is related to axial current matrix 
elements 

 

where,  

 is twist-3, holds information on 
quark-gluon correlations 
Wandzura-Wilczek decomposition 

 

The Buckhardt — Cottingham sum rule 

g̃1 g̃2

g1(x)
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0
g(u−d)

1 (x, Q2) dx = (Δu − Δd)
≡gA

C1(αs(Q2))

C1(αs(Q2)) = 1 −
αs(Q2)

π
− 𝒪(α2

s )

g2(x)

g2(x, Q2) = − g1(x, Q2) + ∫
1

x
g1(y, Q2) dy + ḡ2(x, Q2)

∫
1

0
g2(x, Q2) dx = 0



Outlook

Polarised Structure Functions
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P.L. Anthony, et al. (E155 Collaboration), Phys. Lett. B 493 (2000) 19
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Leading theoretical uncertainty in:  

Weak charge of the proton, 

 

CKM matrix element extracted from 
superallowed neutron  decays, 

   

QW = (1 + Δρ + Δe)(1 − 4 sin2 θW(0) + Δ′ e)

+ □WW
AA + □ZZ

AA + □γZ
VA

β

|Vud |2 =
0.97148(20)

1 + ΔV
R

Motivation

(…) + 2 □γW
VAK. Shiells, P.G. Blunden, W. Melnitchouk,  

PRD104, 033003 (2021) [2012.01580]
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Box diagrams proportional to an integral over 
the whole  range 

 

Low-  (non-perturbative) regime dominates the 
integral 
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determination of   

Q2

□γZ/W
A ∝ ∫

∞

0

dQ2

Q2
M(3)

1 (Q2) (…)

Q2

F3 Q2

M(3)
1 (Q2)

Motivation
Outlook



Tμν(p, q) = i∫ d4z eiq⋅zρss′ 
⟨p, s′ |𝒯{JV

μ (z)JA
ν (0)} |p, s⟩

= −gμνℱ1(ω, Q2) +
pμpν

p ⋅ q
ℱ2(ω, Q2) + i εμναβ

pαqβ

2p ⋅ q
ℱ3(ω, Q2)

+
qμqν

p ⋅ q
ℱ4(ω, Q2) +

p
{μqν}

p ⋅ q
ℱ5(ω, Q2) +

p
[μqν]

p ⋅ q
ℱ6(ω, Q2)

     Forward Compton Amplitude
, spin avg. ⇢ss0 =

1

2
�ss0

<latexit sha1_base64="2gLiSuUHGhOyqmbksHycQI0Rn8U="></latexit>

ω =
2p ⋅ q

Q2

ε0123 = 1

∼
N(p)

J𝜇(q)

2 Im

Forward Compton Amplitude ~ Compton Tensor

N(p)

J𝜇(q)
2

DIS Cross Section ~ Hadronic Tensor

Parit
y  

Viola
ting

allowed terms  
because parity  
is violated
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 measurements∼ 1600

  measurements∼ 500

= 2p ⋅ q/Q2
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Summary
A versatile approach: , and  and   

Systematic investigation of power corrections,  
higher-twist effects and scaling is within reach 

Exploratory calculation of  

A good chance to study the discretisation errors

F1, F2, FL, F3 g1 g2

ℱ3(ω, Q2)



Summary
In the long run: 

Make contact with phenomenology: incorporate lattice 
Compton amplitude in global QCD fits 

High-precision box-diagram estimates 

Recover the x-dependence of PDFs
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Moments of the Nucleon Structure Functions

Moments | Fit details

Enforce monotonic decreasing of moments 
for  and  only, uu dd |ud |2 ≤ 4uu * dd

M2(Q2) ≥ M4(Q2) ≥ ⋅ ⋅ ⋅ ≥ M2n(Q2) ≥ ⋅ ⋅ ⋅ ≥ 0
We truncate at  
No dependence to truncation order for 

n = 6
3 ≤ n ≤ 10

M2(Q2) ∼ 𝒰 (0, 1)
M2n(Q2) ∼ 𝒰 (0, M2n−2(Q2))

Sample the moments from Uniform priors 
individually for u- and d-quark

Normal Likelihood function, exp(−χ2/2)

χ2 = ∑
i
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σ2
i

Bayesian approach by MCMC method
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Batelaan, kuc, et al. (CSSM/QCDSF/UKQCD), PRD107 (2023) 5, 054503, arXiv:2209.04141 [hep-lat]



we can write down dispersion relations  
and connect Compton SFs to DIS SFs:

Nucleon Structure Functions | F3
Im ω

ω0 1-1 Re ω

ω = x−1

Compton Amplitude is an 
analytic function in the 
unphysical region |ω0 | < 1

inelastic cut

ℱ3(ω, Q2) = 4ω∫ dx
F3(x, Q2)
1 − x2ω2

for  and , and , we isolate,μ ≠ ν pμ = qμ = 0 β ≠ 0

Tμν(p, q) = i εμναβ
pαqβ

2p ⋅ q
ℱ3(ω, Q2)



Nucleon Structure Functions | F3
ω =

2p ⋅ q
Q2

≡ x−1

using the Taylor expansion, 
1

1 − (xω)2
=

∞

∑
n=1

(xω)2n−2

ℱ3(ω, Q2) = 4 ∑
n=1,2,…

ω2n−1 M(3)
2n−1(Q

2)

.

M(3)
2n−1(Q

2) = ∫
1

0
dx x2n−2 F3(x, Q2), for n = 1,2,3,…

Mellin moments



∂2G(2)
λ (p; t)

∂λ1∂λ2
λ=0

= − t∑
s,s′ 

iAss′ 
(p)

e−EN(p)t

EN(p) [∫ d4z eiq⋅z ⟨Ns(p) |Jμ(z)Jν(0) |Ns′ 
(p)⟩ − (q → − q) + …]

Tμν(p, q) = ∫ d4zeiq⋅z⟨N(p) |𝒯{JV
μ (z)JA

ν (0)} |N(p)⟩ S → S(λ) = S + λ1 ∫ d4z cos(q ⋅ z) JV
μ (z)

+ λ2 ∫ d4y sin(q ⋅ y) JA
ν (z)

Action modification

local V, A currents

N(p)

JV
μ (q) JA

ν (q)

N(p)

unpolarised Compton Amplitude

from spectral decomposition 

from path integral 

2nd order mixed derivatives of the 2-pt correlator, ,  
in the presence of the external field

G(2)
λ (p; t)

equate the time-enhanced terms:

Compton amplitude is related to the second-order energy shift

Compton amplitude via the FH relation at 2nd order
kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

JV
μ (z) = ZV ∑q eqq̄(z)γμq(z)

JA
ν (z) = ZA ∑q q̄(z)γνγ5q(z)

∂2G(2)
λ (p; t)

∂λ1∂λ2
λ=0

= [ ∂2Aλ(p)
∂λ1∂λ2

− tA(p)
∂2ENλ

(p)
∂λ1∂λ2 ] e−EN(p)t

∂2Eλ
N(p)

∂λ1∂λ2
λ=0

=
i

2EN(p) [
Tμν(p,q)

∫ d4z eiq⋅z ⟨Ns(p) |Jμ(z)Jν(0) |Ns′ 
(p)⟩ − (q → − q)]



FH implementation at the valence quark level 

Valence u/d quark props with modified action,  

Local V, A current insertions,  

4 Distinct field strengths,   

Presently, 1 current momenta  

Roughly 500 measurements 

Access to a range of  values for several  pairs 

An inversion for each  and , varying  is relatively cheap  

Connected 2-pt correlators calculated only, no disconnected

S(λ)

JV[A]
μ (x) = ZV[A]q̄(x)γμ[γ5]q(x)

λ = [±0.0125, ± 0.025]

Q2 ∼ 5 GeV2

ω = 2 p ⋅ q/Q2 (p, q)

q λ p

Simulation Details | F3

 MeV, SU(3) sym.mπ ∼ 420

a = 0.068 fmmπL ∼ 6.9

Unmodified QCD background

QCDSF/UKQCD configurations  
, 2+1 flavor (u/d+s)  

                          Symanzik improved gauge 
NP-improved Clover action 

Phys. Rev. D 79, 094507 (2009), arXiv:0901.3302 [hep-lat]

483 × 96
β = 5.65



Moments | Fit details | F3

Enforce monotonic decreasing of moments 
for  and  only, uu dd |ud |2 ≤ 4uu * dd

M1(Q2) ≥ M3(Q2) ≥ ⋅ ⋅ ⋅ ≥ M2n−1(Q2) ≥ ⋅ ⋅ ⋅ ≥ 0
We truncate at n = 6

M1(Q2) ∼ |𝒩 (0, 5) |

M2n+1(Q2) ∼ 𝒰 (0, M2n−1(Q2))

Sample the moments from Uniform priors 
individually for u- and d-quark

Maximise the multivariate Likelihood function, exp(−χ2/2)
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3 (ωj)]

Bayesian approach by MCMC method

ℱ3(ω, Q2)
ω

= ∑
n=1,2,…

4ω2n−2 M(3)
2n−1(Q

2)
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a = 0.068 fm, V = 483 £ 96

mº ª 420 MeV

Q2 ª 5 GeV2
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PRELIMINARY

 runs through all the  values of all flavour contributionsi, j ω

positive half, long tail 
uninformative prior

positive,  
bounded from above  
by the previous moment 


