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High-priority science questions
The NAS Assessment of a U.S. based
Electron Ion Collider identified three
high-priority science questions

How does the mass of the nucleon arise?
How does the spin of the nucleon arise?
What are the emergent properties of dense systems of gluons?

What do we know about hadron masses?
The three current quarks needed to define the nucleon
quantum numbers contribute only ∼ 1% to its mass
In chiral limit nucleon mass ∼ 900 MeV; Higgs
mechanism is largely irrelevant for visible mass

The chiral symmetry of LQCD is dynamically broken
=⇒∼ 500 MeV mass splittings in hadron spectrum
& massless Goldstone bosons in chiral limit (π, K, η)

Therefore understanding the nucleon mass is not sufficient
must also understand the mass of the pion (ud̄, . . . ) and kaon (us̄, . . . )
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Story of the Pion and Kaon
In 1935 Yukawa postulated a strongly interacting particle
[“(π-) meson”] as a mediator for the strong nuclear force

in 1947 both the π and shortly afterwards the K were discovered
from cosmic ray tracks in a photographic emulsion

Today, pion still regarded as the mediator of the strong force in ab inito
approaches to nuclear structure; the kaon has played an important role in
establishing quark model, and understanding flavor breaking & CP violation

Formally the pion and kaon are now understood as both a bound state of a
dressed-quark and a dressed-antiquark in QFT and the Goldstone mode
associated with DCSB in QCD

This dichotomous nature has numerous ramifications near chiral limit e.g.:

f2
πm

2
π '

1

2
(mu +md)

〈
ψψ̄
〉
, Hu−d

π (x, ξ → 1, 0) = ϕπ

(
1 + x

2

)
, Dπ(0) = −1

Perturbative QCD can also make predictions for pion and kaon structure –
therefore π and K provide an ideal laboratory to test and understand QCD
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What we know about the Pion and Kaon
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Pion and kaon structure is slowly being revealed using: π−/K− beams at
CERN; Sullivan type experiments at Jefferson Lab; π− beam at Fermilab;
and e+e− → π+π−, K+K− in the time-like region

40 years of experiments has revealed, e.g.
rπ+ = 0.672± 0.008, rK+ = 0.560± 0.031, rK0 = −0.277± 0.018

Still a lot more to learn about pion and kaon structure:
quark and gluon PDFs; TMDs including Boer-Mulders function; q, g → π/K
fragmentation functions, quark and gluon GPDs; gravitational form factors
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Hadron Masses in QCD
Quark/gluon contributions to masses (& angular momentum) are accessed
via matrix elements of QCD’s (symmetric) energy-momentum tensor

Tµν = T νµ, ∂µ T
µν = ∂µ T

µν
q + ∂µ T

µν
g = 0, Tµν = T

µν

[traceless]
+ T̂µν

[trace]

Renormalized (perturbatively) trace piece of Tµν takes the form

Tµµ =
∑

q=u,d,s

mq (1 + γm)ψqψq︸ ︷︷ ︸
quark mass term

+
β̃(g)

2 g
Fµν,aF aµν︸ ︷︷ ︸

trace anomaly

At zero momentum transfer

〈p |Tµν | p〉 = 2 pµpν =⇒
〈
p
∣∣Tµµ∣∣ p〉 = 2m2

in chiral limit entire hadron mass from gluons!
Dmitri Kharzeev – Proton Mass workshops at Temple University and ECT∗

Understanding difference in pion and proton is key to hadron masses:〈
π
∣∣Tµµ∣∣π〉 = 2m2

π
chiral limit→ 0,

〈
N
∣∣Tµµ∣∣N〉 = 2m2

N
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Rest Frame Hadron Mass Decompositions
Xiangdong Ji proposed hadron mass decomposition [PRL 74, 1071 (1995); PRD 52, 271 (1995)]

mp =

〈
p
∣∣∫ d3xT 00(0, ~x)

∣∣ p〉
〈p|p〉

∣∣∣∣∣
at rest

= Mq + Mg︸ ︷︷ ︸
quark and gluon energies

+ Mm︸︷︷︸
quark mass

+ Ma︸︷︷︸
trace anomaly

Mq = 3
4 (a− b)mp, Mg = 3

4 (1− a)mp, Mm = bmp, Ma = 1
4 (1− b)mp,

a = quark momentum fraction, b related to sigma-term or anomaly contribution
[See Cédric Lorcé, EPJC 78, (2018) for decomposition with pressure effects]

Ji’s proton mass
decomposition

quark energy (29%)

gluon energy (34%)

trace anomaly (20%)

quark mass (17%)

Ji’s pion mass
decomposition

quark energy (0%)

gluon energy (38%)

trace anomaly (12%)

quark mass (50%)

In chiral limit (mq → 0) pion has no rest frame (mπ = 0) – how to interpret
Ji’s pion mass decomposition?
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Hadron Mass Decomposition – Experiment
V. D. Burkert, L. Elouadrhiri and F. X. Girod,

Nature 557, no. 7705, 396 (2018)

Nucleon

D(t) ∝
∫
dr

× j0(r
√
−t)

t r2 p(r)

〈
p′
∣∣Tµνq,g ∣∣ p〉 = Aq,gπ (t)Pµ P ν

+D q,g
π (t)

(
qµqν − q2gµν

)
+ c̄q,gπ (t) gµν

Aq(0) +Ag(0) = 1, Dq
π(0) +Dg

π(0)
mq→0

= −1

∂µT
µν = 0 =⇒ c̄ qπ(t) = −c̄ gπ (t)

Gravitational form factors of the pion:

A graviton probe can only measure Tµν =

Tµνq + Tµνg , where

However, GPDs can access both Tµνq and Tµνg∫
dxxHq,g

π (x, ξ, t) = Aq,gπ (t) + ξ2Dq,g
π (t)

measuring/calculating pion and kaon GPDs would
shed-light on mass and confinement

Trace anomaly contribution can likely be
accessed through J/ψ,Υ production at threshold

Jefferson Lab Seminar 7 / 37



Pion & Kaon Structure at JLab and an EIC
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At Jefferson Lab and an EIC pion and kaon structure can be accessed via the
so-called Sullivan processes

initial pion/kaon is off mass-shell – need extrapolation to pole
proven results for form factors – what about quark and gluon PDFs, TMDs, GPDs,
etc, at an EIC?

Explored this ideal at a series of workshops on “Pion and Kaon Structure at
an Electron–Ion Collider” (PIEIC)

1−2 June 2017, Argonne National Laboratory www.phy.anl.gov/theory/pieic2017/

24−25 May 2018, The Catholic University of America www.jlab.org/conferences/pieic18/
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QCD’s Dyson-Schwinger Equations

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]

The equations of motion of QCD⇐⇒ QCD’s Dyson–Schwinger equations
an infinite tower of coupled integral equations
tractability =⇒ must implement a symmetry preserving truncation

The most important DSE is QCD’s gap equation =⇒ quark propagator

−1
=

−1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p+M(p2)

Mass function, M(p2), exhibits dynamical
mass generation, even in chiral limit

mass function is gauge dependent and
therefore NOT an observable!

Hadron masses are generated by dynamical
chiral symmetry breaking – caused by a
cloud of gluons dressing the quarks and gluons
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QCD’s Dyson-Schwinger Equations
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QCD’s Dyson-Schwinger Equations

[S. x. Qin et al., Phys. Rev. C 84, 042202 (2011)]
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QCD’s Dyson-Schwinger Equations

ETC!
Image courtesy of Gernot Eichmann
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Pion & Kaon
Wave Functions
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Calculating and Predicting Pion Structure
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In QFT a two-body bound state (e.g. a pion, kaon, etc) is
described by the Bethe-Salpeter equation (BSE):

Γ = Γ K K = + + . . .

the kernel must yield a solution that encapsulates
the consequences of DCSB, e.g., in chiral limit
mπ = 0 & m2

π ∝ mu +md

Pion Bethe-Salpeter vertex

Γπ(p, k) = γ5

[
Eπ(p, k) + /pFπ(p, k)

+ /k k · pGπ(p, k) + iσµνkµpν Hπ(p, k)
]

χBSE = S(k + 1
2p) Γπ(p, k)S(k − 1

2p)

large relative momentum: Eπ ∼ Fπ ∼ 1/k2

Challenging to go beyond rainbow-ladder trunction and maintain symmetries
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Light-Front Wave Functions
In equal-time quantization a hadron wave
function is a frame-dependent concept

boost operators are dynamical, that is, they
are interaction dependent

In high energy scattering experiments
particles move at near speed of light

natural to quantize a theory at equal
light-front time: τ = (t+ z)/

√
2

Light-front quantization =⇒ light-front wave functions, which have some
interesting properties

frame dependence is trivial, and yield a probability interpretation
boosts are kinematical – not dynamical

BSE wave function =⇒ light-front wave functions (LFWFs) [ψ(x,kT )]

=⇒ parton distribution amplitudes (PDAs) [ϕ(x)]

ψ(x,kT ) =

∫
dk− χBSE(p, k), ϕ(x) =

∫
d2kT ψ(x,kT )
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DSEs + Light-Front Wave Functions
On light-front hadronic states can be represented by a Fock-state expansion∣∣π+

〉
=
∣∣ud̄ 〉+

∣∣ud̄ g〉+
∣∣ud̄ gg〉+ . . .+

∣∣ud̄ qq̄〉+
∣∣ud̄ qq̄ g〉+ . . .

Associated with each Fock-state is a number of LFWFs
diagonalizing the light-cone QCD Hamiltonian operator =⇒ LFWFs
methods include: discretized lightcone quantization, basis light-front quantization,
and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

T = K + T K

BSE self-consistently sums an infinite number of Fock states
in rainbow-ladder, e.g, |π+〉 =

∣∣ud̄ 〉+
∣∣ud̄ g〉+

∣∣ud̄ gg〉+ . . .

Obtaining LFWFs from DSE solutions of the BSE has several key features
in the DSEs emergent pheonmena, such as confinement and DCSB, arise through
the infinite sum of diagrams
these effects are encoded in DSE dressed propagators and BS amplitudes, and
therefore the projected LFWFs
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Pion & Kaon
Tomography
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Pion and Kaon LFWFs
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[Chao Shi and ICC, PRL (to appear) arXiv:1806.04799 [nucl-th]]

Pion has two leading Fock-state LFWFs: ψ↑↓(x,k2
T ) & ψ↑↑(x,k

2
T )

ψ0(x,k2
T ) =

√
3 i

∫
dk+dk−

2π
TrD

[
γ+γ5 χ(k, p)

]
δ
(
k+ − x p+

)
; ψ1(x,k2

T ) = . . .

DSE result finds broad (almost) concave functions at hadronic scales, with
features at small k2

T driven by DCSB
at large k2

T find same power-law behavior as predicted by perturbative QCD
in this domain: ψ0(x,k2

T ) ∝ x(1− x)/k2
T & ψ1(x,k2

T ) ∝ x(1− x)/k4
T
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Pion and Kaon LFWFs
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[Chao Shi and ICC, PRL (to appear) arXiv:1806.04799 [nucl-th]]

Kaon has two leading Fock-state LFWFs: ψ↑↓(x,k2
T ) & ψ↑↑(x,k

2
T )

ψ0(x,k2
T ) =

√
3 i

∫
dk+dk−

2π
TrD

[
γ+γ5 χ(k, p)

]
δ
(
k+ − x p+

)
; ψ1(x,k2

T ) = . . .

Significant flavor breaking effects in kaon’s LFWFs, particularly ψ↑↑(x,k2
T )

however at large k2
T pion and kaon LFWFs have same scaling behavior

In general both pion and kaon LFWFs do not factorize in x and k2
T

Jefferson Lab Seminar 17 / 37



Pion’s T -even TMD

0
0.2

0.4
0.6

0.8 0
0.2

0.4
0.6

0.8
1

0.5

1.0

1.5

2.0

2.5

k2
T

x

f
u π
(x
,k

2 T
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0
1

2
3 0

0.2
0.4

0.6
0.8

1

0.05

0.10

0.15

0.20

0.25

k2
T x

f
u π
(x
,k

2 T
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

[Chao Shi and ICC, PRL (to appear) arXiv:1806.04799 [nucl-th]]

µ = 6 GeV

Using pion’s LFWFs straightforward to make predictions for pion TMDs

f(x,k2
T ) ∝

∣∣ψ↑↓(x,k2
T )
∣∣2 + k2

T

∣∣ψ↑↑(x,k2
T )
∣∣2

numerous features inherited from LFWFs: TMDs are broad functions as a result
of DCSB and peak at zero relative momentum (x = 1/2)
evolution from model scale (µ = 0.52 GeV) to µ = 6 GeV results in significant
broadening in

〈
k2
T

〉
, from 0.16 GeV2 to 0.69 GeV2

Need careful treatment of gauge link to study pion Boer-Mulders function
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Kaon’s T -even TMD
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Using pion’s LFWFs straightforward to make predictions for pion TMDs

f(x,k2
T ) ∝

∣∣ψ↑↓(x,k2
T )
∣∣2 + k2

T

∣∣ψ↑↑(x,k2
T )
∣∣2

numerous features inherited from LFWFs
TMDs are broad functions as a result of DCSB and with significant flavor
breaking effects

TMDs satisfy: fsK(x,k2
T ) = fuK(1− x,k2

T ); f(x,k2
T )→ x2(1− x)2/k4

T

In general both pion and kaon LFWFs do not factorize in x and k2
T
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Probing Transverse Momentum
quark polarizationleading

twist unpolarized [U] longitudinal [L] transverse [T]

n
u
c
le
o
n
p
o
la
ri
z
a
ti
o
n

T

L

U

f⊥
1T = −

Sivers

f1 =

unpolarized

g⊥
1T = −

worm gear 2

h1 = −
transversity

h⊥
1T = −

pretzelosity

g1 = −
helicity

h⊥
1L = −

worm gear 1

h⊥
1 = −

Boer-Mulders

P, S

k, s

k′, s′

ph, sh

q

γ, Z, W ±ℓ

ℓ′
θ

X

q(x, S, s)

Dh
q (z, s′, sh)

Measuring the pion/kaon TMDs will be a challenge, however progress can
be made now by studing the q → π/K TMD fragmentation functions

Fragmentation functions are particularly important and interesting
potentially fragmentation functions can shed the most light on confinement and
DCSB – because they describe how a fast moving (massless) quark or gluon
becomes a tower of hadrons

Also interesting tool with which to probe color entanglement at an EIC
over what length scales can colored correlations be observed?
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Pion and Kaon GPDs
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[Chao Shi and ICC, forthcoming publication]

Straightforward to make predictions for pion and kaon GPDs from overlaps
of LFWFs – only one type of GPD at leading twist

Hπ(x, 0, t) =

∫
dkT

[
ψ0(x, k̂T )ψ0(x,kT ) + (k̂1 + ik̂2)(k1 − ik2)ψ1(x, k̂T )ψ1(x,kT )

]
access to DGLAP region [x > ξ] only with leading Fock state

Our Fock-state expansion is in terms of dressed quarks and gluons
as the momentum transfer t increases the dressing of the quarks and gluons is
stripped away
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Pion and Kaon Impact-Parameter PDFs
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Impact parameter dependent parton distributions defined by

q(x, bT ) =

∫
d2 ∆T

(2π)2
e−i∆T ·bT H(x, 0,−∆2

T )

IPD PDFs have a probability interpretation
probability for a parton to have light-cone momentum fraction x and impact
parameter bT ; as x→ 1 must have bT → 0

q(x, b2
T ) peaks near x ' 1 and b2

T ' 0 because phase space is reduced here,
however this region contributes very little to the PDF
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q(x, bT ) =

∫
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e−i∆T ·bT H(x, 0,−∆2

T )

IPD PDFs have a probability interpretation
probability for a parton to have light-cone momentum fraction x and impact
parameter bT ; as x→ 1 must have bT → 0

q(x, b2
T ) peaks near x ' 1 and b2

T ' 0 because phase space is reduced here,
however this region contributes very little to the PDF
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DSEs + Higher Fock States

ψλ1λ2λ3 (x1,x2,k1T ,k2T )∼
∫ dk

−
1 dk

−
2

(2π)2
ū(x1P

+,k1T ,λ1)γ+χµ(k1,k2;P )γ+v(x2P
+,k2T ,λ2) ε∗µ(λ3)

From existing DSE
ingredients can project
out higher Fock states

For example,
the |qq̄ g〉 Fock state is given by

for a pion there are nine 5-dimensional LFWFs associated with |qq̄ g〉 Fock state

Key question: When is a leading Fock-state approximation reliable?

leading Fock state dominates at (very) large x and/or (very) large Q2

can generate numerous higher Fock states using e.g. DGLAP evolution – however
non-perturbative content is missing

Increasing difficult to calculate these higher Fock-state LFWFs and their
impact on observables – need to use full BSE solutions
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Pion PDAs &
Form Factors
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

fπ ϕπ(x) = Z2

∫
d4k

(2π)2
δ
(
k+ − x p+

)
Tr
[
γ+γ5 S(k) Γπ(k, p)S(k − p)

]
it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

asymptotic result is: ϕasy
π (x) = 6x (1− x); ϕ(x) =

∫
dkT ψ(x,kT )

P
D
A

P
D
A

P
D
A

PDAs enter numerous hard exclusive scattering processes

Domain of validity of such results can be explored via comparison with data
and non-perturbative calculations that maintain a connection to QCD

thereby revealing the inner workings of QCD and the strong interaction

Q2 Fπ(Q2)→ 16π f2
π αs(Q

2) Q2 Fγ∗γπ(Q2)→ 2 fπ

[Farrar, Jackson; Lepage, Brodsky; Radyushkin, Efremov]
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Pion PDA from the DSEs
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[L. Chang, ICC, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]

Both DSE results – each using a different Bethe-Salpeter kernel – exhibit a
pronounced broadening compared with the asymptotic pion PDA

scale of calculation is given by renormalization point ξ = 2 GeV

A realization of DCSB on the light-front

ERBL evolution demonstrates that the pion’s PDA remains broad & concave
for all accessible scales in current and conceivable experiments

Broading of PDA influences the Q2 evolution of the pion’s EM form factor
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Pion PDA from Lattice QCD
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typical of standard analysis

Currently, lattice QCD can determine
only one non-trivial moment e.g.

[V. M. Braun, et al., Phys. Rev. D 92, no. 1, 014504 (2015)]

scale is Q2 = 4 GeV2

Standard practice to fit first coefficient
of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
method results in a double-humped pion PDA – not supported by BSE WFs

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α(1− x)α

[
1 +

∑
n=2, 4,...

aα+1/2
n (Q2)Cα+1/2

n (2x− 1)
]

Find good agreement with DSE result

∫
dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39)
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α(1− x)α
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1 +
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]

Find good agreement with DSE result

∫
dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39)

Q2 = 4 GeV2

[ICC, et al., Phys. Rev. Lett. 111, 092001 (2013)]
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Pion PDA from Lattice QCD
Currently, lattice QCD can determine
only one non-trivial moment e.g.

[V. M. Braun, et al., Phys. Rev. D 92, no. 1, 014504 (2015)]

scale is Q2 = 4 GeV2

Standard practice to fit first coefficient
of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...
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n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
method results in a double-humped pion PDA – not supported by BSE WFs

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α(1− x)α

[
1 +

∑
n=2, 4,...

aα+1/2
n (Q2)Cα+1/2

n (2x− 1)
]

Find good agreement with DSE result

∫
dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39)

[J. H. Zhang, J. W. Chen, et al., Phys. Rev. D 95, no. 9, 094514 (2017)]

Jefferson Lab Seminar 27 / 37



Pion Elastic Form Factor

Γ Γ

[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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using DCSB-broadened PDA

using asymptotic pion PDA

forthcoming Jefferson Lab data

DSE prediction [Q2 Fπ]

The QCD prediction can be expressed as

Q2Fπ(Q2)
Q2�Λ2

QCD∼ 16π f2
π αs(Q

2) w2
π ; wπ =

1

3

∫ 1

0

dx
1

x
ϕπ(x)

Find consistency between the direct pion form factor calculation and the
QCD hard-scattering formula – if DSE pion PDA is used

15% disagreement may be explained by higher-order corrections

At an EIC preliminary studies [Garth Huber – PIEIC 2018] suggest pion
form factor can be measured to Q2 & 30 GeV2
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determined by strength of DCSB
at all accessible scales
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Form Factors and Confinement [P. T. P. Hutauruk, ICC and A. W. Thomas, PRC 94, (2016)]
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Space-like form factors: ability of a
hadron to absorb an electromagnetic
current and remain intact

Form factors must be a sensitive
measure of confinement in QCD

but what are they telling us?

Consider quark-sector kaon form
factors (with charge symmetry)

FK+(Q2) = eu F
u
K(Q2) + es F

s
K(Q2), FK0(Q2) = ed F

u
K(Q2) + es F

s
K(Q2)

Empirical radius: rK0 = −0.277± 0.018 =⇒ |ruK | > |rsK |; DSE results:

rK0 = −0.272; ruK = 0.646; rsK = −0.441

For kaon’s quark-sector form factors remarkable flavor dependence remains
s quark much harder than the u quark
confinement? If probe strikes a light u quark it is much harder for the hadron to
remain intact – compared to when an s quark is struck
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Pion PDFs
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Perturbative QCD and Pion PDFs
P
D
A

P
D
A

γ+ δ
(
x− k+

p+

)
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GRV (1999)

Aicher (2011)

J. S. Conway (1989)

Q2 = 27GeV2

Longstanding perturbative QCD prediction that pion
PDF near x = 1 behaves as: qπ(x) ' (1− x)2

From LFWF perspective expect:

qπ(x) ∼ a1(µ2) (1− x)2 + a2(µ2) (1− x)4 + . . .

even power because of Drell-Yan-Levy relation or Gribov-Lipatov reciprocity

Since large-x quarks are source of large-x gluons expect

gπ(x) ∼ b1(µ2) (1− x)3 + b2(µ2) (1− x)5 + . . . ; gπ(x) ∼ (1− x)3+γ(µ2)

Pion-induced Drell-Yan data (Conway)
and a resent analysis (Sato), also
including leading-neutron data,
find q(x) ∼ (1− x)1 near x = 1

Potential resolution to this puzzle
provided by Aicher et al.
=⇒ soft-gluon resummation
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[Barry, Sato, Melnitchouk, and Ji, Phys. Rev. Lett., 152001 (2018)]
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Pion-induced Drell-Yan data (Conway)
and a resent analysis (Sato), also
including leading-neutron data,
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DSEs + Pion PDFs
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Aicher, Schafer and Vogelsang, PRL 105 (2010)

Q2
0 = 0.4GeV2

DSE prediction [Hecht (2001); etc] that
qπ(x) ' (1− x)2 as x→ 1

related to 1/k2 dependence of BSE
kernel at large relative momentum

Until recently DSEs PDFs calculations
used Ward-Identity ansatz (WIA)

Λq(z, p, n)→ ΛWIA
q (z, p, n) = δ (1− z) nµ ∂

∂pµ
S−1
q (p)

WIA respects baryon sum rule but not
higher moments e.g. momentum sum rule
momentum is not distributed correctly
between quarks and gluons

Aicher: gπ(x) ∼ (1− x)1.3 as x→ 1

pQCD predicts: gπ(x) ∼ (1− x)3

Inconsistencies in Aicher & DSE results
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Pion PDFs – Self-Consistent DSE Calculations
To self-consistently determine hadron PDFs in
rainbow-ladder must sum all planar diagrams

q(x) ∝ Tr

∫
d4p

(2π)4
ΓM (p, P )S(p)

× Γq(x, p, n)S(p) ΓM (p, P )S(p− P )

DSEs are formulated in Euclidean space – evaluate q(x) by taking moments

The hadron dependent vertex Γq(x, p, n) satisfies an inhomogeneous BSE

However can define a hadron independent vertex Λq(x, p, n)

Γq(x, p, n) =

∫∫
dy dz δ(x− yz) δ

(
y − p · n

P · n
)

Λq(z, p, n)

Λq(x, p, n) satisfies the inhomogeneous BSE

Λq(z, p, n) = iZ2 /n δ(1− z)−
∫∫

du dw δ(z − uw)

∫
d4`

(2π)4
δ

(
w − ` · n

p · n

)
× γµKµν(p− `)S(`) Λq(u, `, n)S(`) γν
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PDFs of a Dressed Quark
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Λq(z, p, n) = i/n δ(1− z) + i/n f
q
1 (z, p2)

+ n · p
[
i/p f

q
2 (z, p2) + fq3 (z, p2)

]
Hadron independent vertex has form

the functions fqi (z, p2) can be interpreted
as unpolarized PDFs in a dressed quark
of virtuality p2

These functions are universal – appear in all
RL-DSE unpolarzied PDF calculations

Distributed support in z is immediate
indication gluons carry significant
momentum

heavier s quark support nearer z = 1

WIA =⇒ Λq(z, p, n) ∝ δ(1− z)
Renormalization condition means
dressing functions vanish when p2 = µ2
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Pion PDFs: Self-Consistent DSE Results
[K. Bednar, ICC, P. Tandy, et al., arXiv:1811.12310 [nucl-th]]

Treating gluon contributions correctly
has important impact on PDFs

mantains result: qπ(x)
x→1∼ (1− x)2

but pushes support of qπ(x) to larger x

Immediate consequence of gluon
dressing is that gluons carry 35% of
pion’s and 30% of kaon’s momentum

gluons remove strength from qπ(x) at low
to intermediate x – baryon number then
demands increased support at large x
cannot be replicated by DGLAP –
DSE splitting functions are dressed

Consistent result for uK(x)/uπ(x)

but need new data on pion and kaon
PDFs to solve puzzle of PDFs at large x
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Pion & Kaon Mass Decomposition

Ji’s pion mass
decomposition

quark energy (12%)

gluon energy (26%)

trace anomaly (12%)

quark mass (50%)

DSE Pion Result

Ji’s kaon mass
decomposition

quark energy (15%)

gluon energy (23%)

trace anomaly (12%)

quark mass (50%)

DSE Kaon Result

Mq = 3
4 (a− b)mπ, Mg = 3

4 (1− a)mπ, Mm = bmπ, Ma = 1
4 (1− b)mπ

Use the calculated DSE momentum fractions and Ji’s mass decomposition to
determine a mass budget for the pion & kaon

a = quark momentum fraction [assumes γm = 0]

b related to sigma-term or anomaly contribution: LO χPT =⇒ b = 1
2

In the covariant decomposition and interpretation

〈π |Tµµ;q,g|π〉 = Aq,gπ (0)m2
π + 4 c̄q,gπ (0)

in chiral limit expect c̄q,gπ (0) = 0; therefore
〈
m2
π

〉
q

= 65%,
〈
m2
π

〉
g

= 35%
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Conclusion [Chao Shi and ICC, PRL (to appear) arXiv:1806.04799 [nucl-th]]
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[K. Bednar, ICC, P. Tandy, et al., arXiv:1811.12310 [nucl-th]]

Using DSE solutions to the BSE we
determined the leading Fock-state
LFWFs for the pion and kaon

using these LFWFs straightforward to
determine FFs, PDFs, TMDs, GPDs, etc
key advantage of DSE method is the BSE
sums an infinite number of Fock states –
therefore LFWFs encapslate effect from
emergent phenomena: confinement & DCSB

For pion and kaon PDFs included for
first time gluons self-consistently

correct RL-DSE pion PDFs in excellent
argeement with Conway et al. data
and recent JAM analysis
agrees with x→ 1 pQCD prediction

Much work remains in experiment and
theory to understand the pion and kaon

need effort from lattice, pQCD, and models
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