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• Quarks and gluons are the fundamental d.o.f of 

QCD, yet we lack understanding on how color 

neutral and massive hadrons emerge out of 

these colored and massless quarks and gluons

• Understanding hadronization remains elusive, 

but studying it will shed light on QCD dynamics 

and hadron formation
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Transversity in DIS and novel TMD sum rules Alberto Accardi

Figure 2: Different contributions to the non
Wandzura-Wilczek part of the proton g2 structure
functions compared to the JAM15 fit of g2 � gWW

2
(solid black) [9]. The quark and jet contributions are
shown with a dotted red and a dot-dashed green line
respectively, with uncertainty bands coming form the
Pavia15 fit of the transversity function [10]. The un-
certainty in the choice mq = 5 MeV and Mq = 100
MeV is not shown. The pure twist-3 piece by Braun
et al. [11] is shown as a dashed blue line. Note that
the jet contribution is plotted down to low values of
xB, even though one would expect it to be suppressed
at xB . Q2/(M2

• +Q2).

is necessary to guarantee the relevance of the jet correlators in Fig. 1, and implies a smaller and
smaller interval of validity in xB as Q2 increases. The lower bound is only necessary to guarantee
that the integrations of J1,2 over l+ = l2/(2l�) extend far enough so that one can apply the spectral
sum rules (1.5)-(1.6) and neglect jet mass corrections. Should this condition not be satisfied in
actual experiments, jet mass corrections may be handled according to Ref. [2].

As proposed in [3], rather than directly using the diagrams in Fig. 1, it is convenient to start
from the semi-inclusive one, that has already been studied up to twist-3 level [4]. Then, integrating
over hadron momenta, summing over flavors and spins, and taking advantage of the longitudinal
sum rules derived in Section 2, one obtains
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where f q
1 , gq

1 and hq
1 are, respectively, the unpolarized, polarized, and transversity PDFs. The

vanishing of FsinfS
UT (xB) = Âh,Sh

R
dzFh,sinfS

UT (xB,z), known as Diehl-Sapeta sum rule [8], is derived
here for the first time at the correlator level. The second term in FcosfS

LT (xB), that is not suppressed
as an inverse power of Q compared to the standard gT term, was already unveiled in Ref. [3]. In a
perturbative calculation, one would obtain Mpert

q = mq and the new term would vanish.
The new transversity-dependent coupling also contributes to the more conventional g2 struc-

ture function, as can be seen by applying the methods discussed in Ref. [12]:
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where f ⇤(x)⌘� f (x)+
R 1

x dy f (y)/y, gWW
2 = g⇤1 is the Wandzura-Wilczek pure twist 2 chiral-even

term, and gtw�3
2 (xB) is a “pure twist-3” function that only depends on quark-gluon-quark matrix

elements. The novelty is the last, jet mass dependent term. This is shown in Fig. 3 to poten-
tially have a size comparable to the other terms, although in absence of theoretical calculations or
experimental determinations, we can only use a rough Mq = O(100 MeV) estimate for now [3].
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FIG. 15. Inclusive deep-inelastic scattering (left) and ⇤ production from semi-inclusive annihilation

(right) diagrams with an inclusive jet correlator ⌅ replacing unobserved perturbative quarks in the

final state. � and �h are the correlation functions that encode information on hadron structure

and hadronization, respectively. In this document, the detected hadron h is a self-polarizing ⇤

baryon.

In inclusive DIS,Mj couples to the chiral-odd leading twist transversity distribution h1(x)

of the proton target and contributes to the LT double spin asymmetry, in particular, to the

g2 structure function [77]. Comparing this to the JAM15 polarized DIS global fit indicates

Mj ⇡ 0.1 GeV at perturbative scales. Evolving this back to an initial Q0 = 0.6 GeV scale

one finds Mj0 ⇡ 0.5 GeV.

When producing a self-polarizing ⇤ hadron in the SIA of polarized electrons and positrons,

the dynamical component of the jet mass MJ couples to the chiral-odd twist-3 transversity

fragmentation function H1 :
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The jet mass can be accessed measuring the longitudinal AL electron spin asymmetry

AL =
d�
! � d�

 

d�! + d� 
, (6)

where “L” refers to the longitudinal lepton polarization. The ⇤’s longitudinal and transverse

spin contributions can be separated studying the y = P⇤ · l/P⇤ · q dependence of the

asymmetry, where l, q, and P⇤ are the four-momenta of the incoming electron, the exchanged

photon, and the ⇤ baryon respectively [193, 194]. The coe�cients A(y), C(y), D(y) can be

found in Ref. [193, 194].

Jlab Theory Cake seminar – 8 May 2019accardi@jlab.org 20

χ'odd phenomenology at large x

AA, Bacchetta, Radici, Signori,

 in progress

… and more: the door is now open... 

proton

AA, Bacchetta, PLB 2017

AA, Signori, PoS(DIS2018)

AA, Bacchetta, Melnitchouk, Schlegel, 2009

AA, Bacchetta, AA (2017)

dynamically 
generated mass

mailto:costa@jlab.org


Gauge	invariant quark	propagator

2

5. ↵ = 1 in any gauge using di↵erent order of integration ! same method will allow calculation of ⌧j

6. ⇣ = Mj +O(1/k�)
lcg
= Mj =) Gauge invariance implies O(1/k�) = 0

7. ! = µ
2
j + k

2
? + ⌧

2
j +O(1/k�) =) Gauge invariance implies O(1/k�) = 0

I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
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h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (2)
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W (0, ⇠;w, v). (4)

In the definition (2), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line, which is introduced in order to guarantee the gauge invariance of the
correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-invariant
definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator eS and the Wilson line W may furthermore
depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used as a label
reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], this convolution representation is convenient because it allows a direct and important
connection between the jet correlator and the spectral representation of the (gauge-variant) quark two-point
correlation function, that we be exploit and further studied below. The quark spectral representation has been
extensively explored in recent years since its properties and analytical structure can shed light on confinement [3–
7]. Spectral properties of gauge invariant quark correlators have also been discussed in [8]. It is finally worth
emphasizing that the jet correlator itself is gauge invariant, whereas the quark operator eS is not, and therefore
the LHS of Eq. (2) is independent of v. Building on Refs. [1, 2], we will exploit this fact to derive novel sum
rules for the quark spectral functions in Section III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will
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• Gauge invariant and fully dressed quark 
propagator

• Color averaging mimics color neutralization
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only need to consider the simpler WTMD ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the
Wcoll ⌘ W (0�, ⇠+,0?) light-cone Wilson lines

WTMD(⇠
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the
staple Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in CF factorization
theorems. With these definitions, the integrated correlator (5) can be used in perturbative calculations of
inclusive DIS and semi-inclusive electron-positron cross section [9–11] coupling, respectively, to the proton
transversity distribution and the polarized ⇤ hadron fragmentation function. In these processes, the “inclusive
jet correlator”J is used instead of the free quark propagator to describe the hadronization of a scattered quark
in the so-called end-point kinematics of the process, where the invariant mass of the final state is limited, and
the produced hadrons are kinematically constrained into a narrow – yet unobserved – jet of particles along the
quark’s direction of motion, thus earning its name.

With the strongly ordered k
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+ momentum components, one can give the inclusive jet correlator

(5) a twist decomposition controlled by the power counting scale ⇤ [2], namely,
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Notice that we did not include T-odd structures in the decomposition Eq. (??) since these are not allowed in a
fragmentation process, as argued in Ref. [2].

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (5) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (8) to the free propagator of an on-shell quark of mass m,

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (13)

Apart for a trivial rescaling factor [2], we can interpret the twist-3 coe�cient as a gauge-invariant nonper-
turbative generalization of the quark’s current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant
nonperturbative generalization of the quark;s mass shell, m2 + k2

? ! ⇤2
!.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(2),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (14)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:
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To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
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,~k?;n+) ⌘
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2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will
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only need to consider the simpler WTMD ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the
staple Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in CF factorization
theorems. With these definitions, the integrated correlator (5) can be used in perturbative calculations of
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jet correlator”J is used instead of the free quark propagator to describe the hadronization of a scattered quark
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Notice that we did not include T-odd structures in the decomposition Eq. (??) since these are not allowed in a
fragmentation process, as argued in Ref. [2].

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (5) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (9)
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (8) to the free propagator of an on-shell quark of mass m,

/k +m = k
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+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (13)

Apart for a trivial rescaling factor [2], we can interpret the twist-3 coe�cient as a gauge-invariant nonper-
turbative generalization of the quark’s current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant
nonperturbative generalization of the quark;s mass shell, m2 + k2

? ! ⇤2
!.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(2),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (14)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:
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5. ↵ = 1 in any gauge using di↵erent order of integration ! same method will allow calculation of ⌧j
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I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
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defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:
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For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:
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, p · v)/pij +

p
p2ŝ1(p
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, p · v) Iij + ŝ0(p
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, p · v)/vij , (18)

where ŝi(p2, p · v) are spectral operators that are functions of all Lorentz scalars that can be built out of the
4-vectors p and v. Owing to the rescaling invariance of v and the fact that v

2 = 0, in reality the first two
operators are only functions of p2:

ŝ3(p
2
, p · v) = ŝ3(p2),

ŝ2(p
2
, p · v) = ŝ2(p2),

and ŝ0(p2, p · v) scales as

ŝ0(p
2
, p · v) ! p

2

p · v ŝ0(p
2). (19)

Thus, the quark operator in the light-cone gauge has the restricted form (omitting the Dirac indices):

ieS(p) = ŝ3(p
2)/p+

p
p2ŝ1(p

2)I+ p
2

p · v ŝ0(p
2)/v. (20)

For later convenience, we decompose each of the operators ŝi(p2) into “physical”and “non-physical”operators:

ŝi(p
2) = �̂i(p

2)✓(p2)✓(p�) + !̂i(p
2)

⇥
1� ✓(p2)✓(p�)

⇤
, (21)

where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
and ✓(p2) guarantees that the quark field excitations vanish out of the light-cone. One can derive a spectral
representation for the quark propagator in the light-cone gauge, where each of the operators ŝi(p2) are related
to the spectral functions ⇢i(�2) by

Trc
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h⌦|ŝi(p2)|⌦i =
Z

d�
2
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⇢i(�2)

p2 � �2 + i0
✓(�2), (22)
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v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (17)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:

ieSij(p) ⌘ ieSij(p, v) = ŝ3(p
2
, p · v)/pij +

p
p2ŝ1(p

2
, p · v) Iij + ŝ0(p

2
, p · v)/vij , (18)

where ŝi(p2, p · v) are spectral operators that are functions of all Lorentz scalars that can be built out of the
4-vectors p and v. Owing to the rescaling invariance of v and the fact that v

2 = 0, in reality the first two
operators are only functions of p2:

ŝ3(p
2
, p · v) = ŝ3(p2),

ŝ2(p
2
, p · v) = ŝ2(p2),

and ŝ0(p2, p · v) scales as

ŝ0(p
2
, p · v) ! p

2

p · v ŝ0(p
2). (19)

Thus, the quark operator in the light-cone gauge has the restricted form (omitting the Dirac indices):

ieS(p) = ŝ3(p
2)/p+

p
p2ŝ1(p

2)I+ p
2

p · v ŝ0(p
2)/v. (20)

For later convenience, we decompose each of the operators ŝi(p2) into “physical”and “non-physical”operators:

ŝi(p
2) = �̂i(p

2)✓(p2)✓(p�) + !̂i(p
2)

⇥
1� ✓(p2)✓(p�)

⇤
, (21)

where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
and ✓(p2) guarantees that the quark field excitations vanish out of the light-cone. One can derive a spectral
representation for the quark propagator in the light-cone gauge, where each of the operators ŝi(p2) are related
to the spectral functions ⇢i(�2) by

Trc
Nc

h⌦|ŝi(p2)|⌦i =
Z

d�
2

(2⇡)4
⇢i(�2)

p2 � �2 + i0
✓(�2), (22)

4

[g.f.t.]. [AA: In fact, there is no g.f.t: we subsumed this into ⌧
2
j , see Section IV.)] The ✓(k�) factor

in front of the curly brackets appears because the discontinuity of the jet correlator is summing over all real
particles production processes in the final state [2], and the Mj and K

2
j factors are k independent because

of the Lorentz covariance and gauge invariance of the jet correlator ⌅, as we will also explicitly prove later.
Comparing the quark propagator (12) to the jet function (13), we can thus interpret the twist-3 coe�cient as
a gauge-invariant nonperturbative generalization of the quark’s current mass,

m ! Mj , (15)

and the twist-4 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s mass shell,

m
2 ! K

2
j . (16)

[AS: I’m not sure about the comparisons defined with the !] [AA: I fixed that by directly

comparing quark masses and jet masses. It should be clear, now.] It is worth emphasizing the Mj

and K
2
j are gauge invariant quantities, although the separation of the latter into invariant mass produced at

fragmentation and transverse broadening contribution depends on the choice of gauge.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (17)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:

ieSij(p) ⌘ ieSij(p, v) = ŝ3(p
2
, p · v)/pij +

p
p2ŝ1(p

2
, p · v) Iij + ŝ0(p

2
, p · v)/vij , (18)

where ŝi(p2, p · v) are spectral operators that are functions of all Lorentz scalars that can be built out of the
4-vectors p and v. Owing to the rescaling invariance of v and the fact that v

2 = 0, in reality the first two
operators are only functions of p2:

ŝ3(p
2
, p · v) = ŝ3(p2),

ŝ2(p
2
, p · v) = ŝ2(p2),

and ŝ0(p2, p · v) scales as

ŝ0(p
2
, p · v) ! p

2

p · v ŝ0(p
2). (19)

Thus, the quark operator in the light-cone gauge has the restricted form (omitting the Dirac indices):

ieS(p) = ŝ3(p
2)/p+

p
p2ŝ1(p

2)I+ p
2

p · v ŝ0(p
2)/v. (20)

For later convenience, we decompose each of the operators ŝi(p2) into “physical”and “non-physical”operators:

ŝi(p
2) = �̂i(p

2)✓(p2)✓(p�) + !̂i(p
2)

⇥
1� ✓(p2)✓(p�)

⇤
, (21)

where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
and ✓(p2) guarantees that the quark field excitations vanish out of the light-cone. One can derive a spectral
representation for the quark propagator in the light-cone gauge, where each of the operators ŝi(p2) are related
to the spectral functions ⇢i(�2) by

Trc
Nc

h⌦|ŝi(p2)|⌦i =
Z

d�
2

(2⇡)4
⇢i(�2)

p2 � �2 + i0
✓(�2), (22)

,,

DIS 2023costa@jlab.org

mailto:costa@jlab.org


5

and with discontinuities at p2 = �
2 that evaluates to (�2⇡i)⇢i(�2)✓(p�):

Disc
Trc
Nc

h⌦|iS̃0(p)|⌦i =
1

(2⇡)3

Z 1

0
d�

2
⇢(�2)�(p2 � �

2)✓(p�)

=
1

(2⇡)3
⇢(p2)✓(p2)✓(p�), (23)

where here ⇢(�) is a matrix in Dirac space:

⇢(p2) = ⇢3(p
2)/p+

p
p2⇢1(p

2) +
p
2

p · v ⇢0(p
2)/v. (24)

Notice that the discontinuity of the vacuum expectation value of the physical spectral operators �̂i naturally
gives the spectral functions ⇢i(p2) and the vacuum expectation value of the “non-physical”operators vanishes
!̂i:

Disc
Trc
Nc

h⌦| �̂i(p
2) |⌦i = ⇢i(p

2)/(2⇡)3, (25)

Disc
Trc
Nc

h⌦| !̂i(p
2) |⌦i = 0. (26)

Since we now have an additional spectral function ⇢0(�2) corresponding to the Dirac structure /v, this new term
can, in principle, bring new contributions to the twist-4 coe�cient !(k�,k?) in Eq. (11). On the other hand,
using the gauge invariance of the inclusive jet correlator and its projections, one can also obtain constraints on
the new spectral function. In the following, we obtain a new sum rule associated to ⇢0(�2). The starting point
is to consider the projection of the TMD jet correlator defined in Eq. (8). Take the light-cone vector defining
the light-cone gauge to be the rescaled vector v = an+, where a is some parameter. Projecting the integrated
jet correlator J onto either �� or �+ (we will denote these possibilities as �⌥) and using the form of the quark
bilinear operator iS̃(p) as given in Eq. (20), we have:

J
[�⌥] =

1

2
Disc

Z
dk

+

Z
d
4
p
Tr

Nc
h⌦|iS̃(p)fW (k � p;n+)

�
⌥

2
|⌦i

= Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|ŝ3(p2)(p · n±)fW (k � p;n+)|⌦i, (27)

where we have used that n
2
+ = 0. If now v is another lightlike vector, parametrized in terms of ~v?, such that

v = (~v2?/2v
�
, v

�
,~v?) and we follow the same procedure of tracing over �⌥, we obtain a result that di↵ers from

the previous one by an additional term that comes now from the possibility that v · n± 6= 0. Explicitly, what
one gets is that

J
[�⌥] = Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|
h
ŝ3(p

2)(p · n±) +
v · n±
v · p p

2
ŝ0(p

2)
i
fW (k � p;n+)|⌦i, (28)

and therefore, by comparing to Eq. (27), it implies that the second term on the RHS of Eq. (28) must vanish
for any light-like vector v:

!
⌥
0 (k

�) ⌘ Disc

Z
dk

+

Z
d
4
p
(v · n±)p2

v · p
Trc
Nc

h⌦|ŝ0(p2)fW (k � p;n+)|⌦i = 0. (29)

Let us make some particular choice of v. Taking v = n+, the function !
�
0 (k

�) vanishes from the beginning and
therefore it is not useful to obtain a constrain for the spectral function ⇢0, but for !

+
0 (k

�), we have

!
+
0 (k

�) = Disc

Z
dk

+

Z
d
4
p
p
2

p�
Trc
Nc

h⌦|ŝ0(p2)fW (k � p;n+)|⌦i

=
1

2
Disc

Z
dp

2

Z
dp

� p
2

(p�)2
Trc
Nc

h⌦|ŝ0(p2)
Z

dk
+

Z
d
2
p?fW (k � p;n+)

| {z }
=�(k��p�)Wcoll(⇠+)

|⌦i, (30)

where we have written the measure as d
4
p = dp

2
d
2
p?dp

�
/2p�. On the second line we wrote the Fourier

transform of the Wilson line and integrated over the conjugate momenta, obtaining a collinear Wilson line,
which following previous notation [2], we defined as Wcoll(⇠+) ⌘ W (⇠+, ⇠? = 0, ⇠� = 0). In the lightcone
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I0(p2) =
⁄

dk
+

⁄
d

2
p̨‹ÊW (k ≠ p)

=
⁄

d›
+

2fi
e

i(k≠≠p≠)›+
W (›+

, ›̨‹ = 0, ›
≠ = 0). (131)

Notice that we have left the integration over p
≠ to be performed at the end since the operator ŝ3(p2) has an implicit

dependence on p
≠. In order to deal with the Wilson line, we expand it in powers in g:

W (›+
, ›̨‹ = 0, ›

≠ = 0) = P exp≠ig
s ›+

0
d÷+A≠(÷+,0‹,0≠)

= 1 ≠ ig

⁄ ›+

0
d÷

+
A

≠(÷+
, 0‹, 0≠) + O(g2), (131)

such that

I0(p2) =
⁄

d›
+

2fi
e

i(k≠≠p≠)›+

A
1 ≠ ig

⁄ ›+

0
d÷

+
A

≠(÷+
, 0‹, 0≠) + O(g2)

B
. (132)

At this point the only thing we can do is some analysis at some limit cases of k
≠. By virtue of the Riemann-Lebesgue

lemma employ the Riemann-Lebesgue lemma to illustrate its usage which will be convenient for calculating some of
the other coe�cients. For this purpose,

We apply the RL lemma at this point to state that at large momenta k
≠ with fixed p

≠ the only non-vanishing
contribution to the Fourier transform of the Wilson line comes from the first term (which is not Lebesgue integrable)
provided terms ≥ g and higher orders are each individually integrable in R,

⁄

R
d›

+ --f1(›+)
-- < Œ,

...⁄

R
d›

+ --fn(›+)
-- < Œ, (131)

where f1(›+) = ≠ig
s ›+

0 d÷
+

A
≠(÷+

, 0‹, 0≠) at order g, for instance. The implicit assumption we are making here in
order to apply the RL lemma is that the gauge fields vanish at ±Œ, A

≠(±Œ+
, 0‹, 0, 0≠) = 0. In this case, Eq. (131)

becomes a ”(k≠ ≠ p
≠) and we obtain the result:

J
[/n≠] = 1

2

⁄
dp

2
p

2
⁄

dp
≠ 1

(p≠)2 DiscTrc
Nc

È�|ŝ0(p2)|�Í
¸ ˚˙ ˝
(2fi)≠3fl0(p2)◊(p2)◊(p≠)

”(k≠ ≠ p
≠)

= 1
2(2fi)3

◊(k≠)
(k≠)2

⁄
dp

2
p

2
fl0(p2)◊(p2) = 0.

DiscTrc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)3

⁄ Œ

0
d‡

2
fl(‡2)”(p2 ≠ ‡

2)◊(p0)

DiscTrc
Nc

È�|iS̃(p)|�Í = 1
(2fi)3 fl(p2)◊(p2)◊(p≠), (129)

[1] A. Accardi and A. Signori, Eur. Phys. J. C 80, 825 (2020), arXiv:2005.11310 [hep-ph].

2

Getting back to the definition of the TMD jet correlator in Eq. (5), the projection of J onto a general Dirac structure
� is defined to be

J
[�] ©

5
J

�
2

6
= 1

2

⁄
dk

+Tr
5
��

2

6
. (10)

We are interested in the –(k≠) and ’(k≠) coe�cients of the twist-2 and twist-3 structures:

J
[“≠] = 1

4

⁄
dk

+4A3k
≠ = 1

2

⁄
dk

2
A3(k2

, k
≠) © –(k≠), (11)

J
[1] = �

2k≠

⁄
dk

2
A1(k2

, k
≠) © �

k≠ ’(k≠). (12)

Before proceeding to the evaluation of the –(k≠) and ’(k≠) coe�cients, we define a time-ordered version of the jet
correlator which we denote by �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d›

(2fi)4 e
ik·› Trc

Nc
È�|T

)
Âi(›)Â̄j(0)

*
W (0, ›; n+)|�Í, (13)

where the time-ordering operator acts only on the quark fields. Similarly to Eq. (2), we can obtain the convolution
representation for �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|iS̃Õ
ij(p)W̃ (k ≠ p; n+)|�Í, (14)

where now

iS̃
Õ
ij(p) =

⁄
d

4
›

(2fi)4 e
i›·p

T
)

Âi(›)Â̄j(0)
*

. (15)

This definition is convenient because it will allow a direct connection between the jet correlator and the spectral
representation of the quark propagator. In addition to Lorentz invariance, when parity is a good quantum number,
the operator S̃

Õ
ij can be written as

iS̃ij(p) = ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij (16)

such that

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|
Ë
ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij

È
W̃ (k ≠ p; n+)|�Í, (17)

The vacuum expectation value of iS̃
Õ
ij leads to a direct connection with the quark propagator spectral representation,

Trc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)4

⁄ Œ

0
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (18)

Trc
Nc

È�|iS̃(p)|�Í = 1
(2fi)4

⁄ Œ

≠Œ
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (19)

where

fl(‡2) = fl3(‡2)/p +


p2fl1(‡2) + /n

n · p
fl0(‡2), (20)

with fl3(‡2) and fl1(‡2) being the quark propagator spectral functions. From Eq. (19) one can see that the vacuum
expectation value of iS̃Õ(p) has a discontinuity at p

2 = ‡
2 given by (≠2fii)flij(‡2). Therefore, the discontinuity of

Eq. (19) gives

DiscTrc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)3

⁄ Œ

0
d‡

2
fl(‡2)”(p2 ≠ ‡

2)◊(p0)

= 1
(2fi)3 fl(p2)◊(p2)◊(p0), (21)

Light-cone spectral representation
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• Boost quark at large light-cone momentum:

Integrated g.i. quark	propagator

Integrate out the supressed
component of the quark 
momentum:

2

5. ↵ = 1 in any gauge using di↵erent order of integration ! same method will allow calculation of ⌧j

6. ⇣ = Mj +O(1/k�)
lcg
= Mj =) Gauge invariance implies O(1/k�) = 0

7. ! = µ
2
j + k

2
? + ⌧

2
j +O(1/k�) =) Gauge invariance implies O(1/k�) = 0

I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (2)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) ̄j(0), (3)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (4)

In the definition (2), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line, which is introduced in order to guarantee the gauge invariance of the
correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-invariant
definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator eS and the Wilson line W may furthermore
depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used as a label
reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], this convolution representation is convenient because it allows a direct and important
connection between the jet correlator and the spectral representation of the (gauge-variant) quark two-point
correlation function, that we be exploit and further studied below. The quark spectral representation has been
extensively explored in recent years since its properties and analytical structure can shed light on confinement [3–
7]. Spectral properties of gauge invariant quark correlators have also been discussed in [8]. It is finally worth
emphasizing that the jet correlator itself is gauge invariant, whereas the quark operator eS is not, and therefore
the LHS of Eq. (2) is independent of v. Building on Refs. [1, 2], we will exploit this fact to derive novel sum
rules for the quark spectral functions in Section III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will
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I0(p2) =
⁄

dk
+

⁄
d

2
p̨‹ÊW (k ≠ p)

=
⁄

d›
+

2fi
e

i(k≠≠p≠)›+
W (›+

, ›̨‹ = 0, ›
≠ = 0). (131)

Notice that we have left the integration over p
≠ to be performed at the end since the operator ŝ3(p2) has an implicit

dependence on p
≠. In order to deal with the Wilson line, we expand it in powers in g:

W (›+
, ›̨‹ = 0, ›

≠ = 0) = P exp≠ig
s ›+

0
d÷+A≠(÷+,0‹,0≠)

= 1 ≠ ig

⁄ ›+

0
d÷

+
A

≠(÷+
, 0‹, 0≠) + O(g2), (131)

such that

I0(p2) =
⁄

d›
+

2fi
e

i(k≠≠p≠)›+

A
1 ≠ ig

⁄ ›+

0
d÷

+
A

≠(÷+
, 0‹, 0≠) + O(g2)

B
. (132)

At this point the only thing we can do is some analysis at some limit cases of k
≠. By virtue of the Riemann-Lebesgue

lemma employ the Riemann-Lebesgue lemma to illustrate its usage which will be convenient for calculating some of
the other coe�cients. For this purpose,

We apply the RL lemma at this point to state that at large momenta k
≠ with fixed p

≠ the only non-vanishing
contribution to the Fourier transform of the Wilson line comes from the first term (which is not Lebesgue integrable)
provided terms ≥ g and higher orders are each individually integrable in R,

⁄

R
d›

+ --f1(›+)
-- < Œ,

...⁄

R
d›

+ --fn(›+)
-- < Œ, (131)

where f1(›+) = ≠ig
s ›+

0 d÷
+

A
≠(÷+

, 0‹, 0≠) at order g, for instance. The implicit assumption we are making here in
order to apply the RL lemma is that the gauge fields vanish at ±Œ, A

≠(±Œ+
, 0‹, 0, 0≠) = 0. In this case, Eq. (131)

becomes a ”(k≠ ≠ p
≠) and we obtain the result:

J
[/n≠] = 1

2

⁄
dp

2
p

2
⁄

dp
≠ 1

(p≠)2 DiscTrc
Nc

È�|ŝ0(p2)|�Í
¸ ˚˙ ˝
(2fi)≠3fl0(p2)◊(p2)◊(p≠)

”(k≠ ≠ p
≠)

= 1
2(2fi)3

◊(k≠)
(k≠)2

⁄
dp

2
p

2
fl0(p2)◊(p2) = 0.

DiscTrc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)3

⁄ Œ

0
d‡

2
fl(‡2)”(p2 ≠ ‡

2)◊(p0)

DiscTrc
Nc

È�|iS̃(p)|�Í = 1
(2fi)3 fl(p2)◊(p2)◊(p≠), (129)

k
≠ ∫ |k‹| ∫ k

+
, k‹ ≥ O(�) and k

+
, k

2 ≥ O(�2).

[1] A. Accardi and A. Signori, Eur. Phys. J. C 80, 825 (2020), arXiv:2005.11310 [hep-ph].

𝑤 = 𝑛!
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I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

[AS: defined the acronym TMD, DIS]

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (1)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) j(0), (2)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (3)

In the definition (1), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line [1, 2], which is introduced in order to guarantee the gauge invariance
of the correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-
invariant definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator ieS and the Wilson line fW may
furthermore depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used
as a label reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], the convolution representation in Eq. (1) is convenient because it allows a direct and
important connection between the jet correlator and the spectral representation of the ([AS: gaude-dependent
?] gauge-variant) quark two-point correlation function, that will be exploited and further studied below. The
quark spectral representation has been extensively explored in recent years since its properties and analytical
structure can shed light on confinement [3–7]. Spectral properties of gauge invariant quark correlators have also
been discussed in [8]. It is finally worth emphasizing that the jet correlator itself is gauge invariant, whereas
the quark operator ieS is not, and therefore the LHS of Eq. (1) is independent of v. Building on Refs. [1, 2], we
will exploit this fact to derive novel sum rules for the quark spectral functions in Sec. III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} [AS: (nperp bold or not?)] satisfying the Euclidean normalization condition n
2
?,i = �1.

We then represent a generic 4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a · n± and
a? = a · n?. We then boost the quark to large momentum in the light-cone minus direction – so that its
components satisfy k

� � |~k2?| � k
+ with |~k2?| ⇠ O(⇤) and k

+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting
scale of order of the nonperturbative QCD scale ⇤QCD – and consider the gauge-invariant correlator integrated
over the subdominant k+ component of the quark momentum [1, 2]:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;w = n+), (4)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [AS: (why “aligned along...”? This is not a collimated spray
of particles, but a fully inclusive jet, namely something that encompasses all the hadronization
products of the quarks, namely those aligned and those not aligned with the quark momentum)].
Note that, in the definition of the “inclusive jet correlator” J , we follow Ref. [2] and choose the Wilson line
to lie in the plus light-cone w = n+ direction. The full shape of the considered Wilson line is discussed in
detail in the mentioned reference, but only its projection on the light-cone plus axis and the transverse plane
matter in the calculations to be performed in this paper. Namely we will only need to consider the simpler
WTMD(⇠+, ⇠?) ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the Wcoll(⇠+) ⌘ W (0�, ⇠+,0?)
light-cone Wilson lines, defined as

WTMD(⇠
+
, ⇠?) = Un+ [0

�
, 0+,0?; 0�,1+

,0?]Un? [0�,1+
,0?; 0�,1+

, ⇠?]Un+ [0
�
,1+

, ⇠?; 0�, ⇠+, ⇠?] (5)

Wcoll(⇠
+) = Un+ [0

�
, 0+,0?; 0�, ⇠+,0?] , (6)

2

I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

[AS: defined the acronym TMD, DIS]

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (1)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) j(0), (2)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (3)

In the definition (1), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line [1, 2], which is introduced in order to guarantee the gauge invariance
of the correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-
invariant definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator ieS and the Wilson line fW may
furthermore depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used
as a label reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], the convolution representation in Eq. (1) is convenient because it allows a direct and
important connection between the jet correlator and the spectral representation of the ([AS: gaude-dependent
?] gauge-variant) quark two-point correlation function, that will be exploited and further studied below. The
quark spectral representation has been extensively explored in recent years since its properties and analytical
structure can shed light on confinement [3–7]. Spectral properties of gauge invariant quark correlators have also
been discussed in [8]. It is finally worth emphasizing that the jet correlator itself is gauge invariant, whereas
the quark operator ieS is not, and therefore the LHS of Eq. (1) is independent of v. Building on Refs. [1, 2], we
will exploit this fact to derive novel sum rules for the quark spectral functions in Sec. III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} [AS: (nperp bold or not?)] satisfying the Euclidean normalization condition n
2
?,i = �1.

We then represent a generic 4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a · n± and
a? = a · n?. We then boost the quark to large momentum in the light-cone minus direction – so that its
components satisfy k

� � |~k2?| � k
+ with |~k2?| ⇠ O(⇤) and k

+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting
scale of order of the nonperturbative QCD scale ⇤QCD – and consider the gauge-invariant correlator integrated
over the subdominant k+ component of the quark momentum [1, 2]:

Jij(k
�
, ~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;w = n+), (4)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [AS: (why “aligned along...”? This is not a collimated spray
of particles, but a fully inclusive jet, namely something that encompasses all the hadronization
products of the quarks, namely those aligned and those not aligned with the quark momentum)].
Note that, in the definition of the “inclusive jet correlator” J , we follow Ref. [2] and choose the Wilson line
to lie in the plus light-cone w = n+ direction. The full shape of the considered Wilson line is discussed in
detail in the mentioned reference, but only its projection on the light-cone plus axis and the transverse plane
matter in the calculations to be performed in this paper. Namely we will only need to consider the simpler
WTMD(⇠+, ⇠?) ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the Wcoll(⇠+) ⌘ W (0�, ⇠+,0?)
light-cone Wilson lines, defined as

WTMD(⇠
+
, ⇠?) = Un+ [0

�
, 0+,0?; 0�,1+

,0?]Un? [0�,1+
,0?; 0�,1+

, ⇠?]Un+ [0
�
,1+

, ⇠?; 0�, ⇠+, ⇠?] (5)

Wcoll(⇠
+) = Un+ [0

�
, 0+,0?; 0�, ⇠+,0?] , (6)

DIS 2023

• Generalizes the perturbative quark propagator that appears in in
Inclusive and semi-inclusive DIS

costa@jlab.org

38

V. DYNAMICAL MASS GENERATION STUDIES

The proposed upgrade of SuperKEKB to include polarized beam with a polarization of up

to 70% [190], opens up additional possibilities in the study of QCD. Investigating dynamical

mass generation is one exciting possibility, which will be further explored in this section. Due

to color confinement, the quarks created in hard collisions cannot appear as on-shell particles

in the final state, but rather decay into a jet of hadrons whose mass is dynamically generated.

The details of the quark-to-hadron transition are still unknown. As proposed in Ref. [78,

191], dynamical mass generation can be studied even without observing the produced

hadrons, by analyzing the chiral-odd component of the (color averaged) gauge-invariant

quark correlator ⌅ij(k) = N
�1
c

Trc Disc
R

d
4
⇠

(2⇡)4 e
ik·⇠ h⌦| i(⇠) j

(0)W (0, ⇠;n+)|⌦i, where |⌦i is

the nonperturbative QCD vacuum,  i is the quark field, W a Wilson line. This correlator

describes the nonperturbative propagation and hadronization of a quark [78, 191]. When

integrated over the subdominant quark momentum component k
+, the resulting inclusive

jet correlator

Jij(k
�
,~kT ) ⌘

1

2

Z
dk

+ ⌅ij(k)

=
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /k

T
+MjI+

K
2
j
+ ~k

2
T

2k� �
�
�

(3)

generalizes the perturbative quark propagator contributing to particle production in lepton-

nucleus DIS scattering at large Bjorken x values [77, 192], as well as in the semi-inclusive

annihilation (SIA) of electrons and positrons, see Fig. 15. Note that in Eq. (3) we assume

that k� ⇠ Q � | ~kT | � k
+, with the hard scale Q of the process providing one with a “twist”

expansion of the jet correlator. The twist-4 K
2
j
coe�cient quantifies the invariant mass of

the unobserved quark hadronization products. The twist-3 Mj = mq + m
dyn

q
coe�cient –

also called “jet mass” – quantifies the mass acquired by the quark during its hadronization,

and is composed of the explicit current quark mass term mq and a dynamically generated

term m
dyn

q
. Crucially, the jet mass can be calculated as the integral of the quark’s chiral-odd

spectral function ⇢1:

Mj =

Z 1

0

dµ
2
p
µ2 ⇢1(µ

2) (4)

where the sum runs over the flavor and spin of the hadrons produced with mass Mh.
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:
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Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by
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one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
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+ + /k? +mI+ m
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. (12)

and
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with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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• Based solely on the gauge invariance o J, we can obtain
a new sum rule for the “light-cone spectral function”:

Spectral sum	rule

5

the new spectral function. In the following, we obtain a new sum rule associated to ⇢0(�2). The starting point
is to consider the projection of the TMD jet correlator defined in Eq. (8). Take the light-cone vector defining
the light-cone gauge to be the rescaled vector v = an+, where a is some parameter. Projecting the integrated
jet correlator J onto either �� or �+ (we will denote these possibilities as �⌥) and using the form of the quark
bilinear operator iS̃(p) as given in Eq. (18), we have:
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where we have used that n
2
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�
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�
,~v?) and we follow the same procedure of tracing over �⌥, we obtain a result that di↵ers from
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and therefore, by comparing to Eq. (25), it implies that the second term on the RHS of Eq. (26) must vanish
for any light-like vector v:
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Let us make some particular choice of v. Taking v = n+, the function !
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where we have written the measure as d
4
p = dp

2
d
2p?dp

�
/2p�. On the second line we wrote the Fourier

transform of the Wilson line and integrated over the conjugate momenta, obtaining a collinear Wilson line,
which following previous notation [2], we defined as Wcoll(⇠+) ⌘ W (⇠+, ⇠? = 0, ⇠� = 0). In the lightcone
gauge the Wilson line reduces to unity, Wcoll(⇠+) = 1. Using the decomposition of the operator ŝ0 in terms of
the operators �̂ and !̂ given in Eq. (19) and noticing that the operator !̂ does not contribute when taking the
discontinuity of its vacuum expectation value, we find
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Therefore, we obtain a new sum rule for the ⇢0(p2) quark spectral function
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0
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2
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2
⇢0(p

2) = 0. (30)

Notice that this projection would in principle have contributed to the twist 4 coe�cient ! ⇠ J
[�+] calculated

in the light-cone gauge. However, we have just shown that this is not the case and that it leads to a novel sum
rule for the quark propagator spectral function.

[CC: I changed the notation from ↵
±
0 ! !

±
0 because it makes more sense since !

+
0 would have

contributed to the twist-4 ! coe�cient]

• Rules out the contribution that would in principle be 
present at twist-4 due to

4

defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (15)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:
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where ŝi(p2, p · v) are spectral operators that are functions of all Lorentz scalars that can be built out of the
4-vectors p and v. Owing to the rescaling invariance of v and the fact that v

2 = 0, in reality teh first two
operators are only functions of p2:
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ŝ2(p
2
, p · v) = ŝ2(p2),
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Thus, the quark operator in the light-cone gauge has the restricted form (omitting the Dirac indices):
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For later convenience, we decompose each of the operators ŝi(p2) into “physical”and “non-physical”operators:
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⇤
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where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
and ✓(p2) guarantees that the quark field excitations vanish out of the light-cone. One can derive a spectral
representation for the quark propagator in the light-cone gauge, where each of the operators ŝi(p2) are related
to the spectral functions ⇢i(�2) by
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✓(�2), (20)

and with discontinuities at p2 = �
2 that evaluates to (�2⇡i)⇢i(�2)✓(p�):
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where here ⇢(�) is a matrix in Dirac space:

⇢(p2) = ⇢3(p
2)/p+

p
p2⇢1(p

2) +
p
2

p · v ⇢0(p
2)/v. (22)

Notice that the discontinuity of the vacuum expectation value of the physical spectral operators �̂i naturally
gives the spectral functions ⇢i(p2) and the vacuum expectation value of the “non-physical”operators vanishes
!̂i:

Disc
Trc
Nc

h⌦| �̂i(p
2) |⌦i = ⇢i(p

2)/(2⇡)3, (23)

Disc
Trc
Nc

h⌦| !̂i(p
2) |⌦i = 0. (24)

Since we now have an additional spectral function ⇢0(�2) corresponding to the Dirac structure /v, this new term
can, in principle, bring new contributions to the twist-4 coe�cient !(k�,k?) in Eq. (11). On the other hand,
using the gauge invariance of the inclusive jet correlator and its projections, one can also obtain constraints on
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Integrated g.i. quark	propagator

3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:
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. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by
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one finds:
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]
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with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:
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Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]
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with the “jet virtuality”
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2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2
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+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:
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Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]
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receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2
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III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence

Average mass of all the 
hadronization products 
produced during the 
fragmentation of a quark 

DIS 2023costa@jlab.org

mailto:costa@jlab.org


Integrated g.i. quark	propagator

3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)
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where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function
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R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:
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0
dp
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where J3(k�) has been defined to be:
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Z
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+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
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and
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where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain
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" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains
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|⌦i ✓(k�). (48)
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⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)
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where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function

hP
�
1
x

�
,�(x)i =

R1
�1 dxP

�
1
x

�
�(x) = lim✏!0+

R
R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)J3(k

�)|⌦i, (39)

where J3(k�) has been defined to be:

J3(k
�) = k

�
Z 1

0

dp
�

p�

Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
�) = I2(k

�) = ✓(k�) (41)

and

⇣(k�) =
1

2⇤

Z 1

0
dp

2
p
p2

=⇢1(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂1(p
2) |⌦i ✓(k�) = ✓(k�)

2⇤(2⇡)3
Mj , (42)

where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain

J3(k
�) = ✓(k�)

" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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In the light-cone gauge, we recover the result stated in Eqs. (41) and (42). Let us look at the result of the
coe�cient Eq. (39) in the general case. Using the explicit form of the Wilson line and expanding it powers of
g, one obtains

⇣(k�) = Mj ✓(k
�) +

g

k�

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)A�(0)|⌦i✓(k�) +O

�
(g/k�)2

�
. (49)

Compare this to the light-cone gauge result given in Eq. (42) and note that the integrand (apart from ✓(k�)) in
the second term and higher orders in (g/k�)2 on the LHS cannot bring any additional dependence on k

� that
could possibly cancel the factors of (1/k�)n, for n > 0. Since ⇣(k�) is gauge invariant and therefore must agree
in di↵erent choices of gauges, one concludes that all these terms vanish with the exception of the first one.

C. Twist four projection

We now proceed to the calculation of the ! coe�cient defined by Eq. (11) and whose nonvanishing contribution
in any gauge is given by

!(k�,k2
?) =

✓
k
�

⇤

◆2

Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|�̂3(p
2)
p
2 + p2

?
2p�

fW (k � p;n+)|⌦i, (50)

where we have written p · n+ = (p2 + p2
?)/2p

�. The integration over k
+ simply sets the conjugate space

coordinate to zero, ⇠� = 0, in the partial Fourier transform of the Wilson line. The first term can be further
integrated over the transverse momentum, which sets ⇠? = 0 in the Wilson line and simplifies the calculation in
the light-cone gauge. The calculation of this term in other gauge is more complicated but it can be performed
by following the same strategy employed in the calculation of the twist 2 and twist 3 coe�cients. The second
term is more elaborated due to the presence of p2

? which prevents the direct integration over the transverse
momentum that would allow to set ⇠? = 0 in the Wilson line, turning it into a collinear Wilson line, which in
the light-cone gauge becomes unity in color space. We thus write Eq.(50) as a sum of two terms:

!(k�,k2
?) = !`(k

�) + !t(k
�
,k2

?), (51)

where !` and !t are, respectively, the transverse-momentum-independent (”longitudinal”) and transverse-
momentum dependent components of the twist 4 coe�cient:

!`(k
�) =

1

(2⇤)2

Z 1

0
dp

2
p
2 Disc

Trc
Nc

h⌦|�̂3(p
2)J`(k

�)|⌦i, (52)

!t(k
�
,k2

?) =
1

(2⇤)2

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|�̂3(p
2)Jt(k

�
,k?)|⌦i, (53)

where

J`(k
�) =

Z 1

0
dp

�
✓
k
�

p�

◆2 Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+), (54)

Jt(k
�
,k?) =

Z 1

0
dp

�
✓
k�
p�

◆2 Z
d
2p?

Z
d
2
⇠?

(2⇡)2
p2
? e

i⇠?·(k?�p?)fW (k� � p
�
, ⇠?, ⇠

� = 0;n+). (55)

In the light-cone gauge, the calculation of the longitudinal term is is straightforward and leads to

J
lcg
` (k�) = ✓(k�)

!
lcg
` (k�) =

1

(2⇤)2

Z 1

0
dp

2
p
2

=⇢3(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂3(p
2) |⌦i ✓(k�) = ✓(k�)

(2⇤)2(2⇡)3
(µ2

j )
lcg

, (56)

where

(µ2
j )

lcg ⌘
Z 1

0
dp

2
p
2
⇢
lcg
3 (p2) (57)

is interpreted as the average invariant mass squared of the particles produced by the quark fragmentation. The
calculation of the transverse Jt operator in Eq. (55) is more involved. First, we notice that

p2
?e

i⇠?(k?�p?) =
⇥
(i@?)2 + k2

? + 2 ik? · @?
⇤
e
i⇠?(k?�p?)

. (58)
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where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function

hP
�
1
x

�
, �(x)i =

R1
�1 dxP

�
1
x

�
�(x) = lim✏!0+

R
R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)J3(k

�)|⌦i, (39)

where J3(k�) has been defined to be:

J3(k
�) = k

�
Z 1

0

dp
�

p�

Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
�) = I2(k

�) = ✓(k�) (41)

and

⇣(k�) =
1

2⇤

Z 1

0
dp

2
p
p2

=⇢1(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂1(p
2) |⌦i ✓(k�) = ✓(k�)

2⇤(2⇡)3
Mj , (42)

where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain

J3(k
�) = ✓(k�)

" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence

10

where D? = @? � igA? is the transverse gauge-covariant derivative and G
?� is the field strength tensor.

Notice that in the light-cone gauge G
?� = �@

�A?, and the second term reduces to the transverse covariant
derivative of the transverse gauge fields evaluated at the boundaries. The transverse fields evaluated at the
origin cancels the term in the first line and the remaining transverse fields at light-cone infinity vanishes by
imposing advanced boundary conditions. We argued before that this term would vanish in the ligh-cone gauge
and now we can see in a clear way. Plugging this result back in Eq. (63) and adding the longitudinal part of
the ! projection, we find for the full ! projection in a generic gauge:

!(k�,k?) =
✓(k�)

(2⇤)2(2⇡)3
�
K

2
j + k2

?
�
, (66)

where

K
2
j = µ

2
j + ⌧

2
j (67)

is the jet virtuality, with ⌧j given by

⌧
2
j = (2⇡)3

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|�̂3(p
2)igD?

�
A?(⇠?) + Z?(⇠?)

�
⇠?=0

|⌦i,

(68)

with

Z?(⇠?) =

Z 1+

0
ds

+D?

✓
Un+ [0

�
, 0+, ⇠?; 0�, s+, ⇠?]G?�(0�, s+, ⇠?)Un+ [0�, s+, ⇠?; 0�,1+

, ⇠?]

◆
|⌦i (69)

V. CONCLUSIONS

Appendix A: Useful relations

Let’s see if we need appendices for something necessary but too specific to keep it in the body of the document.

Jt(k
�) =

Z
dy

2⇡
zk�(y) eiy W (y/k�), (A1)

where zk�(y) has been defined as

zk�(y) ⌘
Z 1

0

d�

�2
e
�iy�sign(k�)

. (A2)

The derivative of zk�(y) and the function vk�(y) defined in Eq. (45) are related by:

z
0
k�(y) = �i sign(k�) vk�(y). (A3)
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where D? = @? � igA? is the transverse gauge-covariant derivative and G
?� is the field strength tensor.

Notice that in the light-cone gauge G
?� = �@

�A?, and the second term reduces to the transverse covariant
derivative of the transverse gauge fields evaluated at the boundaries. The transverse fields evaluated at the
origin cancels the term in the first line and the remaining transverse fields at light-cone infinity vanishes by
imposing advanced boundary conditions. We argued before that this term would vanish in the ligh-cone gauge
and now we can see in a clear way. Plugging this result back in Eq. (63) and adding the longitudinal part of
the ! projection, we find for the full ! projection in a generic gauge:

!(k�,k?) =
✓(k�)

(2⇤)2(2⇡)3
�
K

2
j + k2

?
�
, (66)

where

K
2
j = µ

2
j + ⌧

2
j (67)

is the jet virtuality, with ⌧j given by

⌧
2
j = (2⇡)3

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|�̂3(p
2)igD?

�
A?(⇠?) + Z?(⇠?)

�
⇠?=0

|⌦i,

(68)

with

Z?(⇠?) =

Z 1+

0
ds

+D?

✓
Un+ [0

�
, 0+, ⇠?; 0�, s+, ⇠?]G?�(0�, s+, ⇠?)Un+ [0�, s+, ⇠?; 0�,1+

, ⇠?]

◆
|⌦i (69)

V. CONCLUSIONS

Appendix A: Useful relations

Let’s see if we need appendices for something necessary but too specific to keep it in the body of the document.

Jt(k
�) =

Z
dy

2⇡
zk�(y) eiy W (y/k�), (A1)

where zk�(y) has been defined as

zk�(y) ⌘
Z 1

0

d�

�2
e
�iy�sign(k�)

. (A2)

The derivative of zk�(y) and the function vk�(y) defined in Eq. (45) are related by:

z
0
k�(y) = �i sign(k�) vk�(y). (A3)

Final state interactions
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• 𝑀% provides a gauge invariant generalization of the gauge 
dependent dressed quark mass

• Non-vanishing even in the chiral limit

• Provides a direct way to probe dynamical mass generation

• Not only of theoretical interest..

• It’s calculable, but moreover.. It can be measured!
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H
⇤
1 (z), and the higher twist G⇤

T (z) fragmentation function [51] one obtains:

AL(y,Q) = ±

⇣
�e

C(y)

2A(y)

⌘

| {z }
A1

L(y)

�⇤ ±

⇣
2�e

Mj(Q)

Q

D(y)

A(y)

⌘

| {z }
Acos�

L (y,Q)

|ST⇤| cos(�) , (14)

where �e and �⇤ are the electron’s and ⇤ hadron’s helicities, respectively, ST⇤ is the transverse spin
vector of the detected ⇤ hadron (see the “Opportunities for precision QCD physics in hadronization
at Belle II” Snowmass 2022 contribution for details [52]). The ± signs in Eq. (14) refer to the case
where the polarized leading twist fragmentation functions G

⇤
1 (z), H

⇤
1 (z) saturate the respective

positivity bounds with a plus or a minus sign [51]. The configuration with the plus (minus) sign
corresponds to the solid blue (dashed red) curves in Fig. 13.

The jet mass Mj can then be extracted from the Fourier coe�cient Acos�
L . With the expected

70% beam polarization at the polarized SuperKEKB upgrade, this is found to be of O(1%), reaching
a maximum at y = 0.5. At the same value of y the constant modulation A

1
L displays a node. This

specific value allows one to separate the two modulations A1
L and A

cos�
L , related to the longitudinal

and transverse polarization of the detected ⇤ hadron respectively. The blue band in Fig. 13 displays
the sensitivity of this observable to a 20% variation in the jet mass at the non-perturbative scale,
Mj0 = 0.4� 0.6 GeV.

Figure 13: The Fourier components A1
L(y) and A

cos�
L (y,Q) of the longitudinal electron spin asym-

metry as a function of y at the SuperKEKB nominal energy Q = 10.58 GeV. The band in the cos�
modulation indicates the sensitivity of the measurement to ±20% variation in the jet mass at the
initial scale. The rightmost panel shows the A

cos�
L modulation as a function of Q at fixed y = 0.5,

along with its 20% sensitivity to Mj, which also slightly increases at lower energies due to QCD
evolution.

In summary, the A
cos�
L modulation of the beam spin asymmetry AL in Eqs. (13), (14) for pro-

duction of a ⇤ hadron in polarized e
+
e
� annihilation provides access to the dynamical component of

the jet mass, allowing one to experimentally measure the contribution of the non-perturbative QCD
dynamics at play in the hadronization mechanism. If the positivity bounds for the polarized frag-
mentation functions turn out not to be saturated, the signal may drop below the O(1%) estimated
in Fig. 13. However, being a twist three e↵ect suppressed as ⇠ 1/Q, the signal and its sensitivity to
Mj can increase significantly at lower center of mass energies, as displayed in the right-most panel
of Fig. 13. Similar measurements with di-hadron production instead of a self-polarizing ⇤ baryon
are also under consideration.
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