Spectral analysis of the gauge invariant quark propagator

Caroline S. R. Costa

2023, Sept 14th

Based on: arXiv 2307.10152
In collaboration with:
Alberto Accardi (Jlab)
Andrea Signori (Università degli Studi di Torino)

Introduction

Gauge invariant quark propagator

Outline
Quark propagator spectral representation

Conclusions
\square Confinement: Quarks
and gluons are not
asymptotic states of
QCD: are confined
inside hadrons
\square Confinement: Quarks
and gluons are not
asymptotic states of
QCD: are confined
inside hadrons
\square DCSB: Mass
generation
\square Confinement: Quarks
and gluons are not
asymptotic states of
QCD: are confined
inside hadrons
\square DCSB: Mass
generation
\square These QCD features are intimately related to hadronization
\square How color neutral and massive hadron emerge out of colored and massless quarks and gluons?
\square Confinement: Quarks and gluons are not asymptotic states of QCD: are confined inside hadrons
\square DCSB: Mass generation

Nonperturbative: Gauge invariant quark propagator/jet correlator

\square These QCD features are intimately related to hadronization
\square How color neutral and massive hadron emerge out of colored and massless quarks and gluons?

Gauge invariant quark propagator

$$
\Xi_{i j}(k ; w)=\operatorname{Disc} \int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{\mathrm{i} k \cdot \xi} \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega|\left[\mathcal{T} W_{1}(\infty, \xi ; w) \psi_{i}(\xi)\right]\left[\overline{\mathcal{T}} \bar{\psi}_{j}(0) W_{2}(0, \infty ; w)\right]|\Omega\rangle
$$

Gauge invariant quark propagator

$$
\Xi_{i j}(k ; w)=\operatorname{Disc} \int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{\mathrm{i} k \cdot \xi} \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega|\left[\mathcal{T} W_{1}(\infty, \xi ; w) \psi_{i}(\xi)\right]\left[\overline{\mathcal{T}} \bar{\psi}_{j}(0) W_{2}(0, \infty ; w)\right]|\Omega\rangle
$$

\square Hadronization of a quark into an unobserved jet of particles (fully inclusive)

$q \rightarrow X$ amplitude

Gauge invariant quark propagator

$$
\Xi_{i j}(k ; w)=\operatorname{Disc} \int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{\mathrm{i} k \cdot \xi} \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega|\left[\mathcal{T} W_{1}(\infty, \xi ; w) \psi_{i}(\xi)\right]\left[\overline{\mathcal{T}} \bar{\psi}_{j}(0) W_{2}(0, \infty ; w)\right]|\Omega\rangle
$$

\square Hadronization of a quark into an unobserved jet of particles
 (fully inclusive)

$$
\Xi_{i j}\left(k ; n_{+}\right)=\operatorname{Disc} \int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{\mathrm{i} k \cdot \xi} \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega| \psi_{i}(\xi) \bar{\psi}_{j}(0) W\left(0, \xi ; n_{+}\right)|\Omega\rangle
$$

\square Gauge invariant generalization of the fully dressed quark propagator

Gauge invariant quark propagator

\square Can be given a convolution representation

$$
\Xi_{i j}(k ; w)=\operatorname{Disc} \int d^{4} p \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega| i \widetilde{S}_{i j}(p ; v) \widetilde{W}(k-p ; w, v)|\Omega\rangle
$$

where

$$
\begin{aligned}
i \widetilde{S}_{i j}(p, v) & =\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i \xi \cdot p} \mathcal{T} \psi_{i}(\xi) \bar{\psi}_{j}(0) \\
\widetilde{W}(k-p ; w, v) & =\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i \xi \cdot(k-p)} W(0, \xi ; w, v)
\end{aligned}
$$

Gauge invariant quark propagator

\square Can be given a convolution representation

$$
\Xi_{i j}(k ; w)=\operatorname{Disc} \int d^{4} p \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega| i \widetilde{S}_{i j}(p ; v) \widetilde{W}(k-p ; w, v)|\Omega\rangle
$$

\square Decomposition of the quark bilinear operator

$$
i \widetilde{S}_{i j}(p, v)=\hat{s}_{3}\left(p^{2}, p \cdot v\right) \not p_{i j}+\sqrt{p^{2}} \hat{s}_{1}\left(p^{2}, p \cdot v\right) \mathbb{I}_{i j}+\hat{s}_{0}\left(p^{2}, p \cdot v\right) \psi_{i j}
$$

Gauge invariant quark propagator

\square Can be given a convolution representation

$$
\Xi_{i j}(k ; w)=\operatorname{Disc} \int d^{4} p \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega| i \widetilde{S}_{i j}(p ; v) \widetilde{W}(k-p ; w, v)|\Omega\rangle
$$

\square Decomposition of the quark bilinear operator

$$
i \widetilde{S}_{i j}(p, v)=\underbrace{\hat{s}_{3}\left(p^{2}, p \cdot v\right) \not p}_{\hat{s}_{3}\left(p^{2}\right)}+\underbrace{}_{i j}+\underbrace{p_{1}^{2}}_{\hat{s}_{1}\left(p^{2}\right)} \hat{s}_{1}\left(p^{2}, p \cdot v\right) \mathbb{I}_{i j}+\underbrace{\hat{s}_{0}\left(p^{2}, p \cdot v\right)}_{\frac{p^{2}}{p \cdot v} \hat{s}_{0}\left(p^{2}\right)} \psi_{i j}
$$

$$
\hat{s}_{3}\left(p^{2}\right) \hat{s}_{1}\left(p^{2}\right) \hat{s}_{0}\left(p^{2}\right): \text { spectral operators }
$$

Spectral representation of the quark propagator in the Icg

$$
\frac{\operatorname{Tr}_{\mathrm{c}}}{N_{c}}\langle\Omega| i \tilde{S}(p)|\Omega\rangle=\frac{1}{(2 \pi)^{4}} \int_{-\infty}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right) \frac{i}{p^{2}-\sigma^{2}+i \epsilon} \theta\left(\sigma^{2}\right)
$$

Spectral representation of the quark propagator in the lcg

$$
\frac{\operatorname{Tr}_{\mathrm{c}}}{N_{c}}\langle\Omega| i \tilde{S}(p)|\Omega\rangle=\frac{1}{(2 \pi)^{4}} \int_{-\infty}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right) \frac{i}{p^{2}-\sigma^{2}+i \epsilon} \theta\left(\sigma^{2}\right)
$$

Spectral representation of the quark propagator in the Icg

$$
\begin{gathered}
\frac{\operatorname{Tr}_{\mathrm{c}}}{N_{c}}\langle\Omega| i \tilde{S}(p)|\Omega\rangle=\frac{1}{(2 \pi)^{4}} \int_{-\infty}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right) \frac{i}{p^{2}-\sigma^{2}+i \epsilon} \theta\left(\sigma^{2}\right) \\
\rho\left(p^{2}\right)=\rho_{3}\left(p^{2}\right) \not p+\sqrt{p^{2}} \rho_{1}\left(p^{2}\right)+\frac{p^{2}}{p \cdot v} \rho_{0}\left(p^{2}\right) \psi{ }_{\rho\left(m^{2}\right)}
\end{gathered}
$$

Spectral representation of the quark propagator in the Icg

$$
\begin{gathered}
\frac{\operatorname{Tr}_{\mathrm{c}}}{N_{c}}\langle\Omega| i \tilde{S}(p)|\Omega\rangle=\frac{1}{(2 \pi)^{4}} \int_{-\infty}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right) \frac{i}{p^{2}-\sigma^{2}+i \epsilon} \theta\left(\sigma^{2}\right) \\
\rho\left(p^{2}\right)=\rho_{3}\left(p^{2}\right) \not p+\sqrt{p^{2}} \rho_{1}\left(p^{2}\right)+\frac{p^{2}}{p \cdot v} \rho_{0}\left(p^{2}\right) \psi \\
\operatorname{Disc} \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega| i \tilde{S}(p)|\Omega\rangle=\frac{1}{(2 \pi)^{3}} \rho\left(p^{2}\right) \theta\left(p^{2}\right) \theta\left(p^{-}\right) \\
\operatorname{Disc} \frac{\operatorname{Tr}_{c}}{N_{c}}\langle\Omega| \hat{s}_{3,1,0}(p, v)|\Omega\rangle=\frac{1}{(2 \pi)^{3}} \rho_{3,1,0}\left(p^{2}\right) \theta\left(p^{2}\right) \theta(p)
\end{gathered}
$$

Integrated g.i. quark propagator

Boost quark at large light-cone momentum:

$$
k^{-} \gg\left|\mathbf{k}_{\perp}\right| \gg k^{+}
$$

$$
w=n^{+}
$$

Integrate out the suppressed component of the quark momentum:

$$
J_{i j}\left(k^{-}, \vec{k}_{\perp} ; n_{+}\right) \equiv \frac{1}{2} \int d k^{+} \Xi_{i j}\left(k ; n_{+}\right)
$$

\square Generalizes the perturbative quark propagator that appears in inclusive and semi-inclusive DIS

$$
\begin{gathered}
W_{\mathrm{TMD}}\left(\xi^{+}, \boldsymbol{\xi}_{\perp}\right)=\mathcal{U}_{n_{+}}\left[0^{-}, 0^{+}, \mathbf{0}_{\perp} ; 0^{-}, \infty^{+}, \mathbf{0}_{\perp}\right] \mathcal{U}_{\boldsymbol{n}_{\perp}}\left[0^{-}, \infty^{+}, \mathbf{0}_{\perp} ; 0^{-}, \infty^{+}, \boldsymbol{\xi}_{\perp}\right] \mathcal{U}_{n_{+}}\left[0^{-}, \infty^{+}, \boldsymbol{\xi}_{\perp} ; 0^{-}, \xi^{+}, \boldsymbol{\xi}_{\perp}\right] \\
W_{\mathrm{coll}}\left(\xi^{+}\right)=\mathcal{U}_{n_{+}}\left[0^{-}, 0^{+}, \mathbf{0}_{\perp} ; 0^{-}, \xi^{+}, \mathbf{0}_{\perp}\right]
\end{gathered}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)=\frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{I}+\alpha\left(k^{-}\right) \frac{k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)=\frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{\Psi}+\alpha\left(k^{-}\right) \frac{k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-}
$$

$$
\alpha\left(k^{-}\right)=J^{\left[\gamma^{-}\right]}
$$

$$
\zeta\left(k^{-}\right)=\frac{k^{-}}{\Lambda} J^{[\mathbb{]}]}
$$

$$
\omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right)=\left(\frac{k^{-}}{\Lambda}\right)^{2} J^{\left[\gamma^{+}\right]}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)=\frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{I}+\alpha\left(k^{-}\right) \frac{\not k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-}
$$

$$
J\left(k^{-}, \boldsymbol{k}_{T} ; n_{+}\right)=\frac{\theta\left(k^{-}\right)}{4(2 \pi)^{3} k^{-}}\left\{k^{-} \gamma^{+}+\not k_{T}+M_{j} \mathbb{I}+\frac{K_{j}^{2}+\boldsymbol{k}_{T}^{2}}{2 k^{-}} \gamma^{-}\right\}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
\begin{aligned}
& J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)= \frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{I}+\alpha\left(k^{-}\right) \frac{\not k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-} \\
& \not k+m=k^{-} \gamma^{+}+\not k_{\perp}+m \mathbb{I}+\frac{m^{2}+\boldsymbol{k}_{\perp}^{2}}{2 k^{-}} \gamma^{-} \\
& J\left(k^{-}, \boldsymbol{k}_{T} ; n_{+}\right)= \frac{\theta\left(k^{-}\right)}{4(2 \pi)^{3} k^{-}}\left\{k^{-} \gamma^{+}+\not k_{T}+M_{j} \mathbb{I}+\frac{K_{j}^{2}+\boldsymbol{k}_{T}^{2}}{2 k^{-}} \gamma^{-}\right\}
\end{aligned}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
\begin{aligned}
& J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)= \frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{I}+\alpha\left(k^{-}\right) \frac{\not k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-} \\
& \not \not k+m=k^{-} \gamma^{+}+\not k_{\perp}+m \mathbb{I}+\frac{m^{2}+\boldsymbol{k}_{\perp}^{2}}{2 k^{-}} \gamma^{-} \\
& J\left(k^{-}, \boldsymbol{k}_{T} ; n_{+}\right)= \frac{\theta\left(k^{-}\right)}{4(2 \pi)^{3} k^{-}}\left\{k^{-} \gamma^{+}+\not k_{T}+M_{j} \mathbb{I}+\frac{K_{j}^{2}+\boldsymbol{k}_{T}^{2}}{2 k^{-}} \gamma^{-}\right\}
\end{aligned}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
\begin{gathered}
J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)=\frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{I}+\alpha\left(k^{-}\right) \frac{\not k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-} \\
J\left(k^{-}, \boldsymbol{k}_{T} ; n_{+}\right)=\frac{\theta\left(k^{-}\right)}{4(2 \pi)^{3} k^{-}}\left\{k^{-} \gamma^{+}+\not k_{T}+\not k_{\perp}+m \mathbb{I}+\frac{m^{2}+\boldsymbol{k}_{\perp}^{2}}{2 k^{-}} \gamma^{-}\right. \\
\begin{array}{l}
\text { Average mass of all the } \\
\text { hadronization products } \\
\text { produced during the } \\
\text { fragmentation of a quark }
\end{array}
\end{gathered}
$$

Integrated g.i. quark propagator

\square Expand in Dirac structures, in powers of $1 / k^{-}$

$$
\begin{aligned}
& J\left(k^{-}, \boldsymbol{k}_{\perp} ; n_{+}\right)= \frac{1}{2} \alpha\left(k^{-}\right) \gamma^{+}+\frac{\Lambda}{k^{-}}\left[\zeta\left(k^{-}\right) \mathbb{I}+\alpha\left(k^{-}\right) \frac{\not k_{\perp}}{\Lambda}\right]+\frac{\Lambda^{2}}{2\left(k^{-}\right)^{2}} \omega\left(k^{-}, \boldsymbol{k}_{\perp}^{2}\right) \gamma^{-} \\
& \not \not k+m=k^{-} \gamma^{+}+\not k_{\perp}+m \mathbb{I}+\frac{m^{2}+\boldsymbol{k}_{\perp}^{2}}{2 k^{-}} \gamma^{-} \\
& J\left(k^{-}, \boldsymbol{k}_{T} ; n_{+}\right)= \frac{\theta\left(k^{-}\right)}{4(2 \pi)^{3} k^{-}}\left\{k^{-} \gamma^{+}+\not k_{T}+M_{j} \mathbb{I}+\frac{K_{j}^{2}+\boldsymbol{k}_{T}^{2}}{2 k^{-}} \gamma^{-}\right\}
\end{aligned}
$$

Average mass of all the hadronization products produced during the
fragmentation of a quark
\square In any gauge:

$$
(k)=J^{[\quad]}=\frac{\theta(k)}{2(2 \pi)^{3}} \int_{0}^{\infty} d p^{2} \rho_{3}\left(p^{2}\right)
$$

\square In any gauge:

$$
\begin{aligned}
(k) & =J^{[\quad]}=\frac{\theta(k)}{2(2 \pi)^{3}} \int_{0}^{\infty} d p^{2} \rho_{3}\left(p^{2}\right) \\
\zeta(k) & =\frac{k}{\Lambda} J^{[]}=\frac{\theta(k)}{2 \Lambda(2 \pi)^{3}} \int d p^{2} \sqrt{p^{2}} \rho_{1}\left(p^{2}\right)
\end{aligned}
$$

\square In any gauge:

$$
\begin{aligned}
(k) & =J^{[]}=\frac{\theta(k)}{2(2 \pi)^{3}} \int_{0}^{\infty} d p^{2} \rho_{3}\left(p^{2}\right) \\
\zeta(k) & =\frac{k}{\Lambda} J^{[]}=\frac{\theta(k)}{2 \Lambda(2 \pi)^{3}} \int d p^{2} \sqrt{p^{2}} \rho_{1}\left(p^{2}\right) \\
\omega\left(k, \boldsymbol{k}_{\boldsymbol{T}}\right) & \left.=\left(\frac{k}{\Lambda}\right)^{2} J^{[\quad]}=\frac{\theta(k)}{(2 \Lambda)^{2}(2 \pi)^{3}} \mu_{j}^{2}+\tau_{j}^{2}+\boldsymbol{k}_{T}^{2}\right)
\end{aligned}
$$

\square In any gauge:

$$
\begin{aligned}
&(k)=J^{[]}=\frac{\theta(k)}{2(2 \pi)^{3}} \int_{0}^{\infty} d p^{2} \rho_{3}\left(p^{2}\right) \\
& \zeta(k)=\frac{k}{\Lambda} J^{[]}=\frac{\theta(k)}{2 \Lambda(2 \pi)^{3}} \int d p^{2} \sqrt{p^{2}} \rho_{1}\left(p^{2}\right) \\
& \omega\left(k, \boldsymbol{k}_{\boldsymbol{T}}\right)\left.\left.=\left(\frac{k}{\Lambda}\right)^{2} J^{[}\right]=\frac{\theta(k)}{(2 \Lambda)^{2}(2 \pi)^{3}} \mu_{j}^{2}+\tau_{j}^{2}+\boldsymbol{k}_{\boldsymbol{T}}^{2}\right) \\
& K_{j}^{2}
\end{aligned}
$$

Sum rules

\square In any gauge:

$$
\begin{aligned}
1 & =\int_{0}^{\infty} d p^{2} \rho_{3}\left(p^{2}\right) \\
M_{j} & =\int_{0}^{\infty} d p^{2} \sqrt{p^{2}} \rho_{1}\left(p^{2}\right) \\
0 & =\int_{0}^{\infty} d p^{2} p^{2} \rho_{0}\left(p^{2}\right)
\end{aligned}
$$

\square Can be used to verify actual calculations of the quark propagator!

Sum rules

\square In any gauge:

$$
\begin{aligned}
1 & =\int_{0}^{\infty} d p^{2} \rho_{3}\left(p^{2}\right) \\
M_{j} & =\int_{0}^{\infty} d p^{2} \sqrt{p^{2}} \rho_{1}\left(p^{2}\right) \\
0 & =\int_{0}^{\infty} d p^{2} p^{2} \rho_{0}\left(p^{2}\right)
\end{aligned}
$$

\square Can be used to verify actual calculations of the quark propagator!

$$
M_{j}=\int d p^{2} \sqrt{p^{2}} \rho_{1}\left(p^{2}\right)
$$

leading		quark operator		
		unpolarized [U]	longitudinal [L]	transverse [T]
	U	$\begin{aligned} & f_{1}=\bigodot \\ & \text { unpolarized } \end{aligned}$		$h_{1}^{\frac{1}{1}}=\underset{\text { Boer-Mulders }}{(i)}-\left(\frac{1}{2}\right.$
	L		$g_{1}=\bigodot \rightarrow-\bigodot \rightarrow$	$h_{1 L}^{1}=\underset{\text { worm gear } 1}{\rightarrow-\longrightarrow}$
	T	$f_{1 T}^{1}=\bigodot_{\text {Sivers }}^{\uparrow}-\bigodot$		
	T E N N S R	$\begin{array}{r} \hline f_{1 L L}\left(x, \boldsymbol{k}_{T}^{2}\right) \\ f_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right) \\ f_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right) \end{array}$	$\begin{array}{r} g_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right) \\ g_{1 U T}\left(x, \boldsymbol{k}_{T}^{2}\right) \\ \hline \end{array}$	$h_{1 L L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)$ $h_{1 T T}, h_{1 T T}^{\perp}$ $h_{1 L T}, h_{1 L T}^{\perp}$

Gauge invariant generalization of the gauge dependent dressed quark mass
Experimentally accessible in double spin assymetry measurements!
(table from Satvir Kaur's talk yesterday)
\square In light-cone gauge:

$$
K_{j}^{2}=\mu_{j}^{2}+2=\int_{0}^{\infty} d p^{2} p^{2} \rho_{3}^{\operatorname{lcg}}\left(p^{2}\right)
$$

$\square \ln$ light-cone gauge:

$$
K_{j}^{2}=\mu_{j}^{2}+\sum^{2}=\int_{0}^{\infty} d p^{2} p^{2} \rho_{3}^{\operatorname{lcg}}\left(p^{2}\right)
$$

\square But in other gauges

$$
K_{j}^{2}=\mu_{j}^{2}+\tau_{j}^{2}
$$

$$
\tau_{j}^{2}=(2 \pi)^{3} \int_{0}^{\infty} d p^{2} \operatorname{Disc} \frac{\mathrm{Tr}_{\mathrm{c}}}{\mathrm{~N}_{\mathrm{c}}}\langle\Omega| \hat{\sigma}_{3}\left(p^{2}\right) i g D_{\perp}\left(\boldsymbol{A}^{\perp}\left(\boldsymbol{\xi}_{\perp}\right)+\mathcal{Z}^{\perp}\left(\boldsymbol{\xi}_{\perp}\right)\right)_{\boldsymbol{\xi}_{\perp}=0}|\Omega\rangle
$$

$$
\mathcal{Z}^{\perp}\left(\boldsymbol{\xi}_{\perp}\right)=\int_{0}^{\infty^{+}} d s^{+} \boldsymbol{D}_{\perp}\left(U_{n_{+}}\left[0^{-}, 0^{+}, \boldsymbol{\xi}_{\perp} ; 0^{-}, s^{+}, \boldsymbol{\xi}_{\perp}\right] G^{\perp-}\left(0^{-}, s^{+}, \boldsymbol{\xi}_{\perp}\right) U_{n^{+}}\left[0^{-}, s^{+}, \boldsymbol{\xi}_{\perp} ; 0^{-}, \infty^{+}, \boldsymbol{\xi}_{\perp}\right]\right)|\Omega\rangle
$$

$\square \ln$ light-cone gauge:

$$
K_{j}^{2}=\mu_{j}^{2}+\sum^{2}=\int_{0}^{\infty} d p^{2} p^{2} \rho_{3}^{\operatorname{lcg}}\left(p^{2}\right)
$$

\square But in other gauges
Final state interactions "vanish"

$$
K_{j}^{2}=\mu_{j}^{2}+\tau_{j}^{2}
$$

$$
\tau_{j}^{2}=(2 \pi)^{3} \int_{0}^{\infty} d p^{2} \operatorname{Disc} \frac{\mathrm{Tr}_{\mathrm{c}}}{\mathrm{~N}_{\mathrm{c}}}\langle\Omega| \hat{\sigma}_{3}\left(p^{2}\right) i g D_{\perp}\left(\boldsymbol{A}^{\perp}\left(\boldsymbol{\xi}_{\perp}\right)+\mathcal{Z}^{\perp}\left(\xi_{\perp}\right)\right)_{\boldsymbol{\xi}_{\perp}=0}|\Omega\rangle
$$

$$
\mathcal{Z}^{\perp}\left(\boldsymbol{\xi}_{\perp}\right)=\int_{0}^{\infty^{+}} d s^{+} \boldsymbol{D}_{\perp}\left(U_{n_{+}}\left[0^{-}, 0^{+}, \boldsymbol{\xi}_{\perp} ; 0^{-}, s^{+}, \boldsymbol{\xi}_{\perp}\right] G^{\perp-}\left(0^{-}, s^{+}, \boldsymbol{\xi}_{\perp}\right) U_{n^{+}}\left[0^{-}, s^{+}, \boldsymbol{\xi}_{\perp} ; 0^{-}, \infty^{+}, \boldsymbol{\xi}_{\perp}\right]\right)|\Omega\rangle
$$

Summary

\square Completed the analysis of the gauge invariant quark propagator
\square Full calculation of the twist-4 coefficient
\square Formal demonstration of the gauge invariance of the twist-2, twist-3 and twist-4 coefficients of the g.i. quark propagator/jet correlator
> New sum rules (needed: numerical checks)

Summary

\square Completed the analysis of the gauge invariant quark propagator
\square Full calculation of the twist-4 coefficient
\square Formal demonstration of the gauge invariance of the twist-2, twist-3 and twist-4 coefficients of the g.i. quark propagator/jet correlator
> New sum rules for the quark spectral functions (needed: numerical checks)
\square In particular:
\Rightarrow Second moment of ρ_{0} vanishes
$>$ First moment of the chiral odd quark spectral function gives a mass M_{j} that
is a gauge invariant generalization of the gauge dependent quark mass

Summary

$\square M_{j}$ color screened gauge invariant mass
> Non-vanishing even in the chiral limit
> Provides a direct way to probe dynamical chiral symmetry breaking

Summary

$\square M_{j}$ color screened gauge invariant mass
> Non-vanishing even in the chiral limit
> Provides a direct way to probe dynamical chiral symmetry breaking (In progress)

Summary

$\square M_{j}$ color screened gauge invariant mass
> Non-vanishing even in the chiral limit
> Provides a direct way to probe dynamical chiral symmetry breaking
> It's calculable, but moreover.. It can be measured!

