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Lattice QCD… what is it?

http://www.physics.adelaide.edu.au/cssm/lattice/

• Gauge field simulation from  

first principles  

• Discretized space-time  

• Finite volume with  

periodic conditions  

• Volume ~ size of proton 
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Motivation for QCD

• QCD strongly coupled  at low energies 

-> not perturbative 

-jet fragmentation functions 

-parton distribution functions 

http://www.fuw.edu.pl/~ajduk/LHC/Stirling.pdf
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Motivation for QCD

• QCD strongly coupled  at low energies 

-> not perturbative 

-jet fragmentation functions 

-parton distribution functions 

  

• Increased computational power = 

competitive and supplementary  to 

experiment!  

http://www.fuw.edu.pl/~ajduk/LHC/Stirling.pdf

Image credit: Carlos Jones/ORNL
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Motivation for QCD

1)     > 95% of mass of hadrons come from QCD dynamics 
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Motivation for QCD

1)     > 95% of mass of hadrons come from QCD dynamics 

2)     Computation of matrix elements for  
weak flavor mixing 

Perturbative Non-perturbative
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Motivation for Beyond the Standard Model 

• Predict spectrum of QCD 
baryons and mesons 
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Kronfeld, updated from 1203.1204



Motivation for Beyond the Standard Model 
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Motivation for Beyond the Standard Model 

https://www.symmetrymagazine.org/

New gauge forces 
to explain… 

• Higgs 
mechanism? 

• Dark matter?

https://www.nasa.gov/ 7/42



Motivation for Beyond the Standard Model 

Why composite Higgs? 

1) Hierarchy problem - no longer a fundamental scalar  
https://motls.blogspot.com/2015/03/did-homer-simpson-calculate-
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Motivation for Beyond the Standard Model 

1) Hierarchy problem - no longer a fundamental scalar 
- no fine tuning necessary if composite  

2) Dynamical symmetry breaking - Higgs model describes 
effective potential. Explains where potential comes from 

https://motls.blogspot.com/2015/03/did-homer-simpson-calculate-correct.html

http://www.tifr.res.in/TSN/news_detail.php?id=69

Why composite Higgs? 
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Motivation for Beyond the Standard Model 

• Every confining 
force has a 
spectrum of states 

• New force of 
composite Higgs 
would have 
spectrum 

Science  21 Dec 2012. Vol. 338, Issue 6114, pp. 1576-1582
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Lattice 

Experiment



Feynman path integral trick 
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Feynman path integral trick 
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Feynman path integral trick 
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Feynman path integral trick 

Our only hope!  
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Importance Sampling 

Configuration 1 

10/42

Configuration 2 Configuration 3 Configuration 4 



Importance Sampling 
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• SU(3) Nf = 8 

• 643 x 128  

•        = 4.8 

• mq = 0.00125

�



Energy Spectrum + Matrix Elements

⇡

JPC = 0�+
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Energy Spectrum + Matrix Elements

⇡

http://watersoundimage.yolasite.com/what-is-a-w-s-image.php

JPC = 0�+
PSEUDO-SCALAR
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Energy Spectrum + Matrix Elements

⇡

http://watersoundimage.yolasite.com/what-is-a-w-s-image.php
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Energy Spectrum + Matrix Elements
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Energy Spectrum + Matrix Elements
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Effective mass



Pion Effective Mass 

14/42



Pion Effective Mass 
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Pion Effective Mass 
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Pion Effective Mass 
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Standard Method for Excited States

Fit more exponentials! …. but 

• Difficult/time consuming  with decaying exponentials 

• Finding global minimum - best         ,         is hard  

•          dimensional parameter space  

• Prone to user bias - choosing initial values  

am Em

2M

https://www.mathworks.com 17/42



Algebraic Approach - Prony 1700’s  
Prony, G. R. B. "J. de Lh Ecole Polytechnique." Paris 1 (1795): 24.

18/42G. Fleming, S. Cohen, H. Lin, V. Pereyra (2009)
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Non-linear linear

Algebraic Approach - Prony 1700’s  
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Algebraic Approach - Prony 1700’s  

Non-linear linear

We can do this!!   
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Prony, G. R. B. "J. de Lh Ecole Polytechnique." Paris 1 (1795): 24.

G. Fleming, S. Cohen, H. Lin, V. Pereyra (2009)



Prony’s Method for M= 3 

M = 3 means  6 y’s  
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Prony’s Method for M= 3 

M = 3 means  6 y’s  

Need to solve          order 
polynomial 

19/42



Prony’s Method, Linear Prediction, Matrix Prony
E. Berkowitz, A. Nicholson, C. Chang et al. (2017)
S. Beane, W. Detmold, T. Luu et al. (2009)
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Prony’s Method, Linear Prediction, Matrix Prony
Effective mass becomes generalized eigenvalue problem  

with first excited state

with ground state

                                          maximal overlap
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Prony’s Method, Linear Prediction, Matrix Prony

Hankel Matrix determinant 
specifies eigenvalue problem  

Scalar 
equation
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M ⇥N solutions

Prony’s Method, Linear Prediction, Matrix Prony

Hankel Matrix determinant 
specifies eigenvalue problem  

Scalar 
equation

Matrix 
equation

22/42

M solutions

Focus on labeling problem



From theory to practice: the bootstrap 
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From theory to practice: the bootstrap 

6 data points C(t=to) for 
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2

3
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t
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From theory to practice: the bootstrap 

6 data points C(t=to) for 
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From theory to practice: the bootstrap 

1 2 3 51+ + 5
1

6
( ) = C1(t=to)+ + +

Repeat for all times to obtain  C1(0), C1(1), C1(2), C1(3), … C1(T) 
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From theory to practice: the bootstrap 

1 2 3 51+ + 5
1

6
( ) = C1(t=to)+ + +

Repeat for all times to obtain  C1(0), C1(1), C1(2), C1(3), … C1(T) 

yn(t) = C(t+ n)

C1(t) ) { (z1, a1), (z2, a2) }
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From theory to practice: the bootstrap 
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zm = e�Emam = |h0|⇡|Emi|2
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M = 2 State Extraction 
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M = 2 State Extraction 
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M = 3 State Extraction 
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Expectation Maximization Clustering 

29/42

Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). "Maximum Likelihood from Incomplete 
Data via the EM Algorithm". Journal of the Royal Statistical Society, Series B. 39 (1): 1–38. 



K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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Clustering M = 2,  Initial 
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Clustering M = 2,  1 iteration
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Clustering M = 3,  Initial 
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Clustering M = 3,  1 iteration
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Clustering M = 3,  2 iterations
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Clustering M = 3,  3 iterations
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Clustering M = 3,  4 iterations
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Clustering M = 3,  5 iterations
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Clustering M = 3,  6 iterations
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Clustering M = 3,  7 iterations
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Clustering M = 3,  8 iterations
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Clustering M = 3,  9 iterations
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Clustering M = 3,  10 iterations
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Clustering M = 3,  11 iterations
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Clustering M = 3,  12 iterations
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Clustering M = 3,  13 iterations
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Preliminary Results
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Future Work 

• Non-Gaussian clusters - try a new distance metric 
-Don’t worry about noisier time slices  
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Future Work 

• Non-Gaussian clusters - try a new distance metric 
-Don’t worry about noisier time slices  

• All data in “stencil” - extract                  states  
-Remove all operator bias 

M = T/2

38/42



Possible solution: Tukey Depth

Multidimensional generalization of percentiles 
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Possible solution: Tukey Depth

Multidimensional generalization of percentiles 
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Possible solution: Tukey Depth

Multidimensional generalization of percentiles 

Non-parametric statistic! 
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Tukey Depth Example with non-Gaussian Data
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Tukey Depth Example with non-Gaussian Data
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Conclusion

• Extracting excited states is important for lattice QCD 
and BSM lattice  

• Standard method involves fitting to exponentials and 
has many know problems  

• Prony’s method may be a better approach if we can 
identify clusters  

• We will need a better clustering algorithm to account 
for weirdly shaped clusters 
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Thanks! 


