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IntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

I The energy-momentum tensor (EMT) is an operator characterizing the distribution and flow
of energy and momentum.

I It’s related to space & time symmetry via Noether’s theorems.
I It’s the source of gravitation in general relativity.

I Matrix elements between hadronic states characterize coveted properties of hadrons:

I The distribution & decomposition of energy.
I The distribution & decomposition of momentum.
I The distribution & decomposition of internal stresses
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The EMT from spacetime symmetryThe EMT from spacetime symmetryThe EMT from spacetime symmetryThe EMT from spacetime symmetryThe EMT from spacetime symmetryThe EMT from spacetime symmetry

T̂µν
QCD(x) =

∑
q

{
1

2
q̄(x)iγ{µ

←→
D ν}q(x)

}
− 2Tr

[
GµλGν

λ

]
+

1

2
gµνTr

[
GλσGλσ

]
I Conserved current from local spacetime translations (Noether’s second theorem):

I xµ 7→ xµ + ξµ(x)

I SQCD 7→ SQCD
I ∂µT

µν
QCD = 0.

I Tµν
QCD = T νµ

QCD

I Gauge-invariant

−−−−−−→
x 7→x+ξ(x)

AF, Phys. Rev. D 106 (2022) 125012

I Can be alternatively be derived from action variations:

T̂µν
Hil (x) = −

2√
−g

δSQCD
δgµν(x)
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Form factors of the EMTForm factors of the EMTForm factors of the EMTForm factors of the EMTForm factors of the EMTForm factors of the EMT

I EMT matrix elements give gravitational form factors (GFFs).
I It’s just a name.
I EMT is the source of gravitation: Gµν + Λgµν = 8πTµν

I But we don’t really use gravitation to measure them.

I Analogy to electromagnetic form factors.

I Spin-zero example:

〈p′|Ĵµ(0)|p〉 = 2PµF (t)

〈p′|T̂µν(0)|p〉 = 2PµP νA(t) +
1

2
(∆µ∆ν −∆2gµν)D(t)

I A(t) encodes momentum density

I D(t) encodes stress distributions
(anisotropic pressures)

I Mix of both encodes energy density

p p′

P =
1

2

(
p+ p′

)
∆ = (p′ − p)
t = ∆2
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How to get the GFFsHow to get the GFFsHow to get the GFFsHow to get the GFFsHow to get the GFFsHow to get the GFFs

I Hard exclusive reactions are used to measure GFFs—not gravity experiments.

I Deeply virtual Compton scattering (DVCS) to probe quark structure.
I Deeply virtual meson production (DVMP), e.g., J/ψ or Υ to probe gluon structure.
I …and more!

I Measured at Jefferson Lab and the upcoming Electron Ion Collider.
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GFFs and GPDsGFFs and GPDsGFFs and GPDsGFFs and GPDsGFFs and GPDsGFFs and GPDs

I Hard exclusive reactions are used to measure GFFs—not gravitational experiments.
I Deeply virtual Compton scattering (DVCS) to probe quark structure.
I Deeply virtual meson production (DVMP), e.g., J/ψ or Υ to probe gluon structure.
I …and more!

I GFFs are related to generalized parton distributions (GPDs) through Mellin

moments—spin-zero example:∫ 1

−1
dxxHa(x, ξ, t) = Aa(t) + ξ2Da(t)

∫ 1

−1
dxx

p

x+ ξ x− ξ

p′

= p p′
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Components of the EMTComponents of the EMTComponents of the EMTComponents of the EMTComponents of the EMTComponents of the EMT

Tµν(x) =

T 00(x) T 01(x) T 02(x) T 03(x)

T 10(x) T 11(x) T 12(x) T 13(x)

T 20(x) T 21(x) T 22(x) T 23(x)

T 30(x) T 31(x) T 32(x) T 33(x)





Energy density

Momentum densities

Energy fluxes

Stress tensor

I Angular momentum densities accessible

too:

Ji(x) = εijk
(
xjT 0k(x)− xkT 0j(x)

)
…basically, from x × p

I For physical states, mixture of internal
structure & wave packet dependence.

I Removing wave packet dependence is

tricky.
I Several schemes for dealing with this

exist.
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Breit frame densitiesBreit frame densitiesBreit frame densitiesBreit frame densitiesBreit frame densitiesBreit frame densities

I Breit frame densities most common approach.

Tµν
BF (x) ≡

∫
d3q

(2π)3
〈q/2|T̂µν(x)| − q/2〉

2
√
m2 + q2/4

I Original derivation by Sachs erroneous (see Miller, PRC99 (2019) 035202)
I More recent justification by Lorcé et al., EPJC 79 (2019) 89

I Example: spin-zero energy density and stress tensor

E(x) = m

∫
d3q

(2π)3
1√

1 + q2/4m2

{
A(−q2) + q2

4m2

(
A(−q2) +D(−q2)

)}
e−iq·x

T ij(x) = m

∫
d3q

(2π)3
1√

1 + q2/4m2

(
qiqj − q2δij

2

)
D(−q2)e−iq·x

See Polyakov & Schweitzer, Int. J. Mod. Phys. A 33 (2018) for a great review
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Multipole moment densitiesMultipole moment densitiesMultipole moment densitiesMultipole moment densitiesMultipole moment densitiesMultipole moment densities

I Consider hadron as a medium & wave function as an arbitrary test function
I Newer idea due to Yang Li et al., PLB 838 (2023) 137676
I Hadron has potential to contribute to monopole, dipole, etc. densities.
I Each of these is an intrinsic property!

I Breit frame density emerges as leading, monopole term in infinite expansion:

Tµν(x, t) =

∫
d3RP(R, t)Tµν

BF (x−R) + . . .

I Higher-order (e.g. quadrupole) densities negligible if packet width & λC .
see AF & Miller, 2210.03807
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Light front coordinatesLight front coordinatesLight front coordinatesLight front coordinatesLight front coordinatesLight front coordinates

I Stark contrast to the non-relativistic case, where:

ρphys(x, t) =

∫
d3R

∣∣∣Ψbar(R, t)
∣∣∣2ρinternal(x− R)

I The simplicity owes to the Galilean symmetry of

non-relativistic physics.

I But the Poincaré group has a Galilean subgroup!

I Light front coordinates exploit this subgroup to simplify

densities.

Light front coordinates

x+x−

x± = t± z x⊥ = (x, y) τ = x+ = time
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Light front coordinatesLight front coordinatesLight front coordinatesLight front coordinatesLight front coordinatesLight front coordinates

I Light front coordinates are a different foliation of spacetime.

I Entail a new synchronization convention.

I Entail a new spatial grid.

x± = t± z x⊥ = (x, y) x+ = t+ z = time

t

z

Minkowski coordinates

x+x−

Light front coordinates
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Synchronization conventionsSynchronization conventionsSynchronization conventionsSynchronization conventionsSynchronization conventionsSynchronization conventions

t

z
Alice Bob

tA

tB

τEinstein =
tA+tB

2

Einstein synchronization

fixed t+ z

t+ z

z
Alice Bob

tA

τLF = tBtB

Light front synchronization

fixed t+ z

I Einstein synchronization defined to be isotropic.

I Light front synchronization defines hyperplanes with fixed t+ z to be “simultaneous.”
I Light travels instantaneously in −z direction by definition.
I We take what we see as literally happening now.
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Transverse boosts and Terrell rotationsTransverse boosts and Terrell rotationsTransverse boosts and Terrell rotationsTransverse boosts and Terrell rotationsTransverse boosts and Terrell rotationsTransverse boosts and Terrell rotations

I Lorentz-boosted objects appear rotated.

I Terrell rotation (PR116, 1959)
I Optical effect: contraction + delay

I Light front transverse boost

undoes Terrell rotation:

B(LF)
x = Kx − Jy

I Standard boost + counter-rotation
I Leaves x+ (time) invariant
I Part of the Galilean subgroup

Dice images by Ute Kraus,

https://www.spacetimetravel.org/

https://www.spacetimetravel.org/
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Galilean subgroupGalilean subgroupGalilean subgroupGalilean subgroupGalilean subgroupGalilean subgroup

I Poincaré group has a (2 + 1)D Galilean subgroup.

I x+ is time and x⊥ is space under this subgroup.
I x− can be integrated out.
I P+ = 1√

2
(Ep + pz) is the central charge.

I x+ and P+ are invariant under this subgroup!

I Basically, light front coordinates should give a fully relativistic 2D picture that looks like
non-relativistic physics.

I But with P+ in place ofM .

dP⊥
dx+

= P+ d2x⊥

dx+2

H = P− = Hrest +
P2
⊥

2P+

v⊥ =
P⊥
P+

The cost: lose one spatial dimension (2D densities).
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Not the IMF!Not the IMF!Not the IMF!Not the IMF!Not the IMF!Not the IMF!

I All momenta can be finite.

I We didn’t boost.

I LFCs are not the IMF.
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Not the rest frame!Not the rest frame!Not the rest frame!Not the rest frame!Not the rest frame!Not the rest frame!

I LFCs are not the IMF.

I They’re also not rest frames.

I They’re not even Cartesian.

I The reason is x−.
I Fixed x− is lightlike.
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Tilted light front coordinatesTilted light front coordinatesTilted light front coordinatesTilted light front coordinatesTilted light front coordinatesTilted light front coordinates

Tilted coordinates

τ̃ = t+ z

x̃ = x

ỹ = y

z̃ = z

I First defined by Blunden, Burkardt & Miller.

I Phys. Rev. C61 (2000) 025206

I Use light front time.

I Use light front synchronization!
I Time invariant under Galilean subgroup.

I Use Cartesian spatial coordinates.

I Can furnish a rest frame!

I Mind the strange metric…

g̃µν =


1 0 0 −1
0 −1 0 0
0 0 −1 0
−1 0 0 0

 ds2 = dτ̃2 − 2 dτ̃ dz̃ − dx̃2
⊥

∂2 = −2∂̃z∂̃τ − ∇̃2

See AF & Miller, PRD107 (2023) 074036 for full description!
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Momentum and velocityMomentum and velocityMomentum and velocityMomentum and velocityMomentum and velocityMomentum and velocity

I Energy & momentum are spacetime translation generators.

i[Ẽ, M̂ ] =
∂M̂

∂τ̃
− i[p̃, M̂ ] = ∇̃M̂

I On-shell dispersion relation:

Ẽ =
m2 + p̃2

2p̃z
=
m2 + p̃2z

2p̃z
+

p̃2
⊥

2p̃z

Energy-momentum

Ẽ = E

p̃x = px

p̃y = py

p̃z = E + px = p+

Velocity

ṽ = ∇pẼ

ṽx = p̃x/p̃z

ṽy = p̃y/p̃z

ṽz = 1− Ẽ/p̃z

I Rest occurs when ṽ = 0.
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Energy-momentum tensor in tilted coordinatesEnergy-momentum tensor in tilted coordinatesEnergy-momentum tensor in tilted coordinatesEnergy-momentum tensor in tilted coordinatesEnergy-momentum tensor in tilted coordinatesEnergy-momentum tensor in tilted coordinates

T̃µ
ν(x) =

T̃ 0
0(x) T̃ 0

1(x) T̃ 0
2(x) T̃ 0

3(x)

T̃ 1
0(x) T̃ 1

1(x) T̃ 1
2(x) T̃ 1

3(x)

T̃ 2
0(x) T̃ 2

1(x) T̃ 2
2(x) T̃ 2

3(x)

T̃ 3
0(x) T̃ 3

1(x) T̃ 3
2(x) T̃ 3

3(x)





Energy density

Momentum densities

Energy fluxes

Stress tensor

I All 16 components of EMT have clear

meaning in tilted coordinates.

I The energy density integrates to the usual

“instant form” energy.

Ẽ = E
I Relativistically exact energy density.
I Will give standard mass decomposition.
I Can describe system at rest.
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Smearing functionsSmearing functionsSmearing functionsSmearing functionsSmearing functionsSmearing functions

I Physical energy-momentum tensor:∫
dz̃ 〈Ψ |T̂µ

ν(x)|Ψ〉 =
∫

d3R̃Pµ β
να (R̃, τ̃ , Ψ)[T̃α

β(x̃⊥ − R̃⊥)]internal

Smearing function
Internal density

invariant under LF boosts

I Smearing function contains all wave packet & velocity dependence.
I Only smearing function modified by Lorentz boosts.
I Internal density is boost-invariant. (due to Galilean subgroup)
I Internal density is rest frame density!

I Galilean subgroup allows such a separation.

I Multiple separations exist.
I Will describe scheme for separation in upcoming work.

I I’m short on time; will just give results for internal densities.
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Longitudinal momentum densityLongitudinal momentum densityLongitudinal momentum densityLongitudinal momentum densityLongitudinal momentum densityLongitudinal momentum density

I −T̃ 0
3 = T++ gives P̃z = P+ density

ρ
(LF)
P+ (b⊥, s⊥) =

∫
d2∆⊥
(2π)2

〈p′, s⊥|T++(0)|p, s⊥〉
2m

e−i∆⊥·b⊥

I Set P̃z = P+ = m for rest.
I Works for any polarization state.
I Structure relative to center-of-P+.
I Boost invariance: P⊥ independent!

I Proton dipole model on right.

I f2(1270) pole
I Agrees with Kharzeev’s analysis

in RPD104 (2021) 054015
I 2D radius of 0.45 fm

I Get back standard P+ density!
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Spin-one targetsSpin-one targetsSpin-one targetsSpin-one targetsSpin-one targetsSpin-one targets

Helicity +1 Helicity 0

P̃z = P+ density depends on helicity for spin-one targets.

AF &Wim Cosyn, PRD106 (2022) 114013
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Transverse polarizationTransverse polarizationTransverse polarizationTransverse polarizationTransverse polarizationTransverse polarization

Transverse,ms = +1 Transverse,ms = 0

Transverse polarization contains helicity-flip contributions.

AF &Wim Cosyn, PRD106 (2022) 114013
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Why sinφ modulations?Why sinφ modulations?Why sinφ modulations?Why sinφ modulations?Why sinφ modulations?Why sinφ modulations?

I P+ density of transpol. deuteron.

I Spin-up along x-axis
I But left-handed coords.

I This is the P+ density in every frame.

I Includes the rest frame.

I Not an IMF artifact!

I Never boosted to IMF.

I Effect of synchronization scheme.

I Effect of taking what we see literally.
I This is a known effect; relativistic wheel.
I Explained by George Gamow in 1938,

Mr Tompkins in Wonderland

Trans. pol. deuteron
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The relativistic wheelThe relativistic wheelThe relativistic wheelThe relativistic wheelThe relativistic wheelThe relativistic wheel

Static wheel

Spinning wheel

I Static wheel has regularly-placed spokes.

I Consider spinning wheel, axis oblique to observer.

I The wheel is considered at rest.

I Spokes moving away are redshifted.

I Appear to move slower.
I Pile up; appear to become denser.

I Spokes moving towards are blueshifted.

I Appear to move faster.
I Appear to become rarer.

I These same distortions are present in nuclei!

I Light front densities bake in optical effects.

I Also see videos at:

https://www.spacetimetravel.org/rad
(green wheel is relevant case)

https://www.spacetimetravel.org/rad
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Transverse momentum densityTransverse momentum densityTransverse momentum densityTransverse momentum densityTransverse momentum densityTransverse momentum density

P(LF)
⊥ (b⊥, s⊥) =

∫
d2∆⊥
(2π)2

〈p′, s⊥|T+i(0)|p, s⊥〉
2m

e−i∆⊥·b⊥
∣∣∣∣
P⊥=0,P+=m

I −T̃ 0
i = T+i gives P̃⊥ = P⊥ density

I Works for any polarization state.
I Structure relative to center-of-P+.

I Proton dipole model on right

I f2(1270) pole.
I Longitudinal polarization
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Energy densityEnergy densityEnergy densityEnergy densityEnergy densityEnergy density

E(LF)⊥ (b⊥, s⊥) =
1

2

∫
d2∆⊥
(2π)2

〈p′, s⊥|T++(0) + T+−(0)|p, s⊥〉
2m

e−i∆⊥·b⊥
∣∣∣∣
P⊥=0,P+=m

I −T̃ 0
i = T+i gives P̃⊥ = P⊥ density

I Works for any polarization state.
I Showing light front helicity state.
I Structure relative to center-of-P+.

I Proton dipole model on right

I f2(1270) pole.
I Longitudinal polarization
I Use D(0) = −2 [from lattice]

[Pefkou et al., PRD 105 (2022)]
I D(t) has extra σ pole
I Radius 0.53 fm > 0.45 fm
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Conclusions & outlookConclusions & outlookConclusions & outlookConclusions & outlookConclusions & outlookConclusions & outlook

I The energy-momentum tensor encodes interesting internal properties of hadrons.
I Energy & momentum densities among them
I Also stresses, but I didn’t have time to cover these

I There are subtleties in how to identify “internal” properties here.
I Tilted light front coordinates allow exact relativistic rest frame densities

…and, most importantly:

Thanks for your time and attention!


