

- The energy-momentum tensor (EMT) is an operator characterizing the distribution and flow of energy and momentum.
- It's related to space \& time symmetry via Noether's theorems.
- It's the source of gravitation in general relativity.
- Matrix elements between hadronic states characterize coveted properties of hadrons:
- The distribution \& decomposition of energy.
- The distribution \& decomposition of momentum.
- The distribution \& decomposition of internal stresses

$$
\hat{T}_{\mathrm{QCD}}^{\mu \nu}(x)=\sum_{q}\left\{\frac{1}{2} \bar{q}(x) i \gamma^{\{\mu \overleftrightarrow{D}}{ }^{\nu\}} q(x)\right\}-2 \operatorname{Tr}\left[G^{\mu \lambda} G_{\lambda}^{\nu}\right]+\frac{1}{2} g^{\mu \nu} \operatorname{Tr}\left[G^{\lambda \sigma} G_{\lambda \sigma}\right]
$$

- Conserved current from local spacetime translations (Noether's second theorem):
- $x^{\mu} \mapsto x^{\mu}+\xi^{\mu}(x)$
- $S_{\mathrm{QCD}} \mapsto S_{\mathrm{QCD}}$
- $\partial_{\mu} T_{\text {QCD }}^{\mu \nu}=0$.
- $T_{\mathrm{QCD}}^{\mu \nu}=T_{\mathrm{QCD}}^{\nu \mu}$
- Gauge-invariant

AF, Phys. Rev. D 106 (2022) 125012

- Can be alternatively be derived from action variations:

$$
\hat{T}_{\mathrm{Hil}}^{\mu \nu}(x)=-\frac{2}{\sqrt{-g}} \frac{\delta S_{\mathrm{QCD}}}{\delta g_{\mu \nu}(x)}
$$

Form factors of the EMT

- EMT matrix elements give gravitational form factors (GFFs).
- It's just a name.
- EMT is the source of gravitation: $G^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi T^{\mu \nu}$
- But we don't really use gravitation to measure them.
- Analogy to electromagnetic form factors.
- Spin-zero example:

$$
\begin{aligned}
\left\langle p^{\prime}\right| \hat{J}^{\mu}(0)|p\rangle & =2 P^{\mu} F(t) \\
\left\langle p^{\prime}\right| \hat{T}^{\mu \nu}(0)|p\rangle & =2 P^{\mu} P^{\nu} A(t)+\frac{1}{2}\left(\Delta^{\mu} \Delta^{\nu}-\Delta^{2} g^{\mu \nu}\right) D(t)
\end{aligned}
$$

- $A(t)$ encodes momentum density
- $D(t)$ encodes stress distributions (anisotropic pressures)
- Mix of both encodes energy density

$$
\begin{aligned}
P & =\frac{1}{2}\left(p+p^{\prime}\right) \\
\Delta & =\left(p^{\prime}-p\right) \\
t & =\Delta^{2}
\end{aligned}
$$

How to get the GFFs

Hard exclusive reactions are used to measure GFFs-not gravity experiments.

- Deeply virtual Compton scattering (DVCS) to probe quark structure.
- Deeply virtual meson production (DVMP), e.g., J / ψ or Υ to probe gluon structure. ...and more!
Measured at Jefferson Lab and the upcoming Electron Ion Collider.

- Hard exclusive reactions are used to measure GFFs-not gravitational experiments.
- Deeply virtual Compton scattering (DVCS) to probe quark structure.
- Deeply virtual meson production (DVMP), e.g., J / ψ or Υ to probe gluon structure.
- ...and more!
- GFFs are related to generalized parton distributions (GPDs) through Mellin moments-spin-zero example:

$$
\int_{-1}^{1} \mathrm{~d} x x H_{a}(x, \xi, t)=A_{a}(t)+\xi^{2} D_{a}(t)
$$

- Breit frame densities most common approach.

$$
T_{\mathrm{BF}}^{\mu \nu}(\boldsymbol{x}) \equiv \int \frac{\mathrm{d}^{3} \boldsymbol{q}}{(2 \pi)^{3}} \frac{\langle\boldsymbol{q} / 2| \hat{T}^{\mu \nu}(\boldsymbol{x})|-\boldsymbol{q} / 2\rangle}{2 \sqrt{m^{2}+\boldsymbol{q}^{2} / 4}}
$$

- Original derivation by Sachs erroneous (see Miller, PRC99 (2019) 035202)
- More recent justification by Lorcé et al., EPJC 79 (2019) 89
- Example: spin-zero energy density and stress tensor

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{x}) & =m \int \frac{\mathrm{~d}^{3} \boldsymbol{q}}{(2 \pi)^{3}} \frac{1}{\sqrt{1+\boldsymbol{q}^{2} / 4 m^{2}}}\left\{A\left(-\boldsymbol{q}^{2}\right)+\frac{\boldsymbol{q}^{2}}{4 m^{2}}\left(A\left(-\boldsymbol{q}^{2}\right)+D\left(-\boldsymbol{q}^{2}\right)\right)\right\} e^{-i \boldsymbol{q} \cdot \boldsymbol{x}} \\
T^{i j}(\boldsymbol{x}) & =m \int \frac{\mathrm{~d}^{3} \boldsymbol{q}}{(2 \pi)^{3}} \frac{1}{\sqrt{1+\boldsymbol{q}^{2} / 4 m^{2}}}\left(\frac{q^{i} q^{j}-\boldsymbol{q}^{2} \delta^{i j}}{2}\right) D\left(-\boldsymbol{q}^{2}\right) e^{-i \boldsymbol{q} \cdot \boldsymbol{x}}
\end{aligned}
$$

See Polyakov \& Schweitzer, Int. J. Mod. Phys. A 33 (2018) for a great review

- Consider hadron as a medium \& wave function as an arbitrary test function
- Newer idea due to Yang Li et al., PLB 838 (2023) 137676
- Hadron has potential to contribute to monopole, dipole, etc. densities.
- Each of these is an intrinsic property!
- Breit frame density emerges as leading, monopole term in infinite expansion:

$$
T^{\mu \nu}(\boldsymbol{x}, t)=\int \mathrm{d}^{3} \boldsymbol{R} \mathcal{P}(\boldsymbol{R}, t) T_{\mathrm{BF}}^{\mu \nu}(\boldsymbol{x}-\boldsymbol{R})+\ldots
$$

- Higher-order (e.g. quadrupole) densities negligible if packet width $\gtrsim \lambda_{C}$.
see AF \& Miller, 2210.03807

- Stark contrast to the non-relativistic case, where:

Light front coordinates

$$
\rho_{\text {phys }}(\mathbf{x}, t)=\int \mathrm{d}^{3} \mathbf{R}\left|\Psi_{\text {bar }}(\mathbf{R}, t)\right|^{2} \rho_{\text {internal }}(\mathbf{x}-\mathbf{R})
$$

- The simplicity owes to the Galilean symmetry of non-relativistic physics.
- But the Poincaré group has a Galilean subgroup!
- Light front coordinates exploit this subgroup to simplify densities.

$$
x^{ \pm}=t \pm z \quad \mathbf{x}_{\perp}=(x, y) \quad \tau=x^{+}=\text {time }
$$

- Light front coordinates are a different foliation of spacetime.
- Entail a new synchronization convention.
- Entail a new spatial grid.

$$
x^{ \pm}=t \pm z
$$

$$
\mathbf{x}_{\perp}=(x, y)
$$

$$
x^{+}=t+z=\text { time }
$$

Minkowski coordinates

Light front coordinates

Einstein synchronization

Light front synchronization

- Einstein synchronization defined to be isotropic.
- Light front synchronization defines hyperplanes with fixed $t+z$ to be "simultaneous."
- Light travels instantaneously in $-z$ direction by definition.
- We take what we see as literally happening now.

Transverse boosts and Terrell rotations

- Lorentz-boosted objects appear rotated.
- Terrell rotation (PR116, 1959)
- Optical effect: contraction + delay
- Light front transverse boost undoes Terrell rotation:

$$
B_{x}^{(\mathrm{LF})}=K_{x}-J_{y}
$$

- Standard boost + counter-rotation
- Leaves x^{+}(time) invariant
- Part of the Galilean subgroup

Dice images by Ute Kraus, https://www.spacetimetravel.org/

- Poincaré group has a $(2+1)$ D Galilean subgroup.
- x^{+}is time and \mathbf{x}_{\perp} is space under this subgroup.
- x^{-}can be integrated out.
- $P^{+}=\frac{1}{\sqrt{2}}\left(E_{\mathbf{p}}+p_{z}\right)$ is the central charge.
- x^{+}and P^{+}are invariant under this subgroup!
- Basically, light front coordinates should give a fully relativistic 2D picture that looks like non-relativistic physics.
- But with P^{+}in place of M.

$$
\begin{aligned}
& \frac{\mathrm{d} \mathbf{P}_{\perp}}{\mathrm{d} x^{+}}=P^{+} \frac{\mathrm{d}^{2} \mathbf{x}_{\perp}}{\mathrm{d} x^{+^{2}}} \\
& \qquad H=P^{-}=H_{\text {rest }}+\frac{\mathbf{P}_{\perp}^{2}}{2 P^{+}} \\
& \mathbf{v}_{\perp}=\frac{\mathbf{P}_{\perp}}{P^{+}}
\end{aligned}
$$

The cost: lose one spatial dimension (2D densities).

- All momenta can be finite.
- We didn't boost.
- LFCs are not the IMF.

- LFCs are not the IMF.
- They're also not rest frames.
- They're not even Cartesian.
- The reason is x^{-}.
- Fixed x^{-}is lightlike.

Tilted coordinates

$$
\begin{aligned}
& \tilde{\tau}=t+z \\
& \tilde{x}=x \\
& \tilde{y}=y \\
& \tilde{z}=z
\end{aligned}
$$

- First defined by Blunden, Burkardt \& Miller.
- Phys. Rev. C61 (2000) 025206
- Use light front time.
- Use light front synchronization!
- Time invariant under Galilean subgroup.
- Use Cartesian spatial coordinates.
- Can furnish a rest frame!
- Mind the strange metric...

$$
\tilde{g}_{\mu \nu}=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} \tilde{\tau}^{2}-2 \mathrm{~d} \tilde{\tau} \mathrm{~d} \tilde{z}-\mathrm{d} \tilde{\boldsymbol{x}}_{\perp}^{2} \\
\partial^{2} & =-2 \tilde{\partial}_{z} \tilde{\partial}_{\tau}-\tilde{\boldsymbol{\nabla}}^{2}
\end{aligned}
$$

See AF \& Miller, PRD107 (2023) 074036 for full description!

- Energy \& momentum are spacetime translation generators.

$$
\mathrm{i}[\tilde{E}, \hat{M}]=\frac{\partial \hat{M}}{\partial \tilde{\tau}} \quad-\mathrm{i}[\tilde{\boldsymbol{p}}, \hat{M}]=\tilde{\nabla} \hat{M}
$$

- On-shell dispersion relation:

$$
\tilde{E}=\frac{m^{2}+\tilde{\boldsymbol{p}}^{2}}{2 \tilde{p}_{z}}=\frac{m^{2}+\tilde{p}_{z}^{2}}{2 \tilde{p}_{z}}+\frac{\tilde{\boldsymbol{p}}_{\perp}^{2}}{2 \tilde{p}_{z}}
$$

Energy-momentum

$$
\begin{aligned}
\tilde{E} & =E \\
\tilde{p}_{x} & =p_{x} \\
\tilde{p}_{y} & =p_{y} \\
\tilde{p}_{z} & =E+p_{x}=p^{+}
\end{aligned}
$$

Velocity

$$
\begin{aligned}
\tilde{\boldsymbol{v}} & =\boldsymbol{\nabla}_{\boldsymbol{p}} \tilde{E} \\
\tilde{v}_{x} & =\tilde{p}_{x} / \tilde{p}_{z} \\
\tilde{v}_{y} & =\tilde{p}_{y} / \tilde{p}_{z} \\
\tilde{v}_{z} & =1-\tilde{E} / \tilde{p}_{z}
\end{aligned}
$$

Rest occurs when $\tilde{\boldsymbol{v}}=0$.

- All 16 components of EMT have clear meaning in tilted coordinates.
- The energy density integrates to the usual "instant form" energy.

$$
\tilde{E}=E
$$

- Relativistically exact energy density.
- Will give standard mass decomposition.
- Can describe system at rest.
"

Energy density

Momentum densities

$$
\tilde{T}^{\mu}{ }_{\nu}(x)=
$$

- Physical energy-momentum tensor:

$$
\int \mathrm{d} \tilde{z}\langle\Psi| \hat{T}^{\mu}{ }_{\nu}(x)|\Psi\rangle=\int \mathrm{d}^{3} \tilde{\boldsymbol{R}} \mathscr{P}_{\nu \alpha}^{\mu}{ }_{\nu}^{\beta}(\tilde{\boldsymbol{R}}, \tilde{\tau}, \Psi)\left[\tilde{T}^{\alpha}{ }_{\beta}\left(\tilde{\boldsymbol{x}}_{\perp}-\tilde{\boldsymbol{R}}_{\perp}\right)\right]_{\mathrm{internal}}
$$

- Smearing function contains all wave packet \& velocity dependence.
- Only smearing function modified by Lorentz boosts.
- Internal density is boost-invariant. (due to Galilean subgroup)
- Internal density is rest frame density!
- Galilean subgroup allows such a separation.
- Multiple separations exist.
- Will describe scheme for separation in upcoming work.
- I'm short on time; will just give results for internal densities.
- $-\tilde{T}^{0}{ }_{3}=T^{++}$gives $\tilde{P}_{z}=P^{+}$density

$$
\begin{aligned}
& \rho_{P+}^{(\mathrm{LF})}\left(\mathbf{b}_{\perp}, \mathbf{s}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} \frac{\left\langle p^{\prime}, \mathbf{s}_{\perp}\right| T^{++}(0)\left|p, \mathbf{s}_{\perp}\right\rangle}{2 m} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \\
& \text { Set } \tilde{P}_{z}=P^{+}=m \text { for rest. } \\
& \text { Works for any polarization state. } \\
& \text { Structure relative to center-of- } P^{+} . \\
& \text {Boost invariance: } \mathbf{P}_{\perp} \text { independent! }
\end{aligned}
$$

- Get back standard P^{+}density!

Helicity +1
Helicity state $(\lambda=+1)$

Helicity 0
Helicity state ($\lambda=0$)

$\tilde{P}_{z}=P^{+}$density depends on helicity for spin-one targets.
AF \& Wim Cosyn, PRD106 (2022) 114013

Transverse, $m_{s}=+1$

Transverse, $m_{s}=0$

Transverse polarization contains helicity-flip contributions.
AF \& Wim Cosyn, PRD106 (2022) 114013

Why $\sin \phi$ moduilations?

- P^{+}density of transpol. deuteron.
- Spin-up along x-axis
- But left-handed coords.
- This is the P^{+}density in every frame.
- Includes the rest frame.
- Not an IMF artifact!
- Never boosted to IMF.
- Effect of synchronization scheme.
- Effect of taking what we see literally.
- This is a known effect; relativistic wheel.
- Explained by George Gamow in 1938, Mr Tompkins in Wonderland

Trans. pol. deuteron

Static wheel

Spinning wheel

- Static wheel has regularly-placed spokes.
- Consider spinning wheel, axis oblique to observer.
- The wheel is considered at rest.
- Spokes moving away are redshifted.
- Appear to move slower.
- Pile up; appear to become denser.
- Spokes moving towards are blueshifted.
- Appear to move faster.
- Appear to become rarer.
- These same distortions are present in nuclei!
- Light front densities bake in optical effects.
- Also see videos at:
https://www.spacetimetravel.org/rad (green wheel is relevant case)

$$
\mathcal{P}_{\perp}^{(\mathrm{LF})}\left(\mathbf{b}_{\perp}, \mathbf{s}_{\perp}\right)=\left.\int \frac{\mathrm{d}^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} \frac{\left\langle p^{\prime}, \mathbf{s}_{\perp}\right| T^{+i}(0)\left|p, \mathbf{s}_{\perp}\right\rangle}{2 m} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}}\right|_{\boldsymbol{P}_{\perp}=0, P^{+}=m}
$$

- $-\tilde{T}_{i}^{0}=T^{+i}$ gives $\tilde{\boldsymbol{P}}_{\perp}=\boldsymbol{P}_{\perp}$ density
- Works for any polarization state.
- Structure relative to center-of- P^{+}.
- Proton dipole model on right
- $f_{2}(1270)$ pole.
- Longitudinal polarization

$$
\mathcal{E}_{\perp}^{(\mathrm{LF})}\left(\mathbf{b}_{\perp}, \mathbf{s}_{\perp}\right)=\left.\frac{1}{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} \frac{\left\langle p^{\prime}, \mathbf{s}_{\perp}\right| T^{++}(0)+T^{+-}(0)\left|p, \mathbf{s}_{\perp}\right\rangle}{2 m} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}}\right|_{\boldsymbol{P}_{\perp}=0, P^{+}=m}
$$

- $-\tilde{T}^{0}{ }_{i}=T^{+i}$ gives $\tilde{\boldsymbol{P}}_{\perp}=\boldsymbol{P}_{\perp}$ density
- Works for any polarization state.
- Showing light front helicity state.
- Structure relative to center-of- P^{+}.
- Proton dipole model on right
- $f_{2}(1270)$ pole.
- Longitudinal polarization
- Use $D(0)=-2$ [from lattice]
[Pefkou et al., PRD 105 (2022)]
- $D(t)$ has extra σ pole
- Radius $0.53 \mathrm{fm}>0.45 \mathrm{fm}$

Conclusions \& outlook

- The energy-momentum tensor encodes interesting internal properties of hadrons.
- Energy \& momentum densities among them
- Also stresses, but I didn't have time to cover these
- There are subtleties in how to identify "internal" properties here.
- Tilted light front coordinates allow exact relativistic rest frame densities
...and, most importantly:
Thanks for your time and attention!

