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BChPT: a long saga...
Numerous versions:

• Ordinary (only spin 1/2 baryons) BChPT: relativistic, non-relativistic

• BChPT including spin 3/2 baryons: relativistic, non-relativistic

• Different regularization schemes

Key issue: limited convergence range

• GB ChPT: expansion in powers of p2

• BChPT: expansion in powers of p

An even bigger issue: what happens at large Nc?

• GB ChPT:loops suppressed by factors of 1/Nc

meson theory becomes tree level at large Nc

• BChPT: loops enhanced by factors of Nc

baryon theory needs a formulation consistent with Nc power constraints

Nc
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FIG. 4: Absorptive part of the γNN vertex with final nucleon off the mass shell, used in the

sideways dispersion relation for the nucleon a.m.m.. Diagram (a) : π+n loop where the photon
couples to the π+; diagram (b) : π0p loop where the photon couples to the charge of the proton.
The vertical dotted lines indicate that the πN intermediate state is taken on shell.

0 0.2 0.4 0.6 0.8 1
mΠ2!GeV2"

1

2

3

4 Proton magnetic moment

SR

IR

HB

!

0 0.2 0.4 0.6 0.8 1
mΠ2!GeV2"

0

"1

"2

"3

Neutron magnetic moment

!

FIG. 5: Chiral behavior of proton and neutron magnetic moments (in nucleon magnetons) to one
loop compared with lattice data. “SR” (dotted lines): our one-loop relativistic result, “IR” (blue

long-dashed lines): infrared-regularized relativistic result, “HB” (green dashed lines): LNA term
in the heavy-baryon expansion. Red solid lines: single-parameter fit based on our SR result. Data

points are results of lattice simulations. The open diamonds represent the experimental values at
the physical pion mass.

0.1 0.2 0.3 0.4
mΠ2!GeV2"

0.2

0.4

0.6

0.8

1 #Α$Β$%#Α$Β$LNA

proton

neutron

FIG. 6: The ratio of the one-loop proton (solid curves) and neutron (dashed curves) forward

polarizabilities to their LNA terms in the heavy-baryon expansion.
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One illustration of the problem: magnetic moment vs mq

[Holstein et al (2005)]

Nc power of different hadronic quantities can be determined
using various arguments: QMs, Feynman diagrams, etc
’tHooft expansion: Nf fixed, mq fixed, mρ fixed

Mπ = O(Nc
0)

Fπ = O(
√
Nc)

mB = O(Nc)
gA = O(Nc) ⇒

Well defined large Nc limit imposes constraints!

ordinary BChPT



• BChPT x 1/Nc: brief basics

• Masses, sigma terms

• Vector charges in SU(3)

• Axial couplings in SU(3)

• Summary, comments

OUTLINE



• The need for combining BChPT and 1/Nc

• Ordinary BChPT (only S=1/2 baryons) has poor convergence

• gπN is large: need for large CTs

• Inclusion of S=3/2 baryons gives significant improvement

in convergence: [Jenkins & Manohar; many others]

• Consistency with 1/Nc expansion of QCD necessary



• Emergent dynamical spin-flavor symmetry
[Gervais & Sakita; Dashen & Manohar] last millenium

+

O(N)O(N)

∼ kik�j

k0

g̊2
AN2

c
F 2

π
�B� | [Xia, Xjb] | B�

must be order N0
c

Xia axial current

key requirement at large Nc[Xia, Xjb] = O(1/Nc)

generate contracted               dynamical symmetrySU(2Nf ){T a, Si, Xia}

Baryons vs Nc

LπBint = i
gA
Fπ

∂µπ
aAaµ

π couples to axial currents

gA = O(Nc)

[Gervais & Sakita; Dashen & Manohar (last millenium)]



classify baryons in multiplets of SU(2Nf ) with generators {T a, Si, Gia}

Gia = NcXia

Spin-flavor multiplets

| {z }
Nc

S:

Ncz }| {
···

MS:

Nc−1
z }| {

56-plet 70-plet Nc = Nf = 3

Known states fit into 56 and 70- plets of SU(6)
No experimentally established 20-plet or “pentaquark“type states

José L. Goity Hampton University/Jefferson Lab The 1/Nc Expansion at the Hadronic Level

ground state baryons: tower with S = 1
2 · · ·

Nc
2

states in SU(2)× SU(3) : [S,R] = [S, (2S,
1

2
(N − 2S))]Nf = 3

spin flavor symmetry as starting point for the 1/Nc expansion

Spin-flavor Symmetry

• symmetry of spectrum at large Nc

• dynamical symmetry: not a Noether symmetry!

• imposes constraints in effective Lagrangians: relations between LECs



1
Nc

expansion as spin-flavor operator product expansion

�B� | ÔQCD | B� =
�

n Cn
1

Nνn−1
c

�B� | Ôn | B�

On : tensor operator product of spin-flavor generators and momenta
νn : spin-flavor n-bodyness of On

Example: mass operator in chiral limit:
HQCD ⇒ Ncm0 + CHF

1
Nc

Ŝ
2 +O( 1

N3
c
)Ŝ4 + · · ·

expansion is in 1/N2
c
, m∆ −mN = O( 1

Nc
)

A test: gAs
gN∆
A

gN
A

= 1 +O( 1
N2

c
) [Dashen & Manohar]

gNA = −1.2724± 0.0023 gN∆
A = −1.235± 0.011



• BChPT x 1/Nc: brief basics

• mB = O(Nc) ⇒ HB expansion is a 1/Nc expansion

• Lagrangians built with chiral and spin-flavor tensor operators:

B† Tχ ⊗ TSF B

B =





BS=1/2

BS=3/2
.
.
.

BS=Nc/2




GS tower of baryon fields

Tχ chiral tensor TSF spin-flavor tensor product of SU(6) generators

chiral and 1/Nc power counting determined by operators

LECs: chosen to be O(N0
c
) , have a 1/Nc expansion themselves

each Lagrangian term has a well defined leading chiral and 1/Nc power

need to link chiral and 1/Nc expansions: small mass scale ∆HF = m3/2 −m1/2

ξ expansion: ξ = O(1/Nc) = O(p)



L(1)
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Lagrangians to order ξ3

[E. Jenkins; R. Flores-Mendieta et al; A. Calle-Cordon & JLG; I. Fernando & JLG]

g̊A = 6
5g

N
A



Chiral loops

p0

k

O(1/Nc)

=

�
ddk

(2π)d
i

k2 −M2
π

i

p0 + k0 − (mB� −mB)� �� �
× vertex factors

contains non-analytic terms:

(M2
π − (m∆ −mN )2)

3
2 , tanh−1

�
(m∆−mN )√

1/(−M2
π+(m∆−mN )2

�

link 1/Nc and chiral expansions:

ξ expansion: ξ = O(1/Nc) = O(p)

equivalent to not expanding non-analytic terms

giving νp = 3 as it is well known, and ν1/Nc = −1. Since there is only one possible diagram,

this must be consistent by contributing O(Nc) to the spin-flavor singlet component of the

masses, which is the case as shown in the next section. For the axial currents one has the

diagrams in Fig. 2. The current at tree level is O(Nc), and the sum of the diagrams cannot

scale like a higher power of Nc. Performing the counting for the individual diagrams one

obtains: νp(j) = 2 for j = 1, · · · , 4, and ν1/Nc(j) = −2, j = 1, 2, 3 and ν1/Nc(4) = 0. Thus

a cancellation must occur of the O(N2
c
) terms when the contributions to the axial currents

by diagrams 1, 2 and 3 are added. Since the acceptable bound is that the sum be O(Nc),

one concludes that the axial current has, at one-loop, corrections O(p2Nc) or higher.

One can consider the case of two-loop diagrams, in particular diagrams where the same

pion-baryon vertex Eq.(6) appears four times. For the masses one has νp(j) = 5, and

individual diagrams give ν1/Nc = −2. A cancellation must occur to restore the bound on

the Nc counting for the masses, i.e., O(Nc). Thus, at two-loops the UV divergencies of the

masses must be O(p5Nc) or higher. For the axial currents a similar discussion requires that

counter-terms to the axial currents must be O(p4Nc) or higher.

Defining the linked power counting ξ by: O(1/Nc) = O(p) = O(ξ), the ξ order of a given

Feynman diagram will be simply equal to νp + ν1/Nc as given by Eqs.(10) and (11), which

upon use of the topological formulas Eq.(9) leads to:

νξ = 1 + 3L +
nπ

2
+

�

i

ni (νOi + νpi − 1). (12)

The ξ-power counting of the UV divergencies is obvious from the earlier discussion. At

one-loop one finds that the masses have O(ξ2) and O(ξ3) counter-terms, while the axial

currents will have O(ξ) and O(ξ2) counter-terms. To two loops one expects O(ξ4) and

O(ξ5), and O(ξ3) and O(ξ4) counter-terms for masses and axial currents respectively. The

non-commutativity of limits is manifested in the finite terms where Mπ and or momenta

and δm appear combined in non-analytic terms, and are therefore sensitive to the linking of

the two expansions.

III. BARYON MASSES

In this section baryon masses are analyzed to order ξ3, or next-to-next to leading order

(NNLO), in the limit of exact isospin symmetry. To that order the mass of the baryon of

10



• Masses, sigma terms: SU(3)

WF renormalization factor is O(Nc) !
plays key role in Nc power counting consistency in loops

• mass corrections are O(Nc) (terms proportional to M3
GB)

• SU(3) mass splitting of course O(N0
c )

SU(2)

FIG. 3: Combined fits to PACS-CS [36] and LHP [41] corresponding to the results shown in the

first row of Table I. LO (black long-dashed line), NLO (black short-dashed line) and NNLO for N

(blue solid line) and ∆ (red solid line). The bands correspond to the theoretical 68% confidence

interval.

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ ∼ mρ.

2. Parameters appearing at lower orders, namely m0, g̊A, CHF remain stable at higher

orders, except c1 which changes by more than the estimated 30% when increasing the

order in ξ of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO

where only with three parameters one can extrapolate to the correct experimental

values. This is not surprising taking into account that a single straight line can be use

for consistent fit [35].

4. For the case of the axial current, cancellations of large contributions from individual

loop diagrams are very pronounced and the almost flat behavior of gA as a function of

Mπ obtained in LQCD is naturally explained. This is shown in the left panel of Fig. 4

which shows the finite one-loop contributions to gNN

A
from each diagram (µ = 700

MeV). As stated in Eq. (22) this cancellation is exact in the large Nc limit. However,

at Nc = 3 this cancellation is not exact but still quite pronounced (black curve in

Fig. 4), and plays the key role in explaining the small dependence in Mπ. A similar

20

FIG. 4: Finite parts of the one-loop contributions to gNN
A . The upper left panel shows the individual

contributions of the diagrams in Fig. 2 up to O(ξ3). The right panel shows the corresponding effect

of switching off the contribution of the ∆ in the loops. The third panel shows the effect of removing

the contributions of the counter-terms to the masses. Throughout µ = 700 MeV.

cancellation occurs between the contributions of N and ∆ in the loop. This is shown

in the right panel of Fig. 4.

5. The physical gNN
A cannot be fitted along with the lattice results, instead the lattice

results and the expansion to NNLO extrapolate to a value 12% smaller value than the

physical one. The recent LQCD results [61] which reach further down in Mπ continue

that trend. This seems to be therefore an issue with the LQCD calculations rather

than the effective theory. In fact, it would be very unnatural for the effective theory

to describe a relatively fast changing pattern at low Mπ, to continue with the slow

changing behavior at larger Mπ, which it can describe in a natural fashion.

21

[A. Calle-Cordon & JLG]
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Mπ dependency from LQCD (MK ∼ 500 MeV):
poor convergence above Mπ ∼ 250 MeV

[Alexandrou et al (2014), ETMC LQCD Coll.

octet and decuplet baryon masses

SU(3) [I. Fernando & JLG]



Mass relations

GMO

∆GMO = −
�

g̊A

4πFπ

�2�
2π
3 (M3

K
− 1

4M
3
π − 2√

3
(M2

K
− 1

4M
2
π)

3
2 )

+ 2CHF

Nc

�
−M2

K
logM2

K
+ 1

4M
2
π logM2

π + (M2
K
− 1

4M
2
π) log(

4
3M

2
K
− 1

3M
2
π)
��

+O(1/N3
c )

in large Nc, ∆GMO is O(1/Nc)

= 37 MeV +O(1/N3
c )

ES

∆GR = mΞ∗ −mΣ∗ − (mΞ −mΣ) = 0, Exp: 21± 7 MeV,

GR

∆ES = mΞ∗ − 2mΣ∗ +m∆ =

Th: −
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N
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gN
A
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πN σ-term

S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d − 2s̄s contribution to the nucleon mass

a
Theory Center, Jefferson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (∆GMO) and σ̂ = m̂�N |ūu+ d̄d−2s̄s|N�/2mN in large Nc chiral effective field theory
up to order (ms − m̂)3/2. We generalize the known O(ms − m̂) results to arbitrary number of colors and calculate the (ms − m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, ∆GMO and σ̂, are
extremely similar. For both, the (ms − m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find ∆GMO = 38(??) MeV and σ̂ = 57(??) MeV up to order (ms − m̂)3/2. The latter, together with the value of σs, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of σs at the physical point, we obtain a value of
σπN = 60(??) MeV. This result gives a strong support to the phenomenological determinations of σπN versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (σπN), and sigma strange (σs),

σπN =
m̂

2mN

�N |ūu + d̄d|N� (1)

σs =
ms

2mN

�N |s̄s|N�, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for σs one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for σπN is much more involved. On the one hand,
LQCD points to a small value, σπN ≈ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern πN-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

σ̂ =
m̂

2mN

�N |ūu + d̄d − 2s̄s|N�, (3)

one finds a simple relation between σπN , σ̂ and σs,

σπN = σ̂ +
2m̂

ms

σs. (4)

Since σs ∼ 40 MeV, the contribution of σs in (4) is negligi-
ble, and therefore σπN ≈ σ̂. The value of σ̂ can be estimated at
O(ms − m̂) from the octet mass breaking [13]

σ̂ =
m̂

ms − m̂
(mΞ + mΣ − 2mN) = 24 MeV. (5)

However, O((ms − m̂)3/2) corrections may be important. In
Ref. [6] an O((ms−m̂)3/2) calculation in relativistic chiral effec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found σ̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of σ̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms − m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of σ̂ obtained in [6] and ultimately
the phenomenological value of σπN , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and σ̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms − m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections σ̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, σπN = 60(??) MeV. This result gives a
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Figure 1: Left panel: summary of the determinations of σπN from πN scattering (blue), from LQCD (red), and from this work showing the

combined fit and theoretical error. Right panel: N and ∆ masses from Fit 2 of Table 1: physical and LQCD masses from [32]. The squares are the

results from the fit and the error bands correspond to 68% confidence interval.

∆GMO and the nucleon σ terms. The value of σπN = 69±10 MeV obtained here from including LQCD baryon masses

agrees with the more recent results from πN analyses, where the increase in value with respect to previous analyses

has been understood as a result of the values of the input scattering lengths, and strongly disfavor the values from

recent LQCD evaluations. The tension between results, which includes LQCD, remains as an important problem to

which the present approach can hopefully contribute with useful insights. The resolution of that tension will in turn

provide a validation test of the approach.
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present work. ∆GMO
3

and ∆σ8 are thus determined by the meson masses and by the LECs g̊A/Fπ, and CHF . ∆GMO

depends rather smoothly on CHF , and drives to a large extent the determination of g̊A/Fπ. One finds the interesting

fact that the ratio ∆σ8/∆GMO, which is independent of g̊A/Fπ, is also almost entirely independent of the value of CHF

in a very wide range around its actual value. For Nc = 3, σ8/∆GMO ∼ −13.5, which translates into ∆σ̂/∆GMO ∼ 1.68.

The analysis of the physical octet and decuplet baryon masses suffice to make the main point of this work. In this

case, the LECs c2, c3 and h1 are set to vanish, because at the order of the calculation they are redundant (actually h1 is

altogether irrelevant unless Nc ≥ 5). A fit is carried out including strong and electromagnetic isospin breaking. This

requires using the meson masses with isospin breaking, which include η − π0
mixing (required to have a consistent

renormalization of the baryon masses) and the electromagnetic mass shifts where Dashen’s theorem is used, which

should be sufficient for the current application. The electromagnetic addition to ∆GMO is equal to − 4

3
β, while the

strong isospin breaking has negligible effect, and the electromagnetic contribution to the p-n mass difference is equal

to α + β. The result of the fit to physical masses is shown in Table 1, Fit 1.

g̊A
Fπ

M0

Nc
CHF c1 c2 h2 h3 h4 α β

Fit MeV
−1

MeV MeV MeV MeV

1 0.0126(2) 364(1) 166(23) −1.48(4) 0 0 0.67(9) 0.56(2) −1.63(24) 2.16(22)

2 0.0126(3) 213(1) 179(20) −1.49(4) −1.02(5) −0.018(20) 0.69(7) 0.56(2) −1.62(24) 2.14(22)

3 0.0126
∗

262(30) 147(52) −1.55(3) −0.67(8) 0 0.64(3) 0.63(3) −1.63
∗

2.14
∗

∆
phys

GMO σ8 ∆σ8 σ̂ σπN σs σ3 σu+d(p − n)

MeV MeV MeV MeV MeV MeV MeV MeV

1 25.6(1.1) −583(24) −382(13) 70(3)(6) − − −1.0(3) −1.6(6)

2 25.5(1.5) −582(55) −381(20) 70(7)(6) 69(8)(6) −3(32) −1.0(4) −1.6(8)

3 25.8∗ −615(80) −384(2) 74(1)(6) 65(15)(6) −121(15) − −

Table 1: Results from fits to baryon masses. Fit 1 uses only the physical octet and decuplet masses, Fit 2 uses the physical and the LQCD masses

from Ref. [24] with Mπ � 300 MeV, and Fit 3 uses only those LQCD masses and imposes the value of ∆
phys

GMO determined by the physical masses.

The renormalization scale µ and the scale Λ are taken to be equal to mρ. ∗ indicates an input. An estimated theoretical error of 6 MeV is indicated

for σ̂ and σπN .

The information given by LQCD, where the baryon masses have been obtained with MK approximately constant

and varying mu = md in a range where 213 MeV < Mπ < 430 MeV [24], is very useful for testing the effective theory,

and necessary for calculating σπN . Two different fits that include LQCD baryon masses were performed, shown in

Table 1. One fit combines the physical and LQCD masses, up to Mπ ∼ 300 MeV, and the other uses only LQCD and

3∆GMO corresponds to having removed the EM corrections, otherwise it is denoted by ∆
phys

GMO

4

σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ%m̂Þ

σΣ%ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.

I. P. FERNANDO and J. L. GOITY PHYS. REV. D 97, 054010 (2018)
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Vector charges
[R.Flores-Mendieta & JLG; I.P.Fernando & JLG]

charge radii up to the order of the calculation. More details will be presented elsewhere in

a study of the form factors of the the vector currents. In the context of the charge form

factors, studies implementing the 1/Nc expansion for extracting the long distance charge

distribution of the nucleon has been carried out in Refs. [66–69].

A B

C

D E

p0

p0

p0 p0

p0

p0

q,a q,a

q,aq,a

q,a q,a

FIG. 2: Diagrams contributing to the 1-loop corrections to the vector charges.

V. AXIAL COUPLINGS

The axial vector currents are studied to one-loop. At the tree level the axial vector currents

have two contributions, namely the contact term and the GB pole ones, and reads:

Aµa = g̊AG
ja(gµj − qµqj

q2 −M2
a

). (36)

22

SU(3) breaking corrections to the vector currents:

Ademollo-Gatto theorem at O(ξ2)
non-analytic calculable corrections to AGTh O(N0

c ),

different spin baryons in loop give O(Nc) terms!
key cancellations give Nc consistency



SU(3) breaking to vector charges

• parameter free result

Vector current form factors:

• EM and SU(3): work in progress (I. Fernando and JLG)

• Charge FF: peripheral component (J. M. Alarcon and C. Weiss)
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FIG. 5. Comparison of percentage SU(3)-breaking in f1 determined in this work, highlighted by the shaded bands, with that
of other calculations. The error bands for our results are those given in Table II combined in quadrature. Blue squares, green
circles and orange triangles denote results of quark model [10, 11], 1/Nc expansion [12] and chiral perturbation theory [14, 16, 40]
approaches respectively, while the pink diamonds show results from lattice QCD [18, 20]. The red stars show the results of
this work at Q2 = 0 (solid line), where we have corrected from �q = 0 to Q2 = 0 using the dipole form given in Eq. (29), and at
Q2 = −(MB −MB�)2 (dotted line).

our lattice simulations with fixed zero sink momentum),
with the physical values of the baryon masses B1 and B2,
instead of at Q2 = 0 as is standard. Moving to Q2 = 0
would reduce the magnitude of each form factor, i.e., in-
crease the SU(3)-breaking effect in each case (as will be
shown explicitly later). As described in the previous sec-
tion, the quoted uncertainties allow for 20% variation of
the low-energy constants D, F and C from their SU(6)
values, and for the FRR dipole regulator mass Λ to vary
in the range 0.6-1 GeV. Furthermore, we allow M0, the
heavy-baryon mass scale used to account for leading rel-
ativistic (or kinematic) corrections, to vary between the
chiral-limit value and the average octet baryon mass at
the physical point. We also account for uncertainties in
the finite-volume corrections as described in the previous
section.

Figure 4 shows the results from Table II graphically,
alongside the results obtained using an identical analysis
but omitting either finite-volume corrections or contribu-
tions from decuplet baryon intermediate states. Clearly,
all results are stable under these changes. Previous pure–
effective-field-theory calculations of these quantities (e.g.,
Ref. [15]) have typically been very sensitive to decuplet
baryon effects. We attribute this difference primarily to
our use of the FRR scheme.

Following the work in Refs. [25, 41, 42], we are also
able to use the chiral extrapolation formalism to deter-
mine the effect of a non-zero light quark mass difference
(mu �= md) on our results. As we find such charge-
symmetry violating effects to be one to two orders of

magnitude smaller than the SU(3)-breaking effects, we
neglect these differences. Explicitly, we find the differ-

ence in the quantity (f1/f
SU(3)
1 − 1) × 100 for Σ− → n

and Σ0 → p and also Ξ0 → Σ+ and Ξ− → Σ0 to be in the
range 0.03–0.04, which is an order of magnitude smaller
than the statistical uncertainties of our calculation.
Finally, to estimate the magnitude of the effect caused

by the non-zero values of Q2 used in our analysis, we
have corrected from Q2 = −(MB1 − MB2)

2 to Q2 = 0
using the standard dipole parameterisation which is used
to fit experimental results [43]:

f1(Q
2) =

f1(0)

(1 +Q2/M2
V )

2
, (29)

where MV = 0.97 GeV is chosen, generally universally
across the baryon octet, for strangeness-changing (and
0.84 GeV for strangeness-conserving) decays [44]. These
numbers may be more directly compared with the results
of previous analyses as shown in Fig. 5. It is clear that the
naive extrapolation in Q2 by Eq. (29) causes a significant
enhancement of the SU(3)-breaking in our results, partic-
ularly for the Σ → N transition where in our calculation
the value of Q2 is the largest. We emphasize that our
numerical results are presented in Table II and obtained
at non-zero values of Q2; the Q2 = 0 results are merely
shown to facilitate comparison with other work and are
obtained using Eq. (29) with no attempt to quantify the
model-dependence of the extrapolation.
It is clear from Fig. 5 that quark models in general

predict negative corrections from SU(3)-breaking [10, 11]

[Fig from Shanahan et al (2015)]

• •• •
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heavy-baryon mass scale used to account for leading rel-
ativistic (or kinematic) corrections, to vary between the
chiral-limit value and the average octet baryon mass at
the physical point. We also account for uncertainties in
the finite-volume corrections as described in the previous
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Figure 4 shows the results from Table II graphically,
alongside the results obtained using an identical analysis
but omitting either finite-volume corrections or contribu-
tions from decuplet baryon intermediate states. Clearly,
all results are stable under these changes. Previous pure–
effective-field-theory calculations of these quantities (e.g.,
Ref. [15]) have typically been very sensitive to decuplet
baryon effects. We attribute this difference primarily to
our use of the FRR scheme.
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able to use the chiral extrapolation formalism to deter-
mine the effect of a non-zero light quark mass difference
(mu �= md) on our results. As we find such charge-
symmetry violating effects to be one to two orders of

magnitude smaller than the SU(3)-breaking effects, we
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ence in the quantity (f1/f
SU(3)
1 − 1) × 100 for Σ− → n

and Σ0 → p and also Ξ0 → Σ+ and Ξ− → Σ0 to be in the
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than the statistical uncertainties of our calculation.
Finally, to estimate the magnitude of the effect caused

by the non-zero values of Q2 used in our analysis, we
have corrected from Q2 = −(MB1 − MB2)
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using the standard dipole parameterisation which is used
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where MV = 0.97 GeV is chosen, generally universally
across the baryon octet, for strangeness-changing (and
0.84 GeV for strangeness-conserving) decays [44]. These
numbers may be more directly compared with the results
of previous analyses as shown in Fig. 5. It is clear that the
naive extrapolation in Q2 by Eq. (29) causes a significant
enhancement of the SU(3)-breaking in our results, partic-
ularly for the Σ → N transition where in our calculation
the value of Q2 is the largest. We emphasize that our
numerical results are presented in Table II and obtained
at non-zero values of Q2; the Q2 = 0 results are merely
shown to facilitate comparison with other work and are
obtained using Eq. (29) with no attempt to quantify the
model-dependence of the extrapolation.
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crease the SU(3)-breaking effect in each case (as will be
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tion, the quoted uncertainties allow for 20% variation of
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values, and for the FRR dipole regulator mass Λ to vary
in the range 0.6-1 GeV. Furthermore, we allow M0, the
heavy-baryon mass scale used to account for leading rel-
ativistic (or kinematic) corrections, to vary between the
chiral-limit value and the average octet baryon mass at
the physical point. We also account for uncertainties in
the finite-volume corrections as described in the previous
section.

Figure 4 shows the results from Table II graphically,
alongside the results obtained using an identical analysis
but omitting either finite-volume corrections or contribu-
tions from decuplet baryon intermediate states. Clearly,
all results are stable under these changes. Previous pure–
effective-field-theory calculations of these quantities (e.g.,
Ref. [15]) have typically been very sensitive to decuplet
baryon effects. We attribute this difference primarily to
our use of the FRR scheme.
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able to use the chiral extrapolation formalism to deter-
mine the effect of a non-zero light quark mass difference
(mu �= md) on our results. As we find such charge-
symmetry violating effects to be one to two orders of

magnitude smaller than the SU(3)-breaking effects, we
neglect these differences. Explicitly, we find the differ-

ence in the quantity (f1/f
SU(3)
1 − 1) × 100 for Σ− → n

and Σ0 → p and also Ξ0 → Σ+ and Ξ− → Σ0 to be in the
range 0.03–0.04, which is an order of magnitude smaller
than the statistical uncertainties of our calculation.
Finally, to estimate the magnitude of the effect caused

by the non-zero values of Q2 used in our analysis, we
have corrected from Q2 = −(MB1 − MB2)
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using the standard dipole parameterisation which is used
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where MV = 0.97 GeV is chosen, generally universally
across the baryon octet, for strangeness-changing (and
0.84 GeV for strangeness-conserving) decays [44]. These
numbers may be more directly compared with the results
of previous analyses as shown in Fig. 5. It is clear that the
naive extrapolation in Q2 by Eq. (29) causes a significant
enhancement of the SU(3)-breaking in our results, partic-
ularly for the Σ → N transition where in our calculation
the value of Q2 is the largest. We emphasize that our
numerical results are presented in Table II and obtained
at non-zero values of Q2; the Q2 = 0 results are merely
shown to facilitate comparison with other work and are
obtained using Eq. (29) with no attempt to quantify the
model-dependence of the extrapolation.
It is clear from Fig. 5 that quark models in general
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Q2 = 0

Q2 = ∆m2
B

tension with the Q2 = 0 LQCD results

Charge
f1

fSU(3)
1

f1

fSU(3)
1

− 1

[Flores-Mendieta & JLG:2014] [Villadoro:2006] [Lacour et al:2007] [Geng et al:2009]

HBChPT×1/Nc HBChPT with 8 and 10 HBChPT only 8 RBChPT with 8 and 10

Λp 0.952 −0.048 −0.080 −0.097 −0.031
Σ−n 0.966 −0.034 −0.024 0.008 −0.022
Ξ−Λ 0.953 −0.047 −0.063 −0.063 −0.029
Ξ−Σ0 0.962 −0.038 −0.076 −0.094 −0.030
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seen from those figures, f1(0) can be determined by a
very short interpolation from q2max, where we have very
accurate data |fS(q2max)| from the double ratio (18). This
is reason why the choice of the q2-interpolation form does
not much affect the interpolated value f1(0) significantly.

C. Chiral and continuum extrapolation of f1(0)

We next perform the chiral extrapolation of f1(0) in
order to estimate f1(0) at the physical point. In our
previous work [9], we adopt a global fit of the data on

f̃1(0) = f1(0)/f
SU(3)
1 (0) as multiple functions of M2

K −
M2

π and M2
K +M2

π as

f̃1(0) = C0+(C1+C2 · (M2
K +M2

π)) · (M2
K −M2

π)
2, (21)

whose form (denoted as Type 1) is motivated by the
AGT [11]. Our simulations on both 243 and 323 ensem-
bles are performed with a strange quark mass slightly
heavier than the physical mass [15, 16]. Therefore, the
third term that is proportional to M2

K +M2
π can manage

to compensate for a small difference in the simulated and
physical strange-quark masses in a posteriori way.
We first test the global fit on the results from the 243

and 323 ensembles separately. In Fig. 7, we plot the ex-
trapolated values of f̃1(0) at the physical point (open
symbols) as a function of (a/r0)2 where r0 denotes the
Sommer scale [32]. Different symbols, which are consis-
tent with each other within their errors, represent results
from three different interpolations: monopole, quadratic
and z-Exp fits. It is found that there is no significant
scaling violation due to the lattice discretization in the
vector couplings for both Σ → N and Ξ → Σ beta decays.
We then perform a combined global-fit of both 243 and

323 lattice data on f̃1(0) determined from the z-Exp fits
by using the Type 1 formula (Eq. (21)) ignoring possible
discretization errors. Fit results (Type 1 fit) are tabu-
lated in Table VII. We then get the vector coupling f1(0)
at the physical point as

fΣ→N
1 (0) = −0.9662(43), fΞ→Σ

1 (0) = +0.9742(28),
(22)

where the quoted errors are only statistical. The inclu-
sion of the new ensembles in our combined global-fit leads
to a reduction of the statistical error at the physical point
compared to our earlier work [9], which is performed only
on the 243 ensembles with less number of measurements.
Here, we recall that the value of C0 is supposed to be

unity since the vector current conservation atMK = Mπ,
while C0 obtained from the global fitting form (21) is
slightly off the unity beyond the statistical uncertainty
as listed in Table VII. The lattice discretization error
could be an origin of its slight deviation from the unity.
To take into account the lattice discretization correc-

tions into the fitting form ansätz, let us introduce the
second type of the global fit (denoted as Type 2), which

is given by

f̃1(0) =
(

C0 + C3a
2
)

+
(

C1 + C2 · (M2
K +M2

π)
)

· (M2
K −M2

π)
2, (23)

where C3 coefficient takes into account the lattice dis-
cretization error on each data of f1(0) calculated at two
different lattice spacings as the leading-order term. In
fact, an inclusion of the a2 correction term in the global
fit formula certainly cures the unity condition on C0 al-
beit with larger statistical uncertainties on each coeffi-
cient as shown in Table VII. Although the size of C3 is
very small compared to other coefficients, its inclusion
in the fitting ansätz is statistically relevant especially for
Σ → N decay data.
Finally, we set C0 = 1 as a theoretical constraint asso-

ciated to the SU(3) symmetric value in continuum and
then propose the third fitting formula (denoted as Type
3)

f̃1(0) =
(

1 + C3a
2
)

+
(

C1 + C2 · (M2
K +M2

π)
)

· (M2
K −M2

π)
2, (24)

which gives the better statistical uncertainties on all co-
efficients, whose values are consistent with the fit results
by the Type 2 formula (Eq. (23)) as summarized in Ta-
ble VII. We therefore choose the Type 3 formula for eval-
uating the final result of f̃1(0) at the physical point.
In Fig. 8, we plot the results of f̃1(0) for the Σ → N

(left panel) and Ξ → Σ (right panel) beta decays as a
function of M2

π together with the continuum value of
f̃1(0) at the physical point (diamond symbol), that is
determined through the combined global-fit of both 243

(circle symbols) and 323 lattice data (squared symbols)
with the Type 3 formula (Eq. (24)). In each panel, fitting
curves indicated by dashed curves represent the simulta-
neous fitting results on each data set calculated at all
simulated quark masses. The solid curve corresponds to
the continuum results given at the physical strange quark
mass.
We then get the continuum values of the vector cou-

pling f1(0) at the physical point as

fΣ→N
1 (0) = −0.9571(60), fΞ→Σ

1 (0) = +0.9755(39),
(25)

where the systematic uncertainties due to the lattice dis-
cretization error are also included in the quoted errors
as well as the statistical one. These values are shown
as filled diamond symbols in Fig. 7. The filled circle and
squared symbols are the extrapolated results from data of
f1(0) given by the different q2 interpolations. Although
the extrapolated value at the physical point in the con-
tinuum does not significantly depend on which type of
q2 interpolation as shown in Table VIII, we simply quote
the systematic uncertainties due to q2 interpolation as
the maximum difference among three types of q2 inter-
polations. As for the systematic uncertainty of the chiral
extrapolation, we read off a difference in the extrapolated

LQCD

[S. Sasaki, (2017)]

[R.Flores-Mendieta & JLG; I.P.Fernando & JLG]



Axial-vector currents

which calculated the couplings corresponding to the currents Ai3 and Ai8 within the octet

baryons and the decuplet baryons. give some brief description of the simulation. The LECs

that can be fitted with these results are: gA, C1
A · · · . In order to make a clear identification

of the different couplings, it is convenient to define the couplings in a convenient way, which

reflects the fact that the values of the axial couplings are approximately related by spin-

flavor symmetry. It is then convenient to write the zero momentum transfer matrix elements

of the axial currents as follows:

�B�
| Aia

| B� = 6

5
gaBB�

A �B�
| Gia

| B�. (50)

The results shown above for the UV divergencies of the one loop contributions imply that:

δgaBB�
A (UV div)/gaBB�

A = O(Chf/Nc) + O(mq/Nc). At LO, ggaBB�
A = gNA = 1.267. The

relations between the couplings gaBB�
A and the ones displayed in [59] are as follows:

�B8 | A
i=0 3

| B8� =
1

2
gB8
A

�B10 | A
i=0 3

| B10� =
1

6
gB10
A

�B8 | A
i=0 8

| B8� =
1

2
√
3
gB8
8

�B10 | A
i=0 8

| B10� =
1

6
√
3
gB10
8 (51)

where B8,10 is an octet (decuplet) baryon with spin projection +1/2, and the couplings on

the RHS are those used in [59] and displayed in Tables IV and V of that reference. The

LQCD results are given for several π and K masses. The values of Mπ for the different cases

are given in Table I of [59], and the corresponding MK is determined using the physical

masses by the LO relation: M2
K = MK

2
phys +

1
2(M

2
π −Mπ

2
phys), which corresponds to keeping

ms fixed.

The results of the fits are shown in Table ??

The results of [59] projected to the physical limit miss the physical gNA by a deficit of

about a 5 to 10 %, which has been a well known problem since the LQCD evaluations of

axial couplings started many years ago. Recent calculations of gNA have been able to give

consistent results [60], but those calculations are still missing for hyperons and the baryon

decuplet.

As illustration of the importance of including the decuplet in the effective theory, Fig.

?? shows the effect of removing it on the one-loop contributions. There is a dramatic

30

Definition of axial couplings

[Flores-Mendieta, Hernandez & Hofmann; Fernando & JLG] [SU(2): A. Calle-Cordon & JLG]

A D

E

B
q,ia

C
q,ia

p0
q,ia

p0

q,ia

p0 p0

p0
q,ia

p0

q,ia

p0
q,ia

p0

q,ia

F

p0 p0
q,ia

q,ia

FIG. 3: Diagrams contributing to the 1-loop corrections to the axial vector currents.

In the non-relativistic limit, or equivalently large Nc limit, the time component of the axial

vector current is suppressed with respect to the spatial components. The couplings associ-

ated with the latter are analyzed below to O(ξ2).

At the leading order the axial couplings are all given in terms of g̊A. For Nc = 3:

F = g̊A/3, D = g̊A/2, and the axial coupling in the decuplet baryons is H = g̊A/6.

The one-loop diagrams contributing at that order are shown in Fig. 3.

The matrix elements of interest for the axial currents are �B� | Aia | B� evaluated at

vanishing external 3-momentum. The axial couplings gBB�
A are conveniently defined by:

�B� | Aia | B� = gBB�

A

6

5
�B� | Gia | B� , (37)

which are O(N0
c ). The O(Nc) of the matrix elements of the axial currents is due to the

operator Gia. The factor 6/5 mentioned earlier is included so that gNN
A at Nc = 3 exactly

corresponds to the usual nucleon gA, which has the value 1.267± 0.004 [70].
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FIG. 4: Finite parts of the one-loop contributions to gNN
A : the upper left panel shows the individual

contributions of the diagrams in Fig. 2 up to O(ξ3), and the right panel shows the effect of switching

off the contribution of the ∆ in the loops. The third panel shows the effect of removing the

contributions of the counter-terms to the masses. Throughout µ = 700 MeV.

the NLO and NNLO effects are necessary to give the approximate linear behavior in

that range of Mπ.

4. For the case of the axial current, cancellations of large contributions from individual

loop diagrams are very pronounced and the almost flat behavior of gNN
A as a function

of Mπ obtained in LQCD is naturally explained. This is shown in the upper left panel

of Fig. 4 which depicts the finite one-loop contributions to gNN
A from each diagram

(µ = 700 MeV). As stated in Eq. (25) this cancellation is exact in the large Nc limit.

However, at Nc = 3 this cancellation is not exact but still quite pronounced (solid

curve in upper left panel of Fig. 4), and plays the key role in explaining the small
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((1) + 1
2 ((2) + (3)))Poly = (λ� + 1) 1

2 M2
ab [[Γ, G

ia], Gib]

+(λ� + 2) 1
3

�
[[Γ, [δm̂,Gia]], [δm̂,Gia]] + 2[[Gia,Γ], [δm̂, [δm̂,Gia]]]

�

Cancellation of Nc power violating terms between diagrams

Polynomial pieces

No-analytic pieces: SU(2)



Key observed feature:@ fixed MK, gA’s have little dependence on Mπ

SU(3) calculation by Cyprus Group [Alexandrou et al, (2016)]
g3BB
A and g8BB
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results being fitted here, there is an additional linear
dependency, namely that of the term CA

4 which becomes
linearly dependent with the term CA

3 . So the fit will involve
seven NLO LECs in addition to g

∘
A. The results of the fits

are shown in Table V. The LO fit, which involves only
fitting the LO value of g

∘
A, shows a remarkably good

approximation to the full set of the LQCD results. This is
clearly aided by the very small dependency on Mπ of the
LQCD results. It also shows the very good approximate
spin-flavor symmetry that relates axial couplings in the
octet and decuplet. The LO fit implies that gNA ¼ 1.13 for
the physical pion mass. A fit where only tree contributions
are included up to the NNLO gives a very precise
description of the LQCD results. Indeed, turning off some
of the LECs as indicated in Table V provides a consistent
fit, and corresponds in this case to gNA ¼ 1.15. Note that in
this case δg

∘
A, which is required to cancel an UV divergency

proportional to the leading term, can be turned off, as it is
only required when the loop contributions are included.
The full NLO fit is more complicated. Although the

implemented consistency with the 1=Nc expansion gives an
important reduction of the nonanalytic contributions, these
are still significant. The most significant issue in this case
becomes the determination of the LO g

∘
A. If it is used as a

fitting parameter, then the fit naturally drives it down to
small values, suppressing the nonanalytic contributions.
Such a situation is unrealistic, and therefore an strategy is
needed. The problem originates in the need to renormalize
g
∘
A, as there is an UV divergency proportional to the LO
term of the axial current. This is performed using δg

∘
A,

which is suppressed by one power in 1=Nc with respect to
g
∘
A. Fixing both the LO g

∘
A and the counterterm would thus

require information at different values of Nc, which is not
accessible at present. One possible approach is to fix g

∘
A to

the value obtained with the LO fit, and then fit the higher-
order LECs. This however fails because the resulting fit has
too large a χ2. Another strategy is to input several different
values of g

∘
A, and determine an approximate range for it

based of obtaining a χ2 that is acceptable. Finally, a
different strategy can be used involving additional observ-
ables: for instance, as mentioned earlier, the value for g

∘
A

could be obtained by matching to ΔGMO, giving a value for
g
∘
A=Fπ , which in ΔGMO should be taken at LO. In that case,
and in the physical case one obtains g

∘
A ∼ 1.15 when

Fπ ¼ 93 MeV. This however cannot be used for the
present LQCD results, because they have the mentioned
issue of extrapolating to too low of a value for gNA at the
physical point. In that case a correspondingly smaller value
should be used, namely g

∘
A ∼ 1.05 or so. The NLO fit with

such an input for g
∘
A is almost consistent, and is shown in

Table V for three different input values. The extrapolation
of those fits to the physical Mπ give a rather low value,
gNA ∼ 0.97. This value is increased if only the LQCD results
in [55] for the nucleon are included, namely gNA ∼ 1.05. The
effective theory is also checked to fit the most recent results
on gNA [75], where the LQCD result agrees with the physical
value. Clearly, it is necessary to await additional lattice
calculations of the octet and decuplet axial couplings in
order to have a thorough test of the effective theory vis-á-
vis LQCD.
Ultimately, in order to have the LECs in BChPT × 1=Nc

fully determined, a global analysis involving LQCD
calculations of a complete set of observables is necessary.
This requires the LQCD determination of the quark mass
dependencies of the observables, and also the possibility of
results for different values of Nc, which is a more difficult
task, but which has already been initiated with the baryon
masses for two flavors [58], and which has been analyzed
with the effective theory [59].

VI. SUMMARY

Chiral symmetry and the expansion in 1=Nc are two
fundamental aspects of QCD. The former is known to play
a crucial role in light hadrons, and there are multiple
indications that the latter is also important, in particular for
baryons. In the context of effective theories, it is therefore
crucial to incorporate those two aspects of QCD consis-
tently. This is possible with the combined chiral and 1=Nc
expansions. In the present work that framework for baryons
in SUð3Þ was implemented using the ξ-expansion. The
renormalization to one-loop for baryon masses and currents
were presented for generic Nc, and LQCD results for
masses and axial couplings were analyzed. This work

TABLE V. LECs obtained by fitting to the LQCD results presented in Tables IVand Vof Ref. [55]. The results correspond to making
the choices Λ ¼ μ ¼ mρ. In the NLO full fits CHF ¼ 250 MeV, and g

∘
A is given as input, displaying fits for three different values.

Fit χ2dof g
∘
A δg

∘
A CA

1 CA
2 CA

3 CA
4 DA

1 DA
2 DA

3 DA
4

LO 3.9 1.35 ... ... ... ... ... ... ... ... ...
NLO Tree 0.91 1.42 ... −0.18 ... ... ... ... 0.009 ... ...
NLO Full 1.08 1.02 0.15 −1.11 0. 1.08 0. −0.56 −0.02 −0.08 0.

1.13 1.04 0.08 −1.17 0. 1.15 0. −0.59 −0.02 −0.09 0.
1.19 1.06 0. −1.23 0. 1.21 0. −0.62 −0.03 −0.09 0.

I. P. FERNANDO and J. L. GOITY PHYS. REV. D 97, 054010 (2018)
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Summary and comments

• Based on general arguments of Nc scaling, we know how to implement the 1/
Nc expansion at hadron level

• In baryons it requires implementing a dynamical spin-flavor symmetry, broken 
at subleading orders in 1/Nc: use to implement BChPT x 1/Nc 

• BChPT x 1/Nc expansion improves convergence as it eliminates consistently 
large Nc power violating terms from loop corrections.

•  Convergence improvement is especially important in SU(3) BChPT

• Axial couplings are good testing ground thanks to inputs from LQCD

• Predictions at order     : calculable corrections to mass relations, SU(3) 
vector charges and almost parameter free prediction for 

•  1/Nc requirements impact broadly on BChPT, so... much more to be done !!!



N Σ+

Σ∗+

Ξ∗0

Ξ0

Λ

∆++ ∆+

Ω−

N Σ+

Ξ0

∆++ ∆+

Σ∗+

Ξ∗0

g3A

g8A

[LQCD from Alexandrou et al, (2016)]



QCD expansion parameters: mq (q = u, d, s); 1/Nc

mq and low energy/momenta → ChPT

1/Nc → Nc scalings of hadron masses and couplings

1/Nc expansion
Pheno: OZI; VMD

LQCD @ varying Nc: string tension ;Fπ; baryon masses

Need for combining ChPT and 1/Nc expansion
[Herrera-Siklody, Latorre, Pascual & Taron; Kaiser & Leutwyler]

Effective theories need to agree with
chiral dynamics and 1/Nc power counting

Why we need to combine ChPT and 1/Nc



Large Nc baryons and chiral symmetry

1/Nc × heavy baryon expansion is a natural combination [Jenkins]

LO chiral Lagrangian

L(1)
B = B†

�
iD0 + g̊AuiaGia − CHF

Nc

�̂S2 − c1
2Λ χ̂+

�
B

states in SU(2)× SU(3) : [S,R] = [S, (2S,
1

2
(N − 2S))]Nf = 3

B is the baryon spin-flavor multiplet field

means that each term will, through the unitary parametrization of the Goldstone Boson

fields, show different orders in 1/Nc through the powers of 1/Fπ. In addition, the low

energy constants (LECs) will themselves admit an expansion in powers of 1/Nc. For the

HBChPT expansion the large mass of the expansion is taken to be the spin-flavor singlet

component of the baryon masses, M0 = Nc m0 (m0 can be considered here to be a LEC

defined in the chiral limit and which will have itself an expansion in 1/Nc). In the following

the effective HB chiral Lagrangian is implemented. It is constructed in terms of tensors

involving the Goldstone Boson operators and the external sources, and spin-flavor tensors

built with products of the SU(6) generators. Requiring the Lagrangian to satisfy the QCD

symmetries, and implementing the dynamical symmetry constraints as discussed before, one

can systematically build the Lagrangian order by order in the chiral and 1/Nc expansions.

Bases of spin-flavor tensor operators can be built using various identities as shown in

Appendix A.

In the following a scale Λ is introduced, which for convenience can be chosen to be the

QCD scale, in order to render most of the LECs dimensionless. In the calculations Λ = mρ

will be chosen.

In order to ensure the validity of the OZI rule for the quark mass dependency of baryon

masses, namely, that the non-strange baryon mass dependence onms is O(N0
c
), the following

combination of the source χ+ (see Appendix D ) is defined:

χ̂+ ≡ χ̃+ +Nc χ
0
+, (10)

which is O(Nc).

The lowest order Lagrangian is O(ξ) and reads [27]:

L
(1)
B = B†

�
iD0 + g̊Au

iaGia − CHF

Nc

�̂S2 − c1
2Λ

Nc χ
0
+

�
B, (11)

L
(1)
B = B†

�
iD0 + g̊Au

iaGia − CHF

Nc

�̂S2 − c1
2Λ

χ̂+

�
B, (12)

where g̊A is the axial coupling in the chiral and largeNc limits (it has to be rescaled by a factor

5/6 to coincide with the usual axial coupling as defined for the nucleon, i.e., gA = 5
6 g̊A). Here

one notes an important point which will be present in other instances as well: the baryon

mass dependence on the current quark mass behaves at O(Nc mq) (c1 is of zeroth order in

Nc), and this indicates that in a strict large Nc limit the expansion in the quark masses of

certain quantities such as the baryon masses cannot be defined due to divergent coefficients

8

LO all GB-baryon couplings given in terms of gA
from ∆ width: g∆N

A = 1.235± 0.011 vs gNN
A = 1.267± 0.004

Small scales: p, MGB , m∆ −mN = O(1/Nc)

Chiral and 1/Nc expansions do not commute!:
need to link power countings

ξ or small scale expansion:
O(p) = O(1/Nc) = O(ξ)



NLO Lagrangians

L(2)
B = B†

�
( z1
Nc

+ z2
Nc

Ŝ2 + z3
Λ2 Nc χ0

+) iD̃0

+(− 1
2Ncm0

+ w1
Λ ) �D2 + ( 1

2Ncm0
− w2

Λ )D̃2 + c2
Λ χ0

+

+CA
1

Nc
uiaSiT a + CA

2
Nc

�ijkuia{Sj , Gka}
+κ0 �ijkF 0

+ijS
k + κ1 �ijkF a

+ijG
ka + ρ0F 0

−0iS
i + ρ1F a

−0iG
ia

+ τ1
Nc

ua
0G

iaDi +
τ2
N2

c
ua
0S

iT aDi +
τ3
Nc

∇iua
0S

iT a + τ4∇iua
0G

ia + · · ·
�
B

L(3)
B = B†

�
z4
Λ2 χ̃+ iD̃0 +

z5
Λ2 [iD̃0, χ̃+] +

c3
Nc Λ3 χ̂2

+

+ h1
N3

c
Ŝ4 + h2

N2
cΛ

χ̂+Ŝ2 + h3
NcΛ

χ0
+Ŝ

2 + h4
Nc Λ χa

+{Si, Gia}
+CA

3
N2

c
uia{Ŝ2, Gia}+ CA

4
N2

c
uiaSiSjGja

+DA
1

Λ2 χ0
+u

iaGia + DA
2

Λ2 χa
+u

iaSi + DA
3 (d)
Λ2 dabcχa

+u
ibGic + DA

3 (f)
Λ2 fabcχa

+u
ibGic

+gE [Di, F+i0] + α1
i

Nc
�ijkF a

+0iG
iaDk + β1

i
Nc

F a
−ijG

iaDj + · · ·
�
B


