

BChPT x I/Nc Jose L. Goity

Hampton University and Jefferson Lab

Cake Seminar JLab, October 10, 2018

works with Alvaro Calle-Cordon, Jose Alarcon, Ishara Fernando, Ruben Flores-Mendieta

BChPT: a long saga...

Numerous versions:

- Ordinary (only spin 1/2 baryons) BChPT: relativistic, non-relativistic
- BChPT including spin 3/2 baryons: relativistic, non-relativistic
- Different regularization schemes

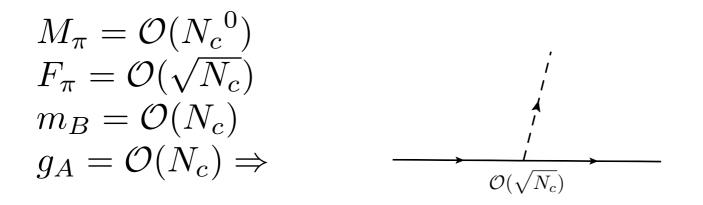
Key issue: limited convergence range

- GB ChPT: expansion in powers of p^2
- BChPT: expansion in powers of p

An even bigger issue: what happens at large N_c ?

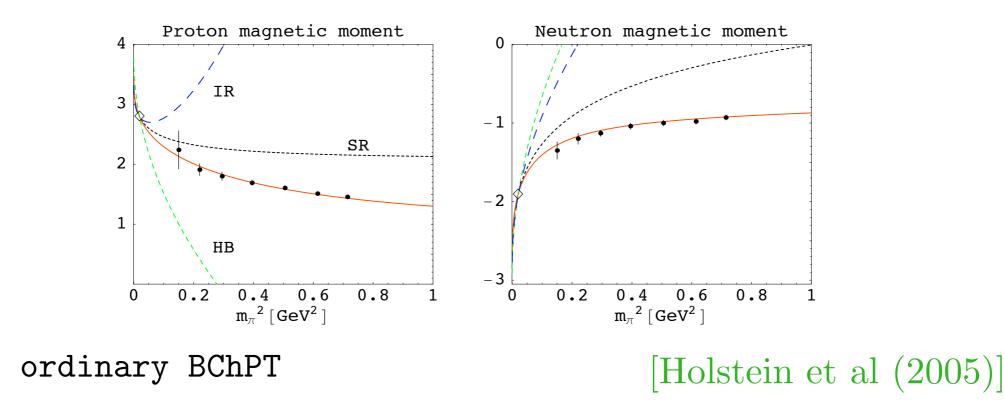
• GB ChPT:loops suppressed by factors of $1/N_c$ meson theory becomes tree level at large N_c

• BChPT: loops enhanced by factors of N_c baryon theory needs a formulation consistent with N_c power constraints N_c power of different hadronic quantities can be determined using various arguments: QMs, Feynman diagrams, etc 'tHooft expansion: N_f fixed, m_q fixed, m_ρ fixed



Well defined large N_c limit imposes constraints!

One illustration of the problem: magnetic moment vs m_q



OUTLINE

- BChPT x I/Nc: brief basics
- Masses, sigma terms
- Vector charges in SU(3)
- Axial couplings in SU(3)
- Summary, comments

• The need for combining BChPT and I/Nc

- Ordinary BChPT (only S=1/2 baryons) has poor convergence
- $g_{\pi N}$ is large: need for large CTs
- Inclusion of S=3/2 baryons gives significant improvement in convergence: [Jenkins & Manohar; many others]
- Consistency with $1/N_c$ expansion of QCD necessary

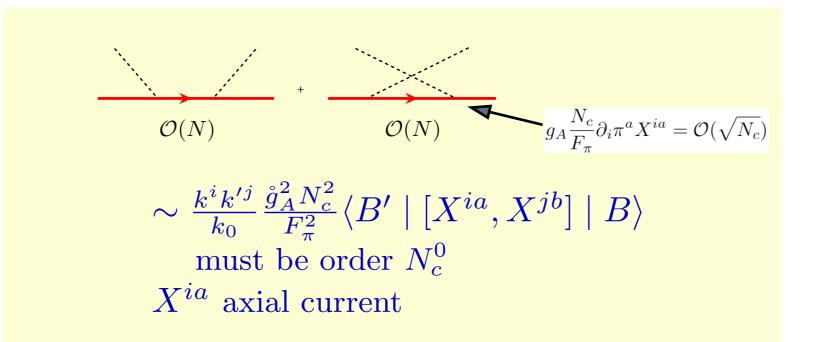
Baryons vs Nc

• Emergent dynamical spin-flavor symmetry

[Gervais & Sakita; Dashen & Manohar] last millenium

 π couples to axial currents

$$\mathcal{L}_{\pi B_{\text{int}}} = i \frac{g_A}{F_\pi} \partial_\mu \pi^a A^{a\mu} \qquad g_A = \mathcal{O}(N_c)$$



 $[X^{ia}, X^{jb}] = \mathcal{O}(1/N_c)$ key requirement at large Nc

 $\{T^a, S^i, X^{ia}\}$ generate contracted $SU(2N_f)$ dynamical symmetry [Gervais & Sakita; Dashen & Manohar (last millenium)] classify baryons in multiplets of $SU(2N_f)$ with generators $\{T^a, S^i, G^{ia}\}$ $G^{ia} = N_c X^{ia}$

ground state baryons: tower with $S = \frac{1}{2} \cdots \frac{N_c}{2}$

 $N_f = 3$ states in $SU(2) \times SU(3)$: $[S, R] = [S, (2S, \frac{1}{2}(N - 2S))]$

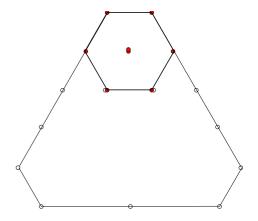
Spin-flavor Symmetry

 N_c

S:

- \bullet symmetry of spectrum at large N_c
- dynamical symmetry: not a Noether symmetry!
- imposes constraints in effective Lagrangians: relations between LECs

spin flavor symmetry as starting point for the I/Nc expansion



 $\frac{1}{N_{c}}$ expansion as spin-flavor operator product expansion

$$\langle B' \mid \hat{O}_{QCD} \mid B \rangle = \sum_{n} C_n \frac{1}{N_c^{\nu_n - 1}} \langle B' \mid \hat{O}_n \mid B \rangle$$

 O_n : tensor operator product of spin-flavor generators and momenta ν_n : spin-flavor n-bodyness of O_n

Example: mass operator in chiral limit: $H_{QCD} \Rightarrow N_c m_0 + C_{HF} \frac{1}{N_c} \hat{S}^2 + \mathcal{O}(\frac{1}{N_c^3}) \hat{S}^4 + \cdots$ expansion is in $1/N_c^2$, $m_\Delta - m_N = \mathcal{O}(\frac{1}{N_c})$

A test:
$$g_A s$$

 $\frac{g_A^{N\Delta}}{g_A^N} = 1 + \mathcal{O}(\frac{1}{N_c^2})$ [Dashen & Manohar]
 $g_A^N = -1.2724 \pm 0.0023$ $g_A^{N\Delta} = -1.235 \pm 0.011$

BChPT x I/Nc: brief basics

- $m_B = \mathcal{O}(N_c) \Rightarrow$ HB expansion is a $1/N_c$ expansion
- Lagrangians built with chiral and spin-flavor tensor operators:

$$\mathbf{B}^{\dagger} \quad T_{\chi} \otimes T_{SF} \quad \mathbf{B}$$
$$\mathbf{B} = \begin{pmatrix} B_{S=1/2} \\ B_{S=3/2} \\ \vdots \\ B_{S=N_c/2} \end{pmatrix} \quad \text{GS tower of baryon fields}$$

 T_{χ} chiral tensor T_{SF} spin-flavor tensor product of SU(6) generators chiral and $1/N_c$ power counting determined by operators LECs: chosen to be $\mathcal{O}(N_c^0)$, have a $1/N_c$ expansion themselves each Lagrangian term has a well defined *leading* chiral and $1/N_c$ power need to link chiral and $1/N_c$ expansions: small mass scale $\Delta_{HF} = m_{3/2} - m_{1/2}$ ξ expansion: $\xi = \mathcal{O}(1/N_c) = \mathcal{O}(p)$ Lagrangians to order ξ^3

$$\mathcal{L}_B^{(1)} = \mathbf{B}^{\dagger} (iD_0 - \mathring{g}_A u^{ia} G^{ia} - \frac{C_{\rm HF}}{N_c} \hat{S}^2 + \frac{c_1}{2\Lambda} \hat{\chi}_+) \mathbf{B} \qquad \qquad \mathring{g}_A = \frac{6}{5} g_A^N$$

$$\mathcal{L}_{\mathbf{B}}^{(2)} = \mathbf{B}^{\dagger} \left(\frac{c_2}{\Lambda} \chi_{+}^{0} + \frac{C_1^A}{N_c} u^{ia} S^i T^a + \frac{\tau_1}{N_c} (u_0^a G^{ia} D_i + \overleftarrow{D}_i u_0^a G^{ia}) + \frac{1}{m} (\vec{B}_{+}^{0} + \vec{B}_{+}^a T^a) \cdot \vec{S} + \frac{1}{2m} (2(\kappa_0 \ \vec{B}_{+}^{0} + \kappa_1 \ \vec{B}^a T^a) \cdot \vec{S} + \frac{6}{5} \kappa_2 \ B_{+}^{ia} G^{ia}) + \cdots \right) \mathbf{B}$$

$$\begin{aligned} \mathcal{L}_{\mathbf{B}}^{(3)} &= \mathbf{B}^{\dagger} \left(\frac{1}{2m} D^{\mu} D_{\mu} + \frac{c_{3}}{N_{c} \Lambda^{3}} \hat{\chi}_{+}^{2} + \frac{h_{1}}{N_{c}^{3}} \hat{S}^{4} + \frac{h_{2}}{N_{c}^{2} \Lambda} \hat{\chi}_{+}^{2} \hat{S}^{2} \right. \\ &+ \frac{h_{3}}{N_{c} \Lambda} \chi_{+}^{0} \hat{S}^{2} + \frac{h_{4}}{N_{c} \Lambda} \chi_{+}^{a} \left\{ S^{i}, G^{ia} \right\} + \frac{C_{2}^{A}}{N_{c}^{2}} u^{ia} \left\{ \hat{S}^{2}, G^{ia} \right\} \\ &+ \frac{C_{4}^{A}}{N_{c}^{2}} u^{ia} S^{i} S^{j} G^{ja} + \frac{D_{1}^{A}}{\Lambda^{2}} \chi_{+}^{0} u^{ia} G^{ia} + \frac{D_{2}^{A}}{\Lambda^{2}} \chi_{+}^{a} u^{ia} S^{i} \\ &+ \frac{D_{3}^{A}(d)}{\Lambda^{2}} d^{abc} \chi_{+}^{a} u^{ib} G^{ic} + \frac{D_{3}^{A}(f)}{\Lambda^{2}} f^{abc} \chi_{+}^{a} u^{ib} G^{ic} \\ &+ \left(\frac{1}{8m^{2}} + \frac{g_{0}}{\Lambda^{2}} \right) \partial_{i} E_{+i}^{0} + \left(\frac{1}{8m^{2}} + \frac{g_{1}}{\Lambda^{2}} \right) \left(D_{i} E_{+i} \right)^{a} T^{a} + \cdots \right) \mathbf{B} \end{aligned}$$

[E. Jenkins; R. Flores-Mendieta et al; A. Calle-Cordon & JLG; I. Fernando & JLG]

contains non-analytic terms:

$$(M_{\pi}^2 - (m_{\Delta} - m_N)^2)^{\frac{3}{2}}, \ tanh^{-1}\left(\frac{(m_{\Delta} - m_N)}{\sqrt{1/(-M_{\pi}^2 + (m_{\Delta} - m_N)^2}}\right)$$

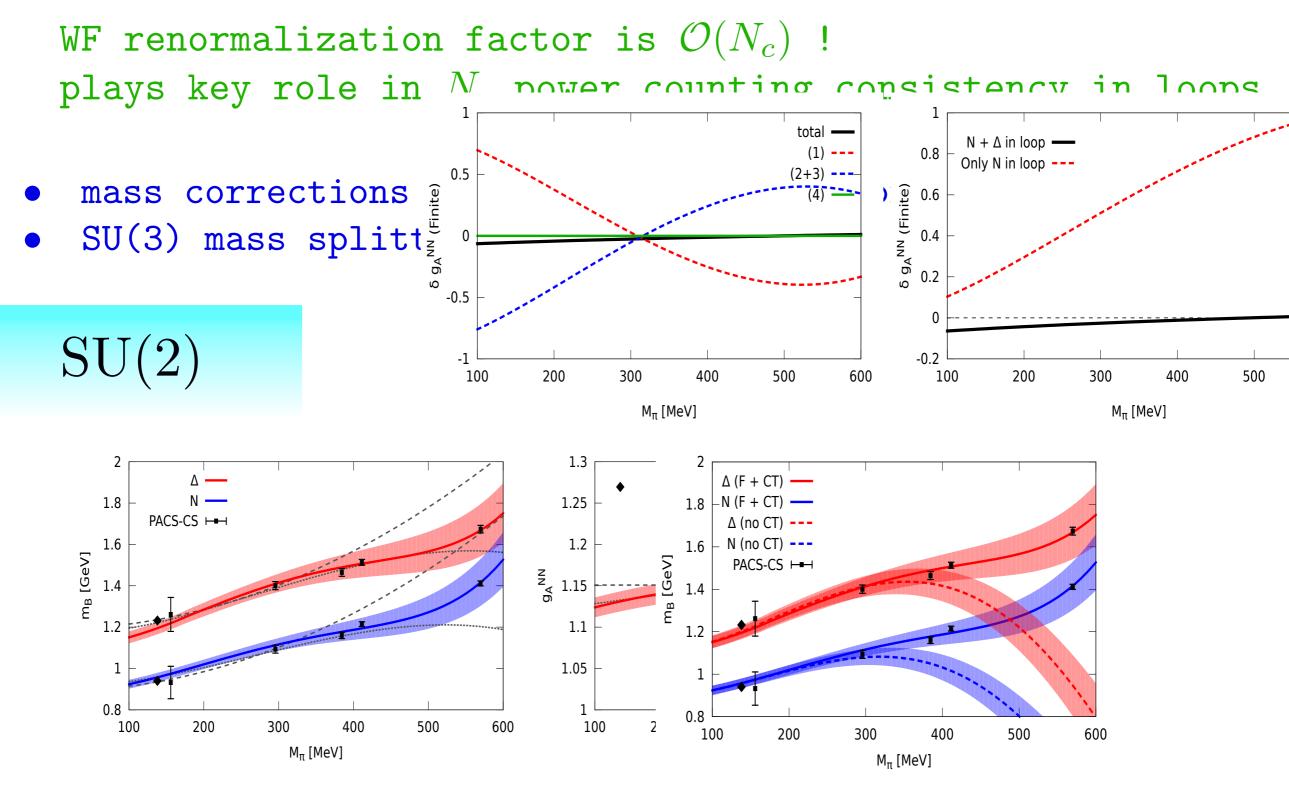
link $1/N_c$ and chiral expansions:

 ξ expansion: $\xi = \mathcal{O}(1/N_c) = \mathcal{O}(p)$

equivalent to not expanding non-analytic terms

$$\nu_{\xi} = 1 + 3L + \frac{n_{\pi}}{2} + \sum_{i} n_i \left(\nu_{O_i} + \nu_{p_i} - 1\right)$$

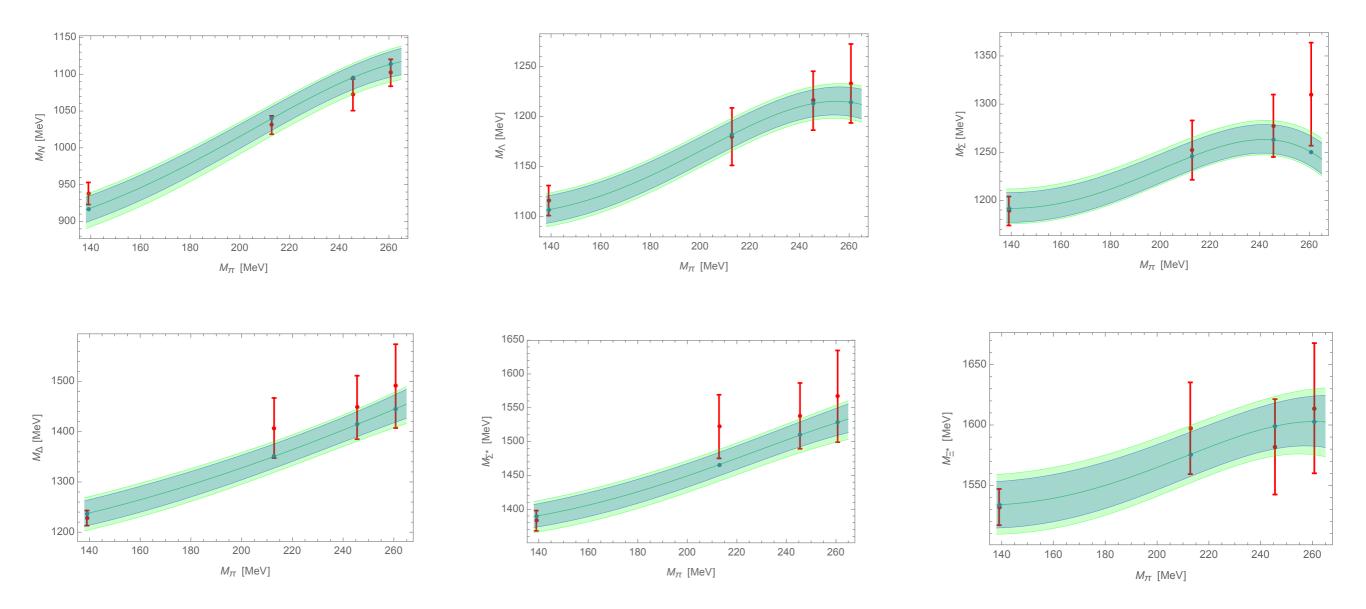
• Masses, sigma terms: SU(3)



[A. Calle-Cordon & JLG]

SU(3)

 M_{π} dependency from LQCD ($M_{K}\sim 500~{\rm MeV}$): poor convergence above $M_{\pi}\sim 250~{\rm MeV}$



[Alexandrou et al (2014), ETMC LQCD Coll. octet and decuplet baryon masses

Mass relations

GMO

$$\begin{split} \Delta_{GMO} &= \text{Th:} \left(\frac{g_A^N(LO)}{g_A^N}\right)^2 44 \pm 5 \text{ MeV vs Exp: } 25.6 \pm 1.5 \text{ MeV} \\ \Delta_{GMO} &= -\left(\frac{\mathring{g}_A}{4\pi F_\pi}\right)^2 \left(\frac{2\pi}{3} (M_K^3 - \frac{1}{4}M_\pi^3 - \frac{2}{\sqrt{3}} (M_K^2 - \frac{1}{4}M_\pi^2)^{\frac{3}{2}}) \\ &+ \frac{2C_{HF}}{N_c} \left(-M_K^2 \log M_K^2 + \frac{1}{4}M_\pi^2 \log M_\pi^2 + (M_K^2 - \frac{1}{4}M_\pi^2) \log(\frac{4}{3}M_K^2 - \frac{1}{3}M_\pi^2)\right)\right) + \mathcal{O}(1/N_c^3) \\ &= 37 \text{ MeV} + \mathcal{O}(1/N_c^3) \end{split}$$

in large N_c , Δ_{GMO} is $\mathcal{O}(1/N_c)$

ES

$$\Delta_{ES} = m_{\Xi^*} - 2m_{\Sigma^*} + m_{\Delta} =$$

Th: $-\left(\frac{g_A^N(LO)}{g_A^N}\right)^2 6.5 \text{MeV vs Exp:} -4 \pm 7 \text{MeV} = \mathcal{O}(1/N_c)$

GR

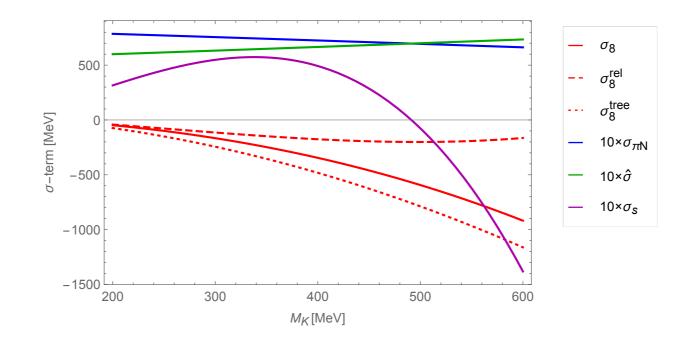
 $\Delta_{GR} = m_{\Xi^*} - m_{\Sigma^*} - (m_{\Xi} - m_{\Sigma}) = 0, \quad \text{Exp: } 21 \pm 7 \text{ MeV},$ $\Delta_{GR} = \frac{h_2}{\Lambda} \frac{12}{N_c} (M_K^2 - M_\pi^2) + \underbrace{O(1/N_c) \text{ UV finite no-analytic terms}}_{\sim 68 \text{ MeV} \times \left(\frac{g_A^N(LO)}{g_A^N}\right)^2}$

$$\pi N$$
 σ -term

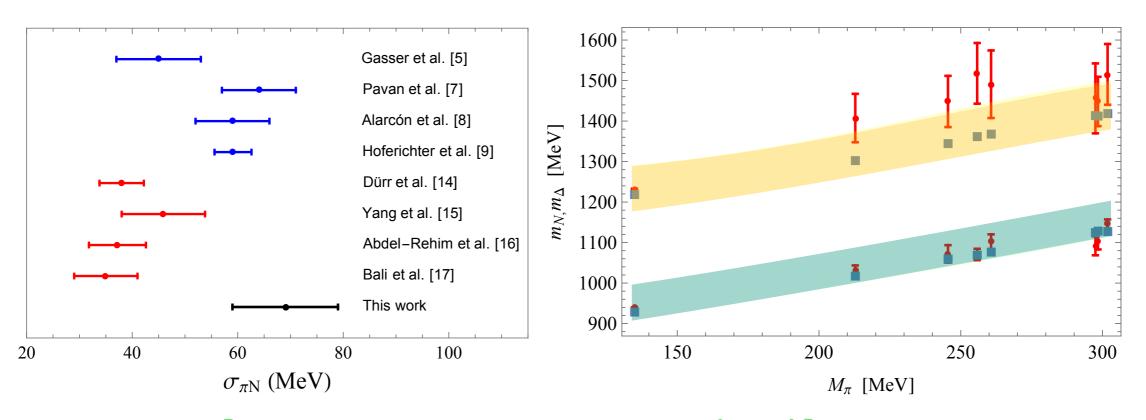
$$\hat{\sigma} = \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle \qquad \qquad \sigma_{\pi N} = \hat{\sigma} + \frac{2\hat{m}}{m_s} \sigma_s.$$

$$\hat{\sigma} = \underbrace{\frac{\hat{m}}{m_s - \hat{m}} (\frac{N_c + 3}{6} m_{\Xi} + \frac{2N_c - 3}{3} m_{\Sigma} - \frac{5N_c - 3}{6} m_N)}_{\mathcal{O}(N_c)} + \Delta \hat{\sigma} \leftarrow \mathcal{O}(N_c)$$

$$\hat{\sigma}_{N_c=3: \sim 23 \text{MeV}} \qquad 2.3 \times 10^5 \text{MeV}^3 \times \frac{g_A^2}{F_\pi^2} \sim 40 \text{ MeV}}_{40 \% \text{ from 8 in loop and 60 \% from 10}}$$



 $\hat{\sigma} = 70 \pm 9 \text{ MeV} \oplus LQCD \quad \sigma_{\pi N} = 69 \pm 10 \text{ MeV}$ [LQCD: Alexandrou et al (2016)]



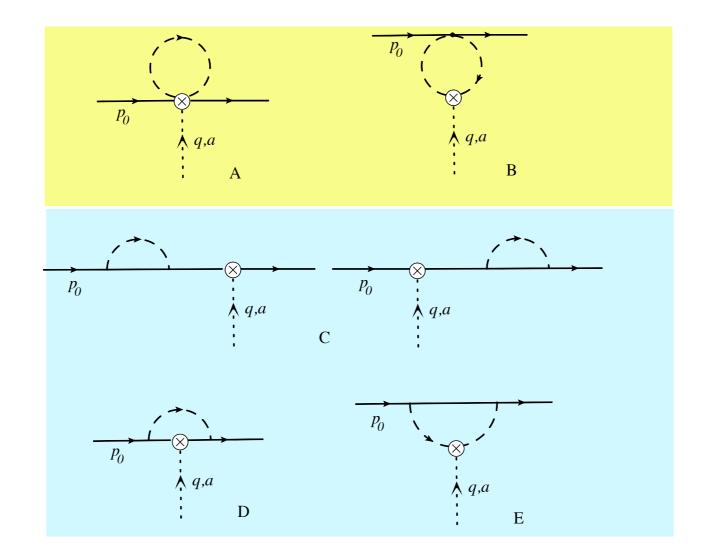
[J.M.Alarcon, I.Fernando & JLG (2018)]

	$rac{\mathring{g}_A}{F_\pi}$	$\frac{M_0}{N_c}$	C_{HF}	<i>c</i> ₁	<i>C</i> ₂	h_2	h_3	h_4	α	β
Fit	MeV ⁻¹	MeV	MeV						MeV	MeV
1	0.0126(2)	364(1)	166(23)	-1.48(4)	0	0	0.67(9)	0.56(2)	-1.63(24)	2.16(22)
2	0.0126(3)	213(1)	179(20)	-1.49(4)	-1.02(5)	-0.018(20)	0.69(7)	0.56(2)	-1.62(24)	2.14(22)
3	0.0126*	262(30)	147(52)	-1.55(3)	-0.67(8)	0	0.64(3)	0.63(3)	-1.63*	2.14*
	$\Delta^{ m phys}_{GMO}$	σ_8	$\Delta\sigma_8$	ô	$\sigma_{\pi N}$	σ_s	σ_3	$\sigma_{u+d}(p-n)$		
	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV		
1	25.6(1.1)	-583(24)	-382(13)	70(3)(6)	_	_	-1.0(3)	-1.6(6)		
2	25.5(1.5)	-582(55)	-381(20)	70(7)(6)	69(8)(6)	-3(32)	-1.0(4)	-1.6(8)		
3	25.8*	-615(80)	-384(2)	74(1)(6)	65(15)(6)	-121(15)	_	_		

Relations between σ terms for octet and decuplet deviations are finite (calculable) at order ξ^3 need more accurate baryon masses from LQCD to test

$$\begin{split} \sigma_{Nm_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 1)\sigma_{N\hat{m}} + (N_c + 3)\sigma_{\Lambda\hat{m}} + 3(N_c - 1)\sigma_{\Sigma\hat{m}} \right) \\ \sigma_{\Lambda m_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 3)\sigma_{N\hat{m}} + (N_c - 5)\sigma_{\Lambda\hat{m}} + 3(N_c - 1)\sigma_{\Sigma\hat{m}} \right) \\ \sigma_{\Sigma m_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 3)\sigma_{N\hat{m}} + (N_c + 3)\sigma_{\Lambda\hat{m}} + (3N_c - 11)\sigma_{\Sigma\hat{m}} \right) \\ \sigma_{\Delta m_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 1)\sigma_{\Delta\hat{m}} - 5(N_c - 3)(\sigma_{\Lambda\hat{m}} - \sigma_{\Sigma\hat{m}}) + 4N_c\sigma_{\Sigma^*\hat{m}} \right) \\ \sigma_{\Sigma^* m_s} &= \frac{m_s}{8\hat{m}} \left(-(N_c - 3)(4\sigma_{\Delta\hat{m}} + 5\sigma_{\Lambda\hat{m}} - 5\sigma_{\Sigma\hat{m}}) + 4(N_c - 2)\sigma_{\Sigma^*\hat{m}} \right). \end{split}$$

Vector charges



SU(3) breaking corrections to the vector currents:

Ademollo-Gatto theorem at $\mathcal{O}(\xi^2)$ non-analytic calculable corrections to AGTh $\mathcal{O}(N_c^0)\,\text{,}$

different spin baryons in loop give $\mathcal{O}(N_c)$ terms! key cancellations give N_c consistency

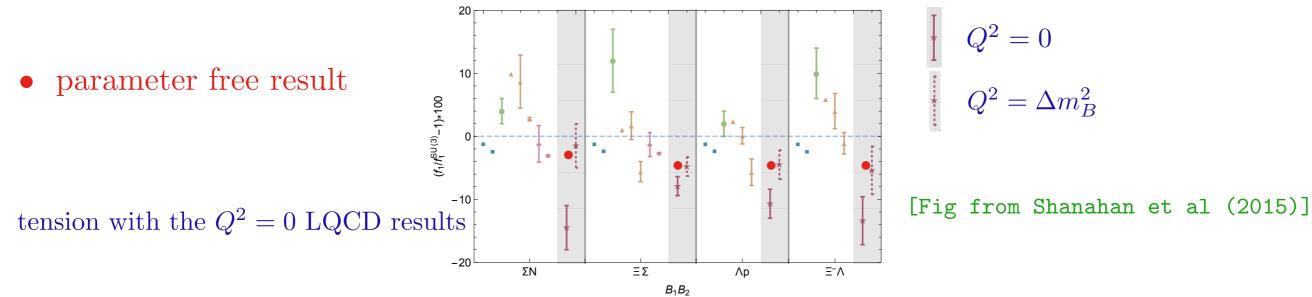
SU(3) breaking to vector charges

[R.Flores-Mendieta & JLG; I.P.Fernando & JLG]

Charge	$\frac{f_1}{f_1^{SU(3)}}$	$rac{f_1}{f_1^{SU(3)}} - 1$			
		[Flores-Mendieta & JLG:2014]	[Villadoro:2006]	[Lacour et al:2007]	[Geng et al:2009]
		$\mathrm{HBChPT} \times 1/N_{C}$	HBChPT with 8 and 10	HBChPT only 8	RBChPT with 8 and 10
Λp	0.952	-0.048	-0.080	-0.097	-0.031
$\Sigma^{-}n$	0.966	-0.034	-0.024	0.008	-0.022
$\Xi^-\Lambda$	0.953	-0.047	-0.063	-0.063	-0.029
$\Xi^{-}\Sigma^{0}$	0.962	-0.038	-0.076	-0.094	-0.030

LQCD
$$f_1^{\Sigma \to N}(0) = -0.9662(43), \quad f_1^{\Xi \to \Sigma}(0) = +0.9742(28)$$

[S. Sasaki, (2017)]



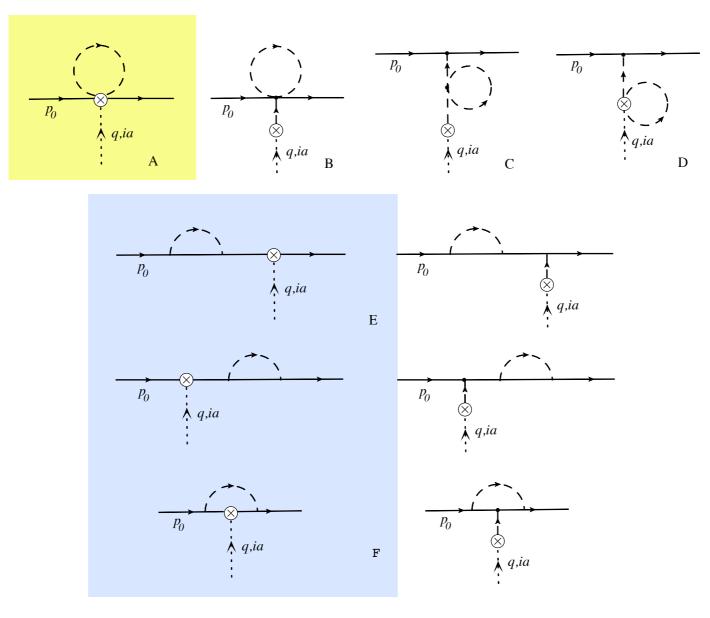
Vector current form factors:

- EM and SU(3): work in progress (I. Fernando and JLG)
- Charge FF: peripheral component (J. M. Alarcon and C. Weiss)

Axial-vector currents

[Flores-Mendieta, Hernandez & Hofmann; Fernando & JLG] [SU(2): A. Calle-Cordon & JLG]

 $\texttt{Definition of axial couplings} \quad \langle B' \mid A^{ia} \mid B \rangle = \frac{6}{5} g_A^{aBB'} \langle B' \mid G^{ia} \mid B \rangle$



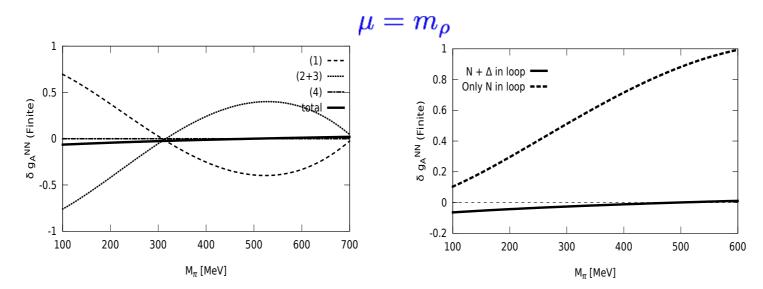
E, F violate N_c power counting: cancellation of such terms in E+F

Cancellation of N_c power violating terms between diagrams

Polynomial pieces

 $((1) + \frac{1}{2}((2) + (3)))^{Poly} = (\lambda_{\epsilon} + 1) \frac{1}{2} M_{ab}^2 [[\Gamma, G^{ia}], G^{ib}]$ $+ (\lambda_{\epsilon} + 2) \frac{1}{3} \left([[\Gamma, [\delta \hat{m}, G^{ia}]], [\delta \hat{m}, G^{ia}]] + 2[[G^{ia}, \Gamma], [\delta \hat{m}, [\delta \hat{m}, G^{ia}]]] \right)$

No-analytic pieces: SU(2)



cancellations to accuracy $1/N_c^2$ in large N_c persist at $N_c=3$

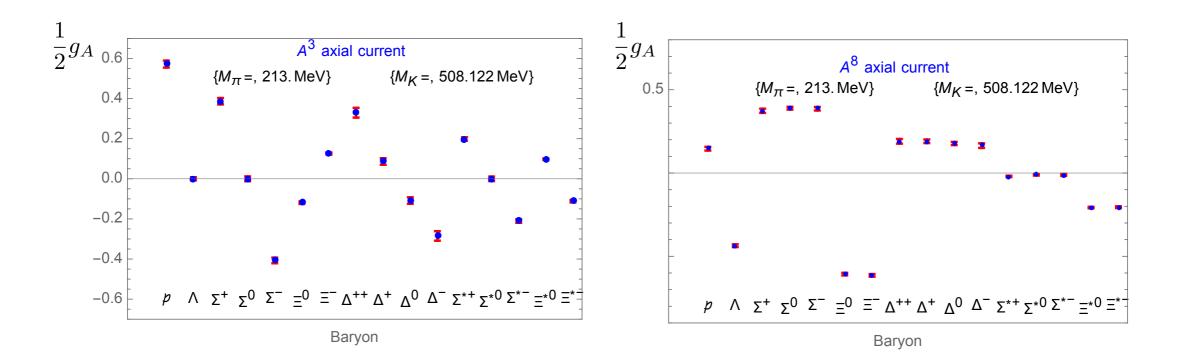
Fit to SU(3) LQCD g_A 's

Key observed feature:@ fixed M_K , g_A 's have little dependence on M_π

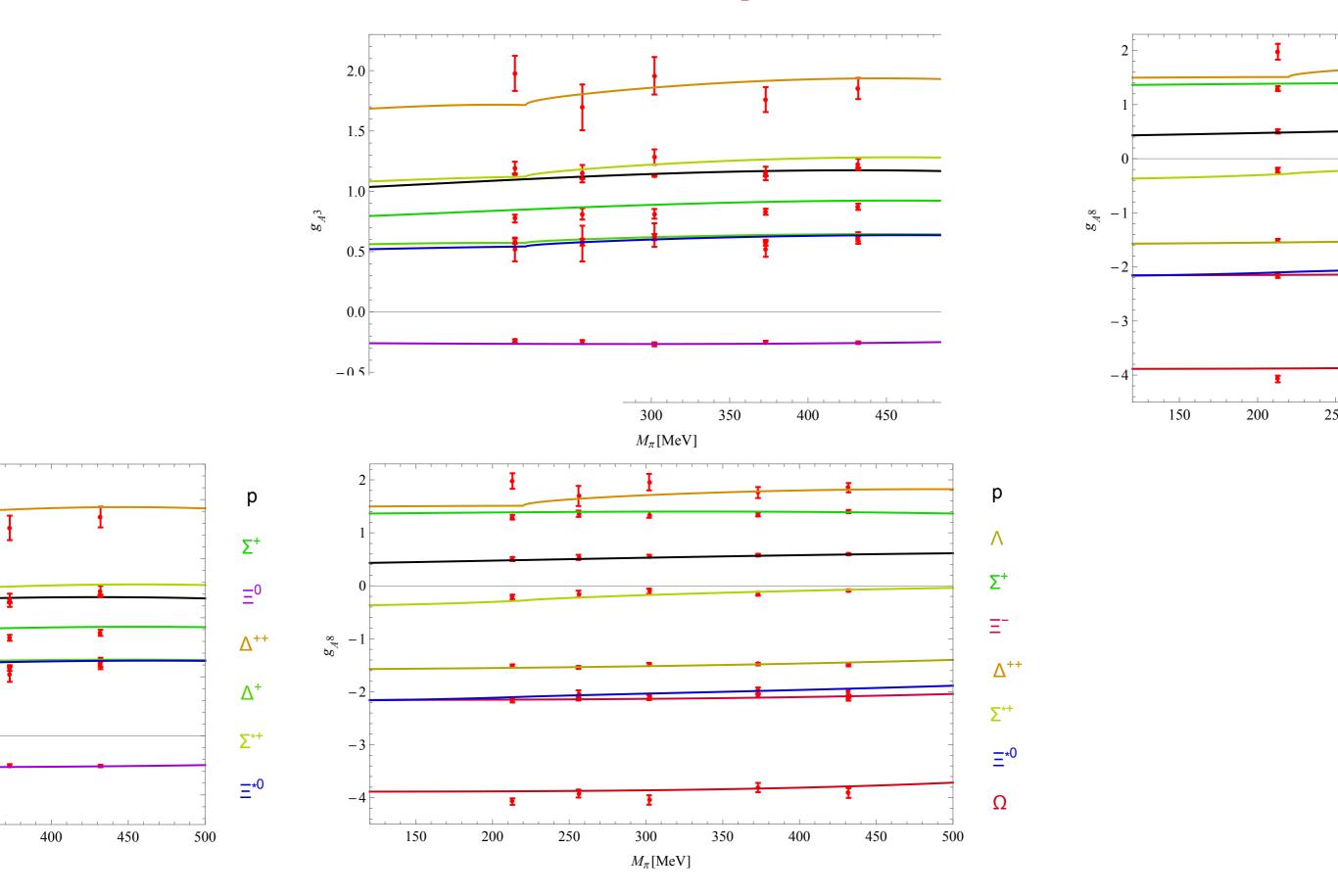
SU(3) calculation by Cyprus Group [Alexandrou et al, (2016)] g_A^{3BB} and g_A^{8BB}

	- 1	-							-		
Fit	$\chi^2_{ m dof}$	$\overset{\circ}{g}_A$	$\delta \overset{\circ}{g}_A$	C_1^A	C_2^A	C_3^A	C_4^A	D_1^A	D_2^A	D_3^A	D_4^A
LO	3.9	1.35	•••		•••	•••		•••	••••	•••	
NLO Tree	0.91	1.42	•••	-0.18		•••			0.009		•••
NLO Full	1.08	1.02	0.15	-1.11	0.	1.08	0.	-0.56	-0.02	-0.08	0.
	1.13	1.04	0.08	-1.17	0.	1.15	0.	-0.59	-0.02	-0.09	0.
	1.19	1.06	0.	-1.23	0.	1.21	0.	-0.62	-0.03	-0.09	0.

[I. Fernando & JLG (2018)]



Mild M_{π} dependence of axial couplings cannot be described without the cancellations of N_c violating terms



Observations on axial couplings

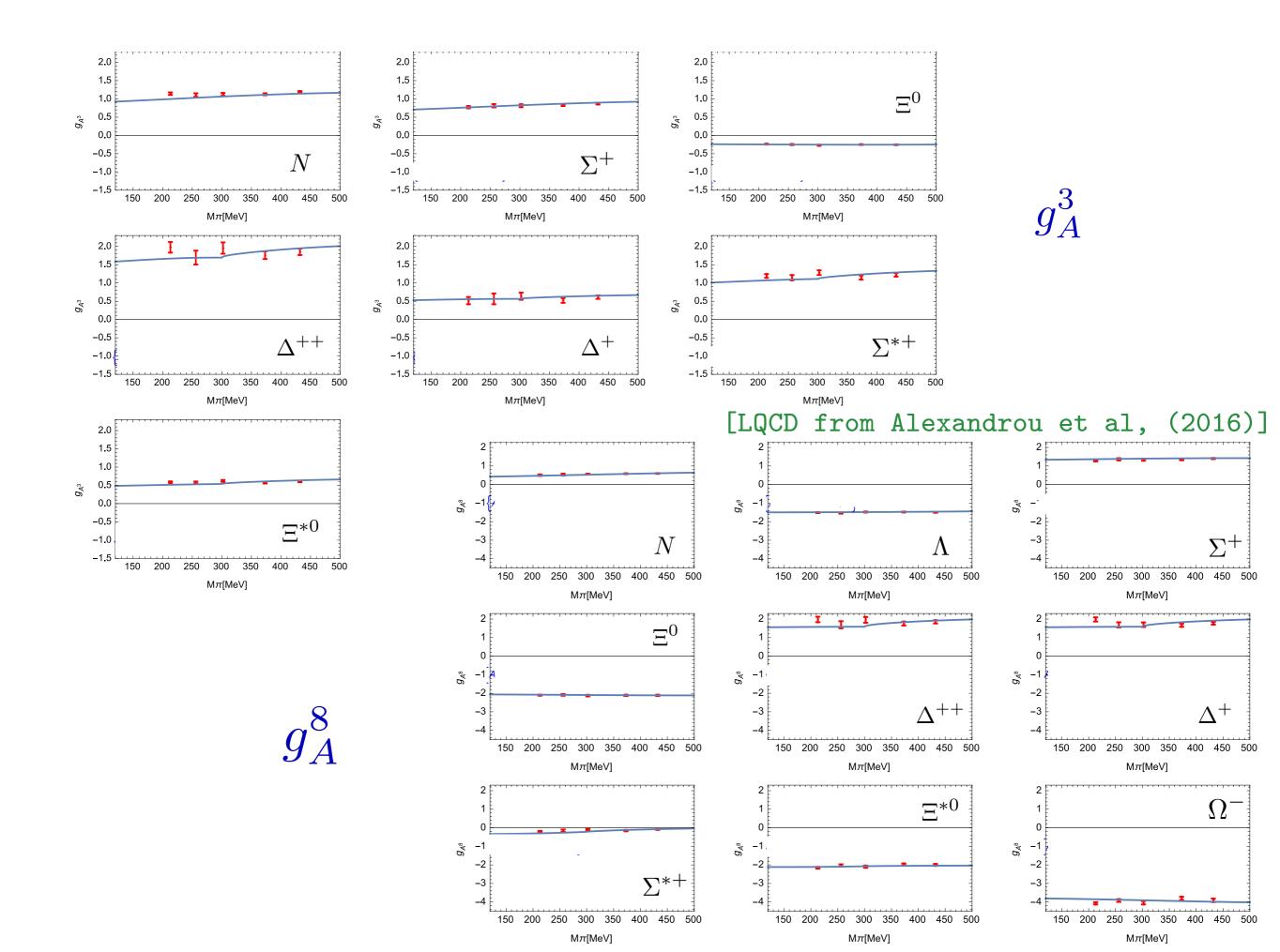
- show most prominently the need for theory consistent with $1/N_c$ expansion
- natural fit at one-loop of the axial couplings from SU(3) LQCD
- impossible to fit g_A s of octet when turning off decuplet
- in SU(3): $g_A^N(LO)/g_A^N \sim 0.8$ from fit to axial couplings and from Δ_{GMO}
- numerous relations among axial couplings with calculable corrections

• Based on general arguments of Nc scaling, we know how to implement the 1/ Nc expansion at hadron level

• In baryons it requires implementing a dynamical spin-flavor symmetry, broken at subleading orders in I/Nc: use to implement BChPT x I/Nc

• BChPT \times I/Nc expansion improves convergence as it eliminates consistently large Nc power violating terms from loop corrections.

- Convergence improvement is especially important in SU(3) BChPT
- Axial couplings are good testing ground thanks to inputs from LQCD
- Predictions at order ξ^3 : calculable corrections to mass relations, SU(3) vector charges and almost parameter free prediction for $\hat{\sigma}$
- I/Nc requirements impact broadly on BChPT, so... much more to be done !!!



Why we need to combine ChPT and I/Nc

QCD expansion parameters: m_q (q = u, d, s); $1/N_c$

 m_q and low energy/momenta \rightarrow ChPT

 $1/N_c \rightarrow N_c$ scalings of hadron masses and couplings

 $1/N_c$ expansion Pheno: OZI; VMDLQCD @ varying N_c : string tension ; F_{π} ; baryon masses

Need for combining ChPT and $1/N_c$ expansion [Herrera-Siklody, Latorre, Pascual & Taron; Kaiser & Leutwyler]

Effective theories need to agree with chiral dynamics and $1/N_c$ power counting

Large Nc baryons and chiral symmetry

 $1/N_c \times$ heavy baryon expansion is a natural combination [Jenkins] LO chiral Lagrangian

$$\mathcal{L}_{\mathbf{B}}^{(1)} = \mathbf{B}^{\dagger} \left(iD_0 + \mathring{g}_A u^{ia} G^{ia} - \frac{C_{HF}}{N_c} \hat{\vec{S}}^2 - \frac{c_1}{2\Lambda} \hat{\chi}_+ \right) \mathbf{B} \qquad g_A = \frac{5}{6} \mathring{g}_A$$

B is the baryon spin-flavor multiplet field

$$N_f = 3 \qquad \text{states in } SU(2) \times SU(3): \quad [S, R] = [S, (2S, \frac{1}{2}(N - 2S))]$$

LO all GB-baryon couplings given in terms of g_A from Δ width: $g_A^{\Delta N} = 1.235 \pm 0.011$ vs $g_A^{NN} = 1.267 \pm 0.004$ Small scales: $p, M_{GB}, m_{\Delta} - m_N = \mathcal{O}(1/N_c)$ Chiral and $1/N_c$ expansions do not commute!: need to link power countings

 ξ or small scale expansion: $\mathcal{O}(p) = \mathcal{O}(1/N_c) = \mathcal{O}(\xi)$

NLO Lagrangians

$$\mathcal{L}_{\mathbf{B}}^{(2)} = \mathbf{B}^{\dagger} \left(\left(\frac{z_{1}}{N_{c}} + \frac{z_{2}}{N_{c}} \hat{S}^{2} + \frac{z_{3}}{\Lambda^{2}} N_{c} \chi^{0}_{+} \right) i \tilde{D}_{0} \right. \\ \left. + \left(- \frac{1}{2N_{c}m_{0}} + \frac{w_{1}}{\Lambda} \right) \vec{D}^{2} + \left(\frac{1}{2N_{c}m_{0}} - \frac{w_{2}}{\Lambda} \right) \tilde{D}^{2} + \frac{c_{2}}{\Lambda} \chi^{0}_{+} \right. \\ \left. + \frac{C_{1}^{A}}{N_{c}} u^{ia} S^{i} T^{a} + \frac{C_{2}^{A}}{N_{c}} \epsilon^{ijk} u^{ia} \left\{ S^{j}, G^{ka} \right\} \right. \\ \left. + \kappa_{0} \epsilon^{ijk} F_{+ij}^{0} S^{k} + \kappa_{1} \epsilon^{ijk} F_{+ij}^{a} G^{ka} + \rho_{0} F_{-0i}^{0} S^{i} + \rho_{1} F_{-0i}^{a} G^{ia} \right. \\ \left. + \frac{\tau_{1}}{N_{c}} u_{0}^{a} G^{ia} D_{i} + \frac{\tau_{2}}{N_{c}^{2}} u_{0}^{a} S^{i} T^{a} D_{i} + \frac{\tau_{3}}{N_{c}} \nabla_{i} u_{0}^{a} S^{i} T^{a} + \tau_{4} \nabla_{i} u_{0}^{a} G^{ia} + \cdots \right) \mathbf{B}$$

$$\begin{aligned} \mathcal{L}_{\mathbf{B}}^{(3)} &= \mathbf{B}^{\dagger} \Big(\frac{z_{4}}{\Lambda^{2}} \, \tilde{\chi}_{+} \, i \tilde{D}_{0} + \frac{z_{5}}{\Lambda^{2}} \, [i \tilde{D}_{0}, \, \tilde{\chi}_{+}] + \frac{c_{3}}{N_{c} \Lambda^{3}} \, \hat{\chi}_{+}^{2} \\ &+ \frac{h_{1}}{N_{c}^{3}} \hat{S}^{4} + \frac{h_{2}}{N_{c}^{2} \Lambda} \hat{\chi}_{+} \hat{S}^{2} + \frac{h_{3}}{N_{c} \Lambda} \chi_{+}^{0} \hat{S}^{2} + \frac{h_{4}}{N_{c} \Lambda} \, \chi_{+}^{a} \{S^{i}, G^{ia}\} \\ &+ \frac{C_{3}^{A}}{N_{c}^{2}} u^{ia} \{ \hat{S}^{2}, G^{ia} \} + \frac{C_{4}^{A}}{N_{c}^{2}} u^{ia} S^{i} S^{j} G^{ja} \\ &+ \frac{D_{1}^{A}}{\Lambda^{2}} \chi_{+}^{0} u^{ia} G^{ia} + \frac{D_{2}^{A}}{\Lambda^{2}} \chi_{+}^{a} u^{ia} S^{i} + \frac{D_{3}^{A}(d)}{\Lambda^{2}} d^{abc} \chi_{+}^{a} u^{ib} G^{ic} + \frac{D_{3}^{A}(f)}{\Lambda^{2}} f^{abc} \chi_{+}^{a} u^{ib} G^{ic} \\ &+ g_{E} \left[D_{i}, F_{+i0} \right] + \alpha_{1} \frac{i}{N_{c}} \epsilon^{ijk} F_{+0i}^{a} G^{ia} D_{k} + \beta_{1} \frac{i}{N_{c}} F_{-ij}^{a} G^{ia} D_{j} + \cdots \Big) \mathbf{B} \end{aligned}$$