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Understanding the role of gluons and confinement: exotic
hadrons and gluonic excitations

Understanding the dynamics of physical states and formation
of resonances and bound states
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Exotic hadrons often emerge through few-body dynamics
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> Forced to deal with few-body dynamics
and coupled systems

> Additional challenges:

@ Euclidean space computation -> no easy access to
scattering amplitudes

@ Computation in a finite box -> finite volume effects
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Short Summary of LQCD

Variational method: multiple energy levels

(7= )]

Ci(t) = (0]0;(t)O1(0)]0) )

J. J. Dudek et al. (Hadron Spectrum Collaboration)
Phys. Rev. D 86, 034031 (2012).

Periodic boundary condition: discrete energies

Euclidean space: need relation between spectrum
and scattering amplitudes
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U Taking advantage of periodic boundary condition

v

Luescher’s formula:
M. Luscher, Nucl. Phys. B364, 237 (1991).

a
*— ® ®
K. Rummukainen and S. A. Gottlieb, Nucl. Phys. B450,

det [5JM7J/M/ cot 5J(k) — MJM)J/M/(]C)] =0

p— VBT dm; / \

2 Short-range
Dynamics

Long-range correlation in
periodic lattice structure
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Access to two-body hadrons scattering in LQCD

J.Dudek, et al. PRD87 (2013) 034505

180
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Luescher’s formula is result of factorizing physics at
two separate scales:

@ Short-range interaction within a box -> scattering phase shift

@ Long-range correlation between boxes -> zeta function
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, ' ‘Few-ﬁoc[y in Lattice QCD
A ideal fmmeworﬁ for Tew-ﬁocfy in LQCD?

@ Describe relativistic strongly coupled few-body systems
@ Satisfy periodic boundary condition -> discrete energy specira

@ Separate short-range dynamics within a box and long-range
correlations between boxes

@ Mathematically transparent -> user friendly
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a nots opeqfectfmmeworﬁ

@ A non-relativistic framework

@ Periodic boundary condition -> discrete energy spectra

@ Clear demonstration of factorization of physics at two scales:
short-range dynamics and long-range correlations
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@ Periodic basis and variational principle

(I)(I') — ZC[J](I)[J] (I‘) (I)[J] (I‘) — (I)[J] (I' -+ HL)
J]

oA =0

@ Secular equations Z<(I)[J'] k2 4+ V2 - /(L) D 1) =0
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@ Secular equations -> quantization conditions
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@ Construction of periodic variational basis:
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@ Short-range dynamics is carried by local wave functions

\If(ilfa) —+ \I/(a:b)

@ |nterference of local wave functions -> Long-range correlation
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@ Periodic boundary condition is automatically satisfied by construction

@ Clear demonstration of physics at two scales:

* Short-range dynamics -> scattering in infinite volume

* Long-range correlation -> discrete energy specira

@ Connection between short-range dynamics and long-range
correlations is carried out by construction of basis functions
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det [(@1|V (I®1) — [®1)))] =0
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@ Extension to N-body problem with pair-wise interactions:

* Faddeev approach + variational approach

N

e({x}, {ph)= )  2“({x} {p})

(1<j)=1

(B-1T)[0@) = v{|®)
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@ Construction of periodic wave functions:

) ({x}, {ph) = 1+ 3 W ({x+ nyL}, {p})

{ny }€Z3
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@ Construction of periodic wave functions:

¢ ({x}, {p}) = Z U ({x +nxL}, {p})

{nx}€Z3

(B-T) [0) = Vi )
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@ Variational principle -> quantization conditions

D) =3 " ¢ p|@))

]

Al (i)
et | (@) | B =T @) — (@

V<L>| Dy } 0
(27)

@ Require few-body solutions in infinite volume as input
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@ A exactly solvable model in 1D

di,

@ Diffraction free model: no new
momenta are created, but o) B
rearrangement are allowed

d1z d12

ds 43
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@ 3-body Quantization conditions:

PL —piL
cot (—0(—gs1) — 0(q12)) + cot 2p1 =

PL—poL
L2 =

cot ((9(-Q23) —+ (9(6]12)) + cot

0,

@ 2-body Quantization condition:
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@ 3-body Quantization conditions:

PL —pL
cot (—0(—qs1) = 8(412)) + cot —— e,
PL — ps L
cot (0(—ga3) + 0(q12)) + cot 5 P _ 0,
qij pi;pja p3s =P —p1—po
@ 2-body Quantization condition:
S 4 kL
2 _
. cot 8(k) + cot 5 =0

0(k) = cot™* (_m—VO)
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@ Lattice model test of few-body interaction ;—Tﬁ?
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™ Determine two free parameters from one and two particles spectra:
mass and coupling strength
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@ Lattice model test of few-body interaction —T—T

S = /d% %a¢*a¢+ %leqﬁ\Q + %Iqﬁ\‘{ ijjj;

™ Determine two free parameters from one and two particles spectra:
mass and coupling strength

(a)

412 SEP)
a3 ds3
di ! a *IP) a,
q3 q23 q31

(b) (c)

A, d1,
°F} a3

(d)
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™ One particle spectra -> mass

~~ ~

Clon(t) = (¢ (£)Pn (0)) ox e~ 1om?
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m(L) i
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@ Two particles spectra -> coupling strength

o)

d) * d
2b,(i,j)(t) — <O§b?i (t)Oéb?j(O»

Oéclj?n (t) — (;n (t> gd—n (t)
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@ Two particles spectra -> coupling strength

Cl (1) = (057 (105 (0))

20,7

Oéi?n(t) — ¢n(t)Pan(t) .

5(k)+90°

9
P=2"4

L

O(k) = cot™( Ti\kfo)
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@ Three particles spectra

C () = (05 (105, (0))
O (t) = 6n(t)d—n(t)dalt)

* Correlation functions and effective mass

C(X()) L

T In(Cx0)/Clxo+1))
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@ Three particles spectra: simulation vs quantization conditions
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@ Diagnosis of sanity level:
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@ Three particles spectra: simulation vs quantization conditions
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@ Three particles spectra: simulation vs quantization conditions

EE)
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