Gravitational form factors on the lattice

JLab Theory Seminar Oct 30, 2023

Dan Hackett (MIT \rightarrow FNAL)

Patrick Oare (MIT)

Dimitra Pefkou (MIT \rightarrow Berkeley)

Phiala Shanahan (MIT)

Outline

Gravitational structure of hadrons Gravitational form factors (GFFs)? Why are GFFs interesting?

GFFs on the lattice

Overview of calculation(s)

Results

GFFs of proton, pion (w/ flavor decomp) Experimental comparison

Densities, radii

2307.11707

Gravitational form factors of the pion from lattice QCD

Daniel C. Hackett, Patrick R. Oare, Dimitra A. Pefkou, and Phiala E. Shanahan Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

The two gravitational form factors of the pion, $A^{\pi}(t)$ and $D^{\pi}(t)$, are computed as functions of the momentum transfer squared t in the kinematic region $0 \leq -t < 2 \text{ GeV}^2$ on a lattice QCD ensemble with quark masses corresponding to a close-to-physical pion mass $m_{\pi} \approx 170$ MeV and $N_f = 2 + 1$ quark flavors. The flavor decomposition of these form factors into gluon, up/down light-quark, and strange quark contributions is presented in the $\overline{\text{MS}}$ scheme at energy scale $\mu = 2$ GeV, with renormalization factors computed non-perturbatively via the RI-MOM scheme. Using monopole and z-expansion fits to the gravitational form factors, we obtain estimates for the pion momentum fraction and D-term that are consistent with the momentum fraction sum rule and the next-to-leading order chiral perturbation theory prediction for $D^{\pi}(0)$.

2310.08484

Gravitational form factors of the proton from lattice QCD

Daniel C. Hackett,^{1,2} Dimitra A. Pefkou,^{3,2} and Phiala E. Shanahan²

¹Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. ²Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A. ³Department of Physics, University of California, Berkeley, CA 94720, U.S.A

The gravitational form factors (GFFs) of a hadron encode fundamental aspects of its structure, including its shape and size as defined from e.g., its energy density. This work presents a determination of the flavor decomposition of the GFFs of the proton from lattice QCD, in the kinematic region $0 \leq -t \leq 2 \text{ GeV}^2$. The decomposition into up-, down-, strange-quark, and gluon contributions provides first-principles constraints on the role of each constituent in generating key proton structure observables, such as its mechanical radius, mass radius, and *D*-term.

Gravitational structure of hadrons

Gravitational form factors (GFFs)

GFFs are EMT form factors

Schematically, for any hadron:

Graviton scattering \sim symmetric EMT

$$T^{\{\mu\nu\}} = \frac{2}{\sqrt{-g}} \frac{\delta S_{QCD}}{\delta g_{\mu\nu}} = 2 \operatorname{Tr} \left[-G^{\alpha\mu} G^{\nu}_{\alpha} + \frac{1}{4} g^{\mu\nu} G^{\alpha\beta} G_{\alpha\beta} \right] + \bar{q} \gamma^{\{\mu} i \overleftrightarrow{D}^{\nu\}} q$$
$$a^{\{\mu} b^{\nu\}} \equiv \frac{1}{2} (a^{\mu} b^{\nu} + a^{\nu} b^{\mu})$$

 $\langle hadron(p')|T(\Delta)|hadron(p)\rangle = \sum (Lorentz structure)_i GFF_i(t = \Delta^2)$

4

Gravitational form factors
$$T^{\{\mu\nu\}} = 2 \operatorname{Tr} \left[-G^{\alpha\mu}G^{\nu}_{\alpha} + \frac{1}{4}g^{\mu\nu}G^{\alpha\beta}G_{\alpha\beta} \right] + \bar{q} \gamma^{\{\mu}i \overleftrightarrow{D}^{\nu\}} q$$

$$a^{\{\mu}b^{\nu\}} \equiv \frac{1}{2}(a^{\mu}b^{\nu} + a^{\nu}b^{\mu})$$

$$\overrightarrow{D} = (\overrightarrow{D} - \overleftarrow{D})/2$$

$$U, \overrightarrow{U} = \text{Dirac spinors}$$

$$P = (p' + p)/2$$

$$\Delta = p' - p$$

$$t = \Delta^{2}$$

Nucleon:

$$\left\langle N(p') \left| T^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A(t) \frac{P^{\{\mu} P^{\nu\}}}{M} + J(t) \frac{i P^{\{\mu} \sigma^{\nu\}\rho} \Delta_{\rho}}{2M} + D(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} \right] U(p)$$

Pion:

$$\left\langle \pi(p') \left| T^{\{\mu\nu\}} \right| \pi(p) \right\rangle = A(t) \, 2P^{\mu}P^{\nu} + D(t) \frac{1}{2} \left(\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2 \right)$$

Why are these interesting?

Global properties

$$\left\langle N(p') \left| T^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A(t) \frac{P^{\{\mu} P^{\nu\}}}{M} + J(t) \frac{i P^{\{\mu} \sigma^{\nu\}\rho} \Delta_{\rho}}{2M} + D(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} \right] U(p)$$

 $\partial_{\mu}T^{\mu\nu} = 0 \rightarrow \text{GFFs}$ are scale- and scheme-independent Forward GFFs are fundamental, global properties:

$$\begin{aligned} A(0) &= 1 \iff \langle p | T^{tt} | p \rangle = M \\ J(0) &= \frac{1}{2} = \text{Total spin} \\ B(0) &= 2J(0) - A(0) = 0 \quad \text{"vanishing of the anomalous gravitomagnetic moment"} \\ D(0) &= ??? \quad (\text{internal forces}) \end{aligned}$$

Similar for pion, except no J

D(0): "the last global unknown"

Polyakov Schweitzer 1805.06596

em:	$\partial_\mu J^\mu_{ m em}~=0$	$\langle N' J^{\mu}_{\mathbf{em}} N angle$	\rightarrow	$Q = \mu =$	= $1.602176487(40) \times 10^{-19}$ C = $2.792847356(23)\mu_N$
weak:	PCAC	$\langle N' J^{\mu}_{\mathbf{weak}} N angle$	\rightarrow	$g_A =$	= 1.2694(28)
				g_p =	= 8.06(55)
gravity:	$\partial_{\mu}T^{\mu\nu}_{\mathbf{grav}}=0$	$\langle N' T^{\mu u}_{\mathbf{grav}} N angle$	\rightarrow	m =	$= 938.272013(23) \mathrm{MeV}/c^2$
				<i>J</i> =	= = =
				D =	= ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial current, and g_A or g_p are strictly speaking defined in terms of transition matrix elements in the neutron β -decay or muon-capture. The values of the properties are from the particle data book [107] and [108] (for g_p) except for the unknown *D*-term.

What is a hadron made of?

Decompose EMT into quark and glue:

$$T_g^{\{\mu\nu\}} = 2 \operatorname{Tr} \left[-G^{\alpha\mu} G^{\nu}_{\alpha} + \frac{1}{4} g^{\mu\nu} G^{\alpha\beta} G_{\alpha\beta} \right] \qquad T_q^{\{\mu\nu\}} = \bar{q} \gamma^{\{\mu} i \overleftrightarrow{D}^{\nu\}} q$$

 \rightarrow GFFs for glue and e/a quark:

$$\left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \overline{c}_{g,q}(t)Mg^{\mu\nu} \right] U(p)$$

$$+ D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \overline{c}_{g,q}(t)Mg^{\mu\nu} \right] U(p)$$

[Note: not individually conserved,

decomposition is scale and scheme dependent]

"Extra" GFF ~ trace anomaly

$$\sum_q \dot{c_q} + \dot{c_g} = 0$$

Forward GFFs & decompositions

$$\left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \overline{c}_{g,q}(t) Mg^{\mu\nu} \right] U(p)$$

JLab Seminar - Dan Hackett - 10/30/23

What does a hadron look like?

Fourier-transformed form factors provide information about spatial densities

Example: electric charge density in the neutron from G_E^n

[Atac, Constantinou, Meziani, Paolone, Sparveris 2103.10840]

Mass & mechanical densities

Applies also for GFFs: energy, pressure, shear forces

Fourier

Example: pressure in the nucleon from D

[Pefkou DH Shanahan 2107.10368]

(More on this later)

JLab Seminar - Dan Hackett - 10/30/23

Experimental accessibility?

GFFs related to Mellin moments of generalized parton distributions (GPDs) $\int dx x^{n-1}$ GPD(x, ξ , t)

e.g. nucleon n = 2 $\int dx \, x \, H_{q,g}(x,\xi,t) = A_{q,g}(t) + \xi^2 D_{q,g}(t)$ $\int dx \, x \, E_{q,g}(x,\xi,t) = B_{q,g}(t) - \xi^2 D_{q,g}(t)$

 \rightarrow relate to experiment via factorization

Experimental results

Proton: quark *D* from DVCS

[Burkert Elouadrhiri Girod 2018]

JLab Seminar - Dan Hackett - 10/30/23

Hadron tomography w/ GPDs

GPD
$$\xrightarrow{FT}$$
 density of partons w/r/t impact parameter b
 $q(x,b) = \int \frac{d\Delta}{(2\pi)^2} e^{iq \cdot b} H(x,\xi=0,t=-\Delta^2)$

Example: nucleon isovector density [Lin 2008.12474]

JLab Seminar - Dan Hackell - 10/30/23

GFFs on the lattice

General idea: bare matrix elements

A three-point function for $\Delta = p' - p$

 $\langle \chi(p',t_f) T^{\mathrm{b}} \chi(p,0) \rangle \sim Z_{p'} Z_p \langle p' | T^{\mathrm{b}} | p \rangle e^{-E'(t_f-\tau)-E\tau} + (\text{excited states})$

constrains the bare GFFs at $t = \Delta^2$

$$\langle p' | T^{\mathbf{b}} | p \rangle = c_A A^{\mathbf{b}}(t) + c_J J^{\mathbf{b}}(t) + c_D D^{\mathbf{b}}(t)$$

⇒ measure and analyze many three-point functions

General idea: renormalization

(Flavor singlet) EMTs mix & renormalize multiplicatively

$$\begin{bmatrix} T_q^{\overline{MS}} \\ T_g^{\overline{MS}} \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\overline{MS}} & Z_{qg}^{\overline{MS}} \\ Z_{gq}^{\overline{MS}} & Z_{gg}^{\overline{MS}} \end{bmatrix} \begin{bmatrix} T_q^{\text{bare}} \\ T_g^{\text{bare}} \end{bmatrix}$$

Assert RI-MOM renormalization conditions at scale $\mu^2 = p^2$ $\langle q(p) T_i(0) \bar{q}(p) \rangle_{\text{lattice}} = Z_q R_{iq}^{\text{RI}} \langle q(p) T_{q,g}(0) \bar{q}(p) \rangle_{\text{tree}}$ $\langle A(p) T_i(0) A(p) \rangle_{\text{lattice}} = Z_g R_{ig}^{\text{RI}} \langle A(p) T_{q,g}(0) A(p) \rangle_{\text{tree}}$...then apply perturbative matching to $\overline{\text{MS}}$ and run to $\mu = 2 \text{ GeV}$

Ensembles

Gauge action: tadpole-improved Luscher-Weisz

Fermion action: 2 + 1 flavors, stout-smeared clover

	L/a	T/a	eta	am_l	am_s	$a~[{ m fm}]$	$m_{\pi} \; [{ m MeV}]$	
Α	48	96	6.3	-0.2416	-0.2050	0.091(1)	169(1)	
В	12	24	6.1	-0.2800	-0.2450	0.1167(16)	450(5)	-

Bare matrix elements

Glue: 2511 configs Quarks: 1381 configs (subset) ["a091m170" (JLab/W&M/MIT/LANL)]

Renormalization

Conn. quark: 240 configs Disco./glue: 20000 configs

Two-point functions

Compute on 2511 configs, 1024 srcs/cfg (2x offset $4^3 \times 8$ grids)

Note: only one interpolating operator; both diagonal spin channels

Relativistic dispersion obeyed at $\sim \%$ level

 \rightarrow Neglect errors in $aM_{\pi} = 0.0779$ and $aM_N = 0.4169$

Lattice EMT operators Quark: $T_a^{\{\mu\nu\}} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$ Discretized covariant derivative $\vec{D} = (\vec{D} - \vec{D})/2$ $\left(\vec{D}_{\mu}\psi\right)(x) = \frac{1}{2} \left[U_{\mu}(x)\psi(x+\mu) - U_{\mu}^{\dagger}(x-\mu)\psi(x-\mu) \right]$ $\left(\bar{\psi}\,\widetilde{D}_{\mu}\right)(x) = \frac{1}{2} \left[\bar{\psi}(x+\mu)U_{\mu}^{\dagger}(x) - \bar{\psi}(x-\mu)U_{\mu}(x-\mu)\right]$

Glue:
$$T_g^{\{\mu\nu\}} = \frac{2}{g^2} \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$$

$$G_{\mu\nu} \sim \left(Q_{\mu\nu} - Q^{\dagger}_{\mu\nu}\right)$$

Operator Bases

$$\begin{aligned} \tau_1^{(3)} &: \quad \frac{1}{2} (T^{xx} + T^{yy} - T^{zz} + T^{tt}), \quad \frac{1}{\sqrt{2}} (T^{zz} + T^{tt}), \quad \frac{1}{\sqrt{2}} (T^{xx} - T^{yy}) \\ \tau_3^{(6)} &: \quad \left\{ \frac{i^{\delta \mu 0}}{\sqrt{2}} (T^{\mu \nu} + T^{\nu \mu}), \quad 0 \le \mu \le \nu \le 3 \right. \end{aligned}$$

Three-point functions

Connected Quark (*u*, *d*)

Sequential source (thru sink)

- 3 sink momenta
- Nucleon: 1 spin channel
- Sources / cfg varies w/ t_f

Disconnected Quark (u, d, s)

Pion: $1 Z_4$ noise shot / cfg

Nucleon: 4 spin channels

Nucleon: $2Z_4$ noise shots / cfg

Hadamard vectors

1024 sources / cfg

Hierarchical probing w/ 512

Glue (disconnected) Clover EMT

- Flowed to $t/a^2 = 2$
- 1024 sources / cfg
- Nucleon: 4 spin channels

Use all available data!

- all $p^2 \le 10 \; (2\pi/L)^2$
- all $\Delta^2 \leq 25(2\pi/L)^2$
- all operators

Pion 1218 t_s 6 8 10 141616161632 N_s 6 3232Nucleon 10121316186 7 8 9 11 14 t_s N_s 1616161632329 16161632

•

•

•

•

ullet

Extract bare matrix elements

1. Construct ratios

$$R(p,p';\tau,t_f) = \frac{C^{3\text{pt}}(p,p';t_f,\tau)}{C^{2\text{pt}}(p';t_f)} \sqrt{\frac{C^{2\text{pt}}(p;t_f-\tau)}{C^{2\text{pt}}(p';t_f-\tau)}} \frac{C^{2\text{pt}}(p';t_f)}{C^{2\text{pt}}(p;t_f)} \frac{C^{2\text{pt}}(p';\tau)}{C^{2\text{pt}}(p;\tau)}$$

$$= \# \langle p'|T|p \rangle + O \left(e^{-\Delta E \tau - \Delta E'(t_f-\tau)} \right)$$
2. Bin ratios together w/ same kinematic coeffs
3. Fit using summation method

$$I = T$$

$$\Sigma(t_f) = \sum_{\tau=\tau_{\text{cut}}}^{t_f-\tau_{\text{cut}}} R(\tau, t_f) = (\text{const}) + \# \langle p'|T|p \rangle t_f + O(e^{-\delta E t_f})$$

... w/ Bayesian model averaging over fit ranges, $au_{
m cut}$

Example pion ratios: $\tau_1^{(3)}$

Example nucleon ratios

Renormalization

Compute amputated 3pt functions, solve for: Landau gauge

Flow to $t/a^2 = 1.2$ to match physical scale

RI-MOM + matching to \overline{MS} gives:

$$\begin{split} R_{qq}^{\rm RI}(\mu_R^2) &= \frac{C_{q,\mu\nu}^{q,\rm amp}}{Z_q \Lambda_{\mu\nu}^q} \Big|_{\tilde{p}^2 = \mu_R^2}, \qquad q = u + d + s \\ p = u + d - 2s \\ R_{gg}^{\rm RI}(\mu_R^2) &= \frac{C_{g,\mu\nu\alpha\beta}^{g,\rm amp}}{Z_g \Lambda_{\mu\nu\alpha\beta}^g} \Big|_{\tilde{p}_\alpha = 0, \tilde{p}^2 = \mu_R^2}^{\alpha = \beta, \alpha \neq \mu, \alpha \neq \nu}, \\ R_{qg}^{\rm RI}(\mu_R^2) &= \frac{C_{q,\mu\nu\alpha\beta}^{g,\rm amp}}{Z_g \Lambda_{\mu\nu\alpha\beta}^g} \Big|_{\tilde{p}_\alpha = 0, \tilde{p}^2 = \mu_R^2}^{\alpha = \beta, \alpha \neq \mu, \alpha \neq \nu}, \\ R_{gq}^{\rm RI}(\mu_R^2) &= \frac{C_{g,\mu\nu\alpha\beta}^{g,\rm amp}}{Z_q \Lambda_{\mu\nu}^g} \Big|_{\tilde{p}^2 = \mu_R^2}^{\alpha = \beta, \alpha \neq \mu, \alpha \neq \nu}, \\ R_{gq}^{\rm RI}(\mu_R^2) &= \frac{C_{g,\mu\nu}^{g,\rm amp}}{Z_q \Lambda_{\mu\nu}^g} \Big|_{\tilde{p}^2 = \mu_R^2}. \qquad R_v^{\rm RI}(\mu_R^2) = \frac{C_{v,\mu\nu}^{q,\rm amp}}{Z_q \Lambda_{\mu\nu}^q} \Big|_{\tilde{p}^2 = \mu_R^2} \end{split}$$

$$\begin{pmatrix} Z_{\nu}^{\overline{MS}} \end{pmatrix}^{-1} (\mu^2) = C_{\nu}^{\mathrm{RI}/\overline{MS}} (\mu^2, \mu_R^2) R_{\nu}^{\mathrm{RI}} (\mu_R^2)$$

$$\begin{bmatrix} Z_{qq}^{\overline{MS}} & Z_{qg}^{\overline{MS}} \\ Z_{gq}^{\overline{MS}} & Z_{gg}^{\overline{MS}} \end{bmatrix}^{-1} (\mu^2) = \begin{bmatrix} R_{qq}^{\mathrm{RI}} & R_{qg}^{\mathrm{RI}} \\ R_{gq}^{\mathrm{RI}} & R_{gg}^{\mathrm{RI}} \end{bmatrix} (\mu_R^2) \begin{bmatrix} C_{qq}^{\mathrm{RI}/\overline{MS}} & C_{qg}^{\mathrm{RI}/\overline{MS}} \\ C_{gq}^{\mathrm{RI}/\overline{MS}} & C_{gg}^{\mathrm{RI}/\overline{MS}} \end{bmatrix} (\mu^2, \mu_R^2)$$

Model and fit residual $(ap)^2$ dependence in each of product $R^{\text{RI}} C^{\text{RI}/\overline{MS}}$ **Note:** repeat for each irrep!

Fitting for renormalization coeffs

JLab Seminar - Dan Hackett - 10/30/23

Fitting for renormalization coeffs

Model discretization artifacts as polynomials, inverse polynomials

+ logs for nonperturbative⁻² effects -4

JLab Seminar - Dan Hackett - 10/30/23

Computing the GFFs

Have, for each irrep:

- Bare matrix elements for glue & each quark flavor, binned by t
- Mixing matrix + non-singlet Z factor
- \rightarrow Renormalized set of linear constraints on GFFs in each *t*-bin
- Fit to extract GFFs
 - Include data from both irreps **Result:** GFFs for discrete values of *t*
- Fit GFFs to model functions

n-pole
$$G(t) \sim \frac{\alpha}{(1-t/\Lambda^2)^3}$$

Z-expansion $G(t) \sim \sum_{k=0}^{k_{\max}=2} \alpha_k [z(t)]^k$
 $z(t) = \frac{\sqrt{t_{\text{cut}}-t} - \sqrt{t_{\text{cut}}-t_0}}{\sqrt{t_{\text{cut}}-t} + \sqrt{t_{\text{cut}}-t_0}} \qquad t_{\text{cut}} = 4M_\pi^2 \qquad t_0 = t_{\text{cut}} (1 - \sqrt{1 + (2 \text{ GeV})^2})$

Results

Pion GFFs (flavor decomp)

Hatched bands: monopole Solid bands: z-expansion

Pion GFFs (total)

Error on χ PT estimate due to different estimates for LECs [Donaghue Leutwyler 1991]

JLab Seminar - Dan Hackett - 10/30/23

		Dipole	z-expansion			
	A_i	J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)

		Dipole			z-expansion	
	A_i	J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
\boldsymbol{s}	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
			/			

Sum rules (consistency check)

		Dipole	z-expansion			
	A_i	J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
		Sum	rules (consis	stency check)		
	\langle	Juli		Stericy checky		
cf. glo	bal fit result					
$A_g($	(0) = 0.414(8)					
[Hou e	et al. 1912.10053]					

		Dipole	z-expansion			
	A_i	J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
		Sum	n rules (consis	tency check)		
cf. global fit result $A_g(0) = 0.414(8)$ [Hou et al. 1912.10053]		First determination! Satisfies χ PT bound $D(0)/M \leq -1.1(1)$ GeV		\vee nation! pound 1.1(1) GeV ⁻¹		

JLab Seminar - Dan Hackett - 10/30/23

Nucleon vs. experiment

Spatial densities

- 1. Parametrize $T_{\mu\nu}(t)$ with GFFs
- 2. Fourier transform $T_{\mu\nu}(t) \rightarrow T_{\mu\nu}(r)$
- 3. Identify

$$T_{\mu\nu}(r) = \begin{bmatrix} T_{tt}(r) & \\ & T_{ij}(r) \end{bmatrix} = \begin{bmatrix} \epsilon(r) & \\ & \left(\frac{r_i r_j}{r^2} - \frac{1}{d} \delta_{ij}\right) s(r) + \delta_{ij} p(r) \end{bmatrix}$$

 \rightarrow Spatial densities

energy
$$\epsilon(r) = M \left[A(t) - \frac{t}{4M^2} \left(D(t) + A(t) - 2J(t) \right) \right]_{FT}$$
 shear forces $s(r) = -\frac{1}{4M} r \frac{d}{dr} \frac{1}{r} \frac{d}{dr} \left[D(t) \right]_{FT}$
pressure $p(r) = \frac{1}{6M} \frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} \left[D(t) \right]_{FT}$ longitudinal force $F^{\parallel}(r) = p(r) + \frac{2s(r)}{3}$

Caveat: physical significance of these analogies is under debate

JLab Seminar - Dan Hackett - 10/30/23

 $[f(t)]_{\rm FT} = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{-i\mathbf{\Delta} \cdot \mathbf{r}} f(t)$

How big is the nucleon?

Conclusion

First complete flavor decomposition of the GFFs of the nucleon and pion

- First determination of *total* GFFs
- → *physical* (i.e. RGI) densities, radii
- New first-principles descriptions of size and shape of pion, proton
- Nucleon results help discriminate between different experimental extractions

Towards a precision calculation of the GFFs, need: Multiple ensembles to take continuum, physical-mass limits

Improved renormalization (GIRS, sum rules?)

Variational operator bases to fully control excited state effects

