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serves as a basis for further applications, where it is
expected that the improved convergence of the effective
theory will have a significant impact, which should be
particularly important in the case of three flavors.
In the case of three flavors, there are numerous parameter

free relations that hold at tree level NNLO in the ξ
expansion, such as GMO, ES, and various other relations
for σ terms and axial couplings. Those relations have
calculable corrections given solely by the nonanalytic loop
contributions, thus providing useful tests for the accuracy
of the effective theory and also serving as control tests of
LQCD results through those same relations.
It is important to emphasize the importance of the

decuplet in the effective theory, which has a key role in
taming the nonanalytic contributions and thus improving
the convergence, as it is clearly manifested in particular in
the axial couplings. This improvement in the behavior of
the effective theory when it is made consistent with the
1=Nc expansion permeates other observables, such as the
mass relations and vector charges, as well as virtually any
other observable, such as in pion-nucleon scattering, in
Compton scattering, etc.
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APPENDIX A: SPIN-FLAVOR ALGEBRA AND
OPERATOR BASES

The 4N2
f − 1 generators of the spin-flavor group

SUð2NfÞ consist of the three spin generators Si, the
N2

f − 1 flavor SUðNfÞ generators Ta, and the remaining

3ðN2
f − 1Þ spin-flavor generators Gia. The commutation

relations are

½Si; Sj$ ¼ iϵijkSk; ½Ta; Tb$ ¼ ifabcTc; ½Ta; Si$ ¼ 0;

½Si; Gja$ ¼ iϵijkGka; ½Ta; Gib$ ¼ ifabcGic;

½Gia; Gjb$ ¼ i
4
δijfabcTc þ i

2Nf
δabϵijkSk þ i

2
ϵijkdabcGkc:

ðA1Þ

In representations with Nc indices (baryons), the gen-
erators Gia have matrix elements OðNcÞ on states with
S ¼ OðN0

cÞ. A contracted SUð6Þ algebra is defined by the
generators fSi; Ia; Xiag, where Xia ¼ Gia=Nc. In large Nc,
the generators Xia become semiclassical as ½Xia; Xjb$ ¼
Oð1=NcÞ, and have matrix elements Oð1Þ between
baryons.
The symmetric irreducible representation of SUð6Þ

with Nc Young boxes decomposes into the following
SUð2Þspin×SUð3Þ irreducible representations: ½S;ðp;qÞ$ ¼
½S;ð2S;12ðNc−2SÞÞ$, S ¼ 1=2;…; Nc=2 (assumed Nc is
odd). The baryon states are then denoted by jSS3; YII3i.
Clearly the spin S of the baryons determines its SUð3Þ
irreducible representation.
Some useful details about the contents of SUð3Þ mul-

tiplets are in order. For a given irreducible representation
ðp; qÞ, the range of hypercharge is

Yminðp;qÞ ¼ −
2pþ q

3
≤ Y ≤ Ymaxðp;qÞ ¼

pþ 2q
3

ðA2Þ

Defining:

Ȳðp; qÞ ¼ Ymaxðp; qÞ − q

Ȳ 0ðp; qÞ ¼ Yminðp; qÞ þ q; ðA3Þ

where Ȳ > Ȳ 0 if p > q, and viceversa. The possible isospin
values for a given Y are as follows:

if p ≥ q∶ IðYÞ ¼

8
>><

>>:

if Y ≥ Ȳ∶ 1
2 ðp − Ymax þ YÞ;…; 12 ðpþ Ymax − YÞ

if Ȳ 0 ≤ Y < Ȳ∶ 1
2 ðp − Ymax þ YÞ;…; 12 ðpþ Ymax þ Y − 2ȲÞ

if Ymin ≤ Y < Ȳ 0∶ 1
2 ðqþ Ymin − YÞ;…; 12 ðqþ Y − YminÞ

if q ≥ p∶ IðYÞ ¼

8
>><

>>:

if Y ≥ Ȳ 0∶ 1
2 ðp − Ymax þ YÞ;…; 12 ðpþ Ymax − YÞ

if Ȳ ≤ Y < Ȳ 0∶ 1
2 ðpþ 2Ȳ 0 − Ymax − YÞ;…; 12 ðpþ Ymax − YÞ

if Ymin ≤ Y < Ȳ∶ 1
2 ðqþ Ymin − YÞ;…; 12 ðqþ Y − YminÞ
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Weiss and José Manuel Alarcón for useful discussions,
and Dina Alexandrou for communications on LQCD
results for the axial couplings. This work was supported
by Department of Energy Contract No. DE-AC05-
06OR23177, under which JSA operates the Thomas
Jefferson National Accelerator Facility, and by the
National Science Foundation through Grants No. PHY-
1307413 and No. PHY-1613951.

APPENDIX A: SPIN-FLAVOR ALGEBRA AND
OPERATOR BASES

The 4N2
f − 1 generators of the spin-flavor group

SUð2NfÞ consist of the three spin generators Si, the
N2

f − 1 flavor SUðNfÞ generators Ta, and the remaining

3ðN2
f − 1Þ spin-flavor generators Gia. The commutation

relations are

½Si; Sj$ ¼ iϵijkSk; ½Ta; Tb$ ¼ ifabcTc; ½Ta; Si$ ¼ 0;

½Si; Gja$ ¼ iϵijkGka; ½Ta; Gib$ ¼ ifabcGic;

½Gia; Gjb$ ¼ i
4
δijfabcTc þ i

2Nf
δabϵijkSk þ i

2
ϵijkdabcGkc:

ðA1Þ

In representations with Nc indices (baryons), the gen-
erators Gia have matrix elements OðNcÞ on states with
S ¼ OðN0

cÞ. A contracted SUð6Þ algebra is defined by the
generators fSi; Ia; Xiag, where Xia ¼ Gia=Nc. In large Nc,
the generators Xia become semiclassical as ½Xia; Xjb$ ¼
Oð1=NcÞ, and have matrix elements Oð1Þ between
baryons.
The symmetric irreducible representation of SUð6Þ

with Nc Young boxes decomposes into the following
SUð2Þspin×SUð3Þ irreducible representations: ½S;ðp;qÞ$ ¼
½S;ð2S;12ðNc−2SÞÞ$, S ¼ 1=2;…; Nc=2 (assumed Nc is
odd). The baryon states are then denoted by jSS3; YII3i.
Clearly the spin S of the baryons determines its SUð3Þ
irreducible representation.
Some useful details about the contents of SUð3Þ mul-

tiplets are in order. For a given irreducible representation
ðp; qÞ, the range of hypercharge is

Yminðp;qÞ ¼ −
2pþ q

3
≤ Y ≤ Ymaxðp;qÞ ¼

pþ 2q
3

ðA2Þ

Defining:
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if Ymin ≤ Y < Ȳ 0∶ 1
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if Ymin ≤ Y < Ȳ 0∶ 1
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Non relativistic version of the BChPT or HBChPT  is based on the expansion in terms of 
the “baryon mass”

Solution : 

pµ = mBvµ + kµ

65

3.5.1 Power counting scheme in HBChPT

In the HBChPT, the derivative expansion for both mesons and baryons becomes an

expansion in powers of (k/⇤�), where k is a momentum of the order of the meson mass

and ⇤� is the chiral symmetry breaking scale. Therefore, the higher derivative terms

in the e↵ective theory are suppressed by powers of (k/⇤�). The baryon propagator

can be revised into
1

p2 � m2
B

! 1

2mB

1

(v.k)
+ O

�

1/m2
B
�

(3.104)

a version where the mass dependence can be resided in the vertices which can be or-

dered according to their power in 1/mB. The chiral dimension D for a given Feynman

diagram is given by [46],

Ddim = 4NL � 2IM � IB +
1
X

n=1

2n NM
2n +

1
X

n=1

n NB
n , (3.105)

where, NL is the number of loops, IM is the number of internal meson lines, NM
2n is

the number of meson vertices from L2n, NB
n is the number of baryon vertices from

L(n)
MB, and IB is the number of internal baryon lines. For the processes which have

single baryon in the initial and final states, the Eq. (3.105) becomes,

Ddim = 2NL + 1 +
1
X

n=1

2(n � 1) NM
2n +

1
X

n=1

(n � 1) NB
n , (3.106)

because the total number of mesonic vertices NM can be related to IM by NL =

IM + IB � NM � NB + 1, and the total number of baryonic vertices can be written as,

NB =
1
X

n=1

NB
n = IB + 1 . (3.107)

Note that the loop contribution starts from Ddim > 3.

64

Therefore, the Feynman rule for the pion-nucleon V⇡NN vertex becomes,

V⇡NN = � g̊A

2F0

�µqµ�5~⌧ . (3.100)

Using the components Lext,V⇡NN the expression for the diagram in Fig. XX reads:

2B0F0mq

✓

i

t � M2
⇡

◆

ū(p0)

✓

� g̊A

2F0

�µqµ�5~⌧

◆

u(p) =
M2

⇡F0

M2
⇡ � t

g̊Am̊N

F0

ū(p0)�5i⌧iu(p) ,

with the aid of M2
⇡ = 2B0mq, ū�µqµ�5u = 2m̊N ū�5u, and F⇡ = F0 at O (p2). Com-
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at the leading order in chiral expansion when t = M2
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3.5 Heavy Baryon Approach

In the heavy baryon chiral pertuebation theory (HBChPT), the baryons are con-

sidered as heavy static fermions [40, 59]. The velocity of the baryon is nearly un-

changed or e↵ectively conserved when it exchanges a small momentum with a meson.

Therefore the baryon four-momentum can be decomposed into a large component

mBv and a small residual momentum component kµ,

pµ = mB v + kµ , vµvµ = 1 , v.k ⌧ mB . (3.103)
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The issue of experiencing a slower rate 

of convergence compared to the 
Goldstone Boson Sector

Inclusion of the decuplet baryons in one-loop corrections to physical 
observables, has been showing a great improvement!

On the other hand, studying the baryons in the large Nc limit of QCD emerges a dynamical 
symmetry called “spin-flavor symmetry” which requires the possibility of having 
degenerate baryon multiplets of higher spin in the intermediate state/s. 

Motivation for BChPT x 1/Nc expansion

3

1

The significant progress in lattice QCD (LQCD) calcu-
lations of baryon observables [37–39] provides opportu-
nities for further testing and understanding low-energy
effective theories of baryons, which in turn can serve to
understand the LQCD results themselves. The determina-
tion of the quark mass dependence of the various low-
energy observables, such as masses, axial couplings,
magnetic moments, electromagnetic polarizabilities, etc.,
are of key importance for testing the effective theory, in
particular its range of validity in quark masses, as well as
for the determination of its low-energy constants (LECs).
Lattice results for N and Δ as well as hyperon masses
[40–48] (results of the last reference are used in the present
work), the axial coupling gA of the nucleon [49–54] and a
subset of the axial couplings of the octet and decuplet
baryons [55] at varying quark masses can be analyzed with
the effective theory, as presented in this work.
This work is organized as follows. In Sec. II, the

framework for the combined 1=Nc and HBChPT expan-
sions is described. Section III presents the evaluation of the
baryon masses toOðξ3Þ, Sec. IV presents the corrections to
the vector charges, and Sec. V the corrections to the axial
couplings. In both Secs. III and V, applications to LQCD
results are presented. Finally, a summary is given in
Sec. VI. Several appendixes present useful material needed
in the calculations, namely, Appendix A on spin-flavor
algebra, Appendix B on tools to build the chiral
Lagrangians, Appendix C on the one-loop integrals, and
Appendix D on reduction formulas of composite operators.

II. COMBINED BARYON CHIRAL
PERTURBATION THEORY AND 1=Nc EXPANSION

FOR THREE FLAVORS

In this section, the framework for the combined 1=Nc
and chiral expansions in baryons is presented in some detail
along similar lines as in the original works [31–33] and the
more recent work [34,35]. The symmetries that constrain
the effective Lagrangian in the chiral and largeNc limits are
chiral SULðNfÞ × SURðNfÞ, which is a Noether symmetry,
and contracted dynamical spin-flavor symmetry SUð2NfÞ
[26–29].1 Nf is the number of light flavors, where in this
work Nf ¼ 3. In the limit Nc → ∞, the spin-flavor
symmetry requires baryon states to fill degenerate multip-
lets of SUð6Þ. In particular, the ground state (GS) baryons
belong into a symmetric SUð6Þ multiplet. At finite Nc the
spin-flavor symmetry is broken by effects suppressed by
powers of 1=Nc, and the mass splittings in the GS multiplet
between the states with spins Sþ 1 and S are proportional
to ðSþ 1Þ=Nc. The effects of finite Nc are then imple-
mented as an expansion in 1=Nc in the effective
Lagrangian. Because baryon masses are proportional to
Nc, it becomes natural to use the framework of HBChPT

[7,56], where the expansion in inverse powers of the baryon
mass becomes part of the 1=Nc expansion. The framework
used here follows that of Refs. [31,32,34].
The dynamical contracted SUð2NfÞ symmetry results

from the requirement of large Nc consistency of baryon
observables [26–29],2 in particular the requirement that the
Born contribution to the Goldstone boson-baryon (GB-
baryon) scattering amplitude be finite as Nc → ∞. The
constraint emerges because the GB-baryon coupling is
Oð

ffiffiffiffiffiffi
Nc

p
Þ, and therefore cancellations between crossed

diagrams must occur. The 35 generators of SUð6Þ and
their commutation relations are the following:

Si∶ SUð2Þ spin generators;

Ta∶ SUð3Þ flavor generators;
Gia∶ spin-flavor generators

½Si; Sj& ¼ iϵijkSk

½Ta; Tb& ¼ ifabcTc

½Si; Ta& ¼ 0; ½Si; Gja& ¼ iϵijkGka; ½Ta; Gib& ¼ ifabcGic

½Gia; Gjb& ¼ i
4
δijfabcTc þ i

6
δabϵijkSk þ i

2
ϵijkdabcGkc:

ð1Þ

The generators Gia have coherent matrix elements, i.e.,
matrix elements that scale as Nc between baryons of spin
S ¼ OðN0

cÞ. These generators are the ones that represent
the spatial components of axial-vector currents at the
leading order in the 1=Nc expansion. A contracted
SUð6Þ symmetry, which is the actual dynamical symmetry
in large Nc, is generated by the Algebra where Gia is
replaced by Xia ≡Gia=Nc. The ground state baryons
belong to the totally symmetric spin-flavor irreducible
representation with Nc spin-flavor indices, and consist of
states with spin S ¼ 1=2;…; Nc=2 (assuming Nc to be
odd). For a given spin S, the corresponding SUð3Þmultiplet
is ðp; qÞ ¼ ð2S; 12 ðNc − 2SÞÞ in the usual Young tableau
notation. For Nc ¼ 3, the states are the physical S ¼ 1=2
octet and S ¼ 3=2 decuplet.
In HBChPT, the baryon field, denoted by B, represents

the spin-flavor multiplet where its components are sorted
out by spin and flavor, that is, the entries in B have well
defined spin, and therefore they are in irreducible repre-
sentations of SUð3Þ.
Implementing chiral symmetry follows the well known

scheme of the nonlinear realization on the matter fields.
Representing the Goldstone boson octet by

u ¼ eiπ
aTa=Fπ ; ð2Þ

the nonlinear transformation law is implemented,

1See also Appendix A. 2See also Appendix A.
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These improvements are due to cancellations between octet and decuplet 
contributions in loops 

Derivative expansion for both mesons and baryons 
becomes and expansion in powers of 
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3.5.1 Power counting scheme in HBChPT

In the HBChPT, the derivative expansion for both mesons and baryons becomes an

expansion in powers of (k/⇤�), where k is a momentum of the order of the meson mass

and ⇤� is the chiral symmetry breaking scale. Therefore, the higher derivative terms

in the e↵ective theory are suppressed by powers of (k/⇤�). The baryon propagator

can be revised into
1

p2 � m2
B

! 1

2mB

1

(v.k)
+ O

�

1/m2
B
�

(3.104)

a version where the mass dependence can be resided in the vertices which can be or-

dered according to their power in 1/mB. The chiral dimension D for a given Feynman

diagram is given by [46],

Ddim = 4NL � 2IM � IB +
1
X

n=1

2n NM
2n +

1
X

n=1

n NB
n , (3.105)

where, NL is the number of loops, IM is the number of internal meson lines, NM
2n is

the number of meson vertices from L2n, NB
n is the number of baryon vertices from

L(n)
MB, and IB is the number of internal baryon lines. For the processes which have

single baryon in the initial and final states, the Eq. (3.105) becomes,

Ddim = 2NL + 1 +
1
X

n=1

2(n � 1) NM
2n +

1
X

n=1

(n � 1) NB
n , (3.106)

because the total number of mesonic vertices NM can be related to IM by NL =

IM + IB � NM � NB + 1, and the total number of baryonic vertices can be written as,

NB =
1
X

n=1

NB
n = IB + 1 . (3.107)

Note that the loop contribution starts from Ddim > 3.
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This symmetry is broken at 
sub-leading orders in 1/Nc 
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This spin-flavor symmetry requires the existence of degenerate baryon multiplets with different 
spins (a dynamical symmetry) : leads to the consideration of both octet and decuplet contributions 
in the intermediate state

At large Nc, QCD has contracted spin-flavor            
symmetry                      in baryon sector 
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[Si, T a] = 0 [T a, T b] = ifabcT c

[Si, Sj] = iεijkSk [T a, X ib
0 ] = ifabcX ic

0

[Si, Xja
0 ] = iεijkXka

0 [X ia
0 , Xjb

0 ] = 0 .

(4.7)

One can compare the contracted SUc(2Nf ) algebra with the ordinary SU(2Nf )

spin-flavor algebra. The SU(2Nf ) generators are Si, T a and the spin-flavor oper-

ators Gia. These operators satisfy the SU(2Nf ) spin-flavor algebra

[Si, T a] = 0
[
T a, T b

]
= ifabcT c [Si, Gja] = iεijkGka

[Si, Sj] = iεijkSk
[
T a, Gib

]
= ifabcGic

[
Gia, Gjb

]
=

i

2Nf
εijkδabSk +

i

4
fabcδijT c +

i

2
εijkdabcGkc

(4.8)

The contracted algebra for the large Nc baryons in QCD is obtained from

the SU(2Nf ) algebra by rescaling the spin-flavor generator Gia by a factor of 1/Nc

and taking the limit

X ia
0 = lim

Nc→∞

Gia

Nc
.

This limiting process is known as a Lie algebra contraction [13]. This con-

traction affects only the commutation relation
[
Gia, Gjb

]
. Both sides of this com-

mutator are divided by N2
c , and the limit Nc → ∞ is taken. Then, the left-hand

side becomes
[
X ia

0 , Xjb
0

]
and the right-hand side goes to zero, because baryon

matrix elements of Si and T a are of O(N0
c ).

In summary, the large Nc QCD has a contracted spin-flavor symmetry in the
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quark

gluon

parameters of QCD: 

⇤QCD

mq

qu
ar

k 
m

as
se

s

9. Quantum chromodynamics 25

!"## !"#$ !"#%

α  (Μ  )& '

!"#$%&'(#)*+#,,(-./

012))34)*5678/)

τ9:.-#;<)*5678/

012))=.,<)*578/

.>.?)=.,<)@)<AB<)*5578/)

.+.-,$&C.#%)D(,<)*5678/)

.>.?)=.,<)@)<A#B.<)*5578/)

Υ):.-#;<)*578/

!E0 α  (Μ  ) = 0.1184 ± 0.0007< F

!"#

!"$

!"%

!"(

!")

α&*+,-

# #! #!!
,*./012

G.#H;)!"#$%&'(#
.>.?))I''(A(+#,(&'
0..B)1'.+#<,(-)2-#,,.$('J

K"+;)4LLM
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Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{

1−8
M2
K−M2

$

F2$
(2L8−L5)+µ$ −µ#

}

−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 =−0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,

20

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.
The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{

1−8
M2
K−M2

$

F2$
(2L8−L5)+µ$ −µ#

}

−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 =−0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,

20
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.
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sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.
The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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respective energy scale Q. Both plots are taken from Ref. 172.
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{

1−8
M2
K−M2

$

F2$
(2L8−L5)+µ$ −µ#

}

−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 =−0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,

20

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is

5

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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DOF g̊A m0 CHF c1 µ2 z1 CA
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2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )
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2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.
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sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.
The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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Lattice QCD

Heavy Baryon ChPT

 Spin-flavor Symmetry     +      Chiral Symmetry

mean life time ⇡ 10

31
years

mean life time ⇡ 10

31
years

Baryon Mean life time

Proton ⇡ 10

31
years

Neutron 880.3±1.1 s

Lambda (2.632± 0.020)⇥ 10

�10
s

Sigma (0.8018± 0.0026)⇥ 10

�10s

L(Lagrangian) = x0LLO + x1LNLO + x2LNNLO + x3LNNNLO + .... (1)

2

Combined approach

Combining the HBChPT with 1/Nc provides a 
well behaved expansion  

in the low energy phenomenology   

Introduction to the combined approach : BChPT x 1/Nc expansion2

The significant progress in lattice QCD (LQCD) calcu-
lations of baryon observables [37–39] provides opportu-
nities for further testing and understanding low-energy
effective theories of baryons, which in turn can serve to
understand the LQCD results themselves. The determina-
tion of the quark mass dependence of the various low-
energy observables, such as masses, axial couplings,
magnetic moments, electromagnetic polarizabilities, etc.,
are of key importance for testing the effective theory, in
particular its range of validity in quark masses, as well as
for the determination of its low-energy constants (LECs).
Lattice results for N and Δ as well as hyperon masses
[40–48] (results of the last reference are used in the present
work), the axial coupling gA of the nucleon [49–54] and a
subset of the axial couplings of the octet and decuplet
baryons [55] at varying quark masses can be analyzed with
the effective theory, as presented in this work.
This work is organized as follows. In Sec. II, the

framework for the combined 1=Nc and HBChPT expan-
sions is described. Section III presents the evaluation of the
baryon masses toOðξ3Þ, Sec. IV presents the corrections to
the vector charges, and Sec. V the corrections to the axial
couplings. In both Secs. III and V, applications to LQCD
results are presented. Finally, a summary is given in
Sec. VI. Several appendixes present useful material needed
in the calculations, namely, Appendix A on spin-flavor
algebra, Appendix B on tools to build the chiral
Lagrangians, Appendix C on the one-loop integrals, and
Appendix D on reduction formulas of composite operators.

II. COMBINED BARYON CHIRAL
PERTURBATION THEORY AND 1=Nc EXPANSION

FOR THREE FLAVORS

In this section, the framework for the combined 1=Nc
and chiral expansions in baryons is presented in some detail
along similar lines as in the original works [31–33] and the
more recent work [34,35]. The symmetries that constrain
the effective Lagrangian in the chiral and largeNc limits are
chiral SULðNfÞ × SURðNfÞ, which is a Noether symmetry,
and contracted dynamical spin-flavor symmetry SUð2NfÞ
[26–29].1 Nf is the number of light flavors, where in this
work Nf ¼ 3. In the limit Nc → ∞, the spin-flavor
symmetry requires baryon states to fill degenerate multip-
lets of SUð6Þ. In particular, the ground state (GS) baryons
belong into a symmetric SUð6Þ multiplet. At finite Nc the
spin-flavor symmetry is broken by effects suppressed by
powers of 1=Nc, and the mass splittings in the GS multiplet
between the states with spins Sþ 1 and S are proportional
to ðSþ 1Þ=Nc. The effects of finite Nc are then imple-
mented as an expansion in 1=Nc in the effective
Lagrangian. Because baryon masses are proportional to
Nc, it becomes natural to use the framework of HBChPT

[7,56], where the expansion in inverse powers of the baryon
mass becomes part of the 1=Nc expansion. The framework
used here follows that of Refs. [31,32,34].
The dynamical contracted SUð2NfÞ symmetry results

from the requirement of large Nc consistency of baryon
observables [26–29],2 in particular the requirement that the
Born contribution to the Goldstone boson-baryon (GB-
baryon) scattering amplitude be finite as Nc → ∞. The
constraint emerges because the GB-baryon coupling is
Oð

ffiffiffiffiffiffi
Nc

p
Þ, and therefore cancellations between crossed

diagrams must occur. The 35 generators of SUð6Þ and
their commutation relations are the following:

Si∶ SUð2Þ spin generators;

Ta∶ SUð3Þ flavor generators;
Gia∶ spin-flavor generators

½Si; Sj& ¼ iϵijkSk

½Ta; Tb& ¼ ifabcTc

½Si; Ta& ¼ 0; ½Si; Gja& ¼ iϵijkGka; ½Ta; Gib& ¼ ifabcGic

½Gia; Gjb& ¼ i
4
δijfabcTc þ i

6
δabϵijkSk þ i

2
ϵijkdabcGkc:

ð1Þ

The generators Gia have coherent matrix elements, i.e.,
matrix elements that scale as Nc between baryons of spin
S ¼ OðN0

cÞ. These generators are the ones that represent
the spatial components of axial-vector currents at the
leading order in the 1=Nc expansion. A contracted
SUð6Þ symmetry, which is the actual dynamical symmetry
in large Nc, is generated by the Algebra where Gia is
replaced by Xia ≡Gia=Nc. The ground state baryons
belong to the totally symmetric spin-flavor irreducible
representation with Nc spin-flavor indices, and consist of
states with spin S ¼ 1=2;…; Nc=2 (assuming Nc to be
odd). For a given spin S, the corresponding SUð3Þmultiplet
is ðp; qÞ ¼ ð2S; 12 ðNc − 2SÞÞ in the usual Young tableau
notation. For Nc ¼ 3, the states are the physical S ¼ 1=2
octet and S ¼ 3=2 decuplet.
In HBChPT, the baryon field, denoted by B, represents

the spin-flavor multiplet where its components are sorted
out by spin and flavor, that is, the entries in B have well
defined spin, and therefore they are in irreducible repre-
sentations of SUð3Þ.
Implementing chiral symmetry follows the well known

scheme of the nonlinear realization on the matter fields.
Representing the Goldstone boson octet by

u ¼ eiπ
aTa=Fπ ; ð2Þ

the nonlinear transformation law is implemented,

1See also Appendix A. 2See also Appendix A.
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imposes constraints in 
the Chiral Lagrangian

(because one cannot expand them 
independently in low energy)

Link between the Chiral and 1/Nc expansion

⇠ � expansion : O (1/Nc) = O (p) = O (⇠)



Chiral Symmetry + Spin-flavor Symmetry

Intermediate Octet and Decuplet  
baryon contributions are included

p0

k

O(1/Nc)

=

Z
ddk

(2�)d
i

k2 �M2
�

i

p0 + k0 � (mB0 �mB)| {z }
⇥ vertex factors

spin S reads:

mB(S) = Ncm0 +
CHF

Nc
S(S + 1) + c1NcM

2
⇥ + ⇥m1�loop+CT

B (S), (13)

where ⇥m1�loop+CT
B (S) involves contributions from the one-loop diagram in Fig. 1, and CT

denotes counter-terms. From both types of contributions, there are O(⌃2) and O(⌃3) terms,

and the calculation is exact at the latter order, as can be deduced from the previous discus-

sion on power counting. Notice that CHF is equal to the LO term in M� � MN in the real

world Nc = 3.

p0

k

FIG. 1: One-loop contribution to baryon self energy. The thick propagator indicates sum over all

possible baryons that can contribute.

The leading 1-loop correction to the baryon self energy, diagram in Fig. 1, can be calculated

through the matrix element ⌅B | ⇥�1�loop | B⇧, with:

⇥�1�loop = i
g̊2

A

F 2
⇥

1

d � 1

⇧

n

GiaPnG
ia I1�loop(⇥mn � p0, M⇥) , (14)

where n indicates the possible intermediate baryon spin-isospin states in the loop, Pn are

the corresponding spin-flavor projection operators, ⇥mn = ⇥m(Sn), and the loop integral is

calculated in dimensional regularization with the result,

I1�loop(Q, M⇥) =

⌃
ddk

(2⌥)d

⇡k2

k2 � M2
⇥ + i⇤

1

k0 � Q + i⇤

=
i

16⌥2

⇤
Q

�
(3M2

⇥ � 2Q2)(⌅� � log
M2

⇥

µ2
) + (5M2

⇥ � 4Q2)

⇥

+ 2⌥(M2
⇥ � Q2)3/2 + 4(Q2 � M2

⇥)3/2 tanh�1 Q⌥
Q2 � M2

⇥

⌅
, (15)

where Q = ⇥mn � p0, ⌅� = 1
� � � + log 4⌥, and µ is the renormalization scale which will be

taken later to be of the order of m⇤. For the specific evaluation of ⇥�1�loop for a given baryon
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Introduction to the combined approach : BChPT x 1/Nc expansion  (Continued…)

6

2

Contains both scales: therefore cannot 
be expanded independently

Q ⇠
<latexit sha1_base64="WAM63SHXdZ8l9wiNsoJ2/gPgjgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4TMDGQLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jUo1oS2iuNKdCBvKmaQtyyynnURTLCJOH6Lx7cx/eKLaMCXv7SShocBDyWJGsHVSu4l6hol+ueJX/TnQKglyUoEcjX75qzdQJBVUWsKxMd3AT2yYYW0Z4XRa6qWGJpiM8ZB2HZVYUBNm82un6MwpAxQr7UpaNFd/T2RYGDMRkesU2I7MsjcT//O6qY2vw4zJJLVUksWiOOXIKjR7HQ2YpsTyiSOYaOZuRWSENSbWBVRyIQTLL6+Sdq0aXFRrzctK/SaPowgncArnEMAV1OEOGtACAo/wDK/w5invxXv3PhatBS+fOYY/8D5/ABg7jtA=</latexit>

⇠ � expansion : O (1/Nc) = O (p) = O (⇠)
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Goldstone bosons: pions, kaons, eta

Baryons with spin 1/2, 3/2, …, Nc/2
B =

0

BBBB@

N
�
.
.
.

1

CCCCA

Leading order (Spin-flavor symmetry + chiral symmetry )

1 Baryon Lagrangian

LB = B

†
✓
iD0 + g̊Au

ia
G

ia � CHF

Nc

�!
S

2 � c1

2
Nc�+

◆
B

1.1 First Term (L(1)
B )

L

(1)
B = iB

†
D0B

= iB

†(@0 � i�0)B

= iB

†
@0B +B

†�0B

= iB

†
@0B +B

†
T

ah�0�
aiB (1)

In here we used,

vµ ⌘ v

a
µ

�

a

2

aµ ⌘ a

a
µ

�

a

2

rµ = vµ + aµ

lµ = vµ � aµ

AR = A

a
T

a
R

A

a =
1

2
hAa

�

ai

Considering the second term,

B

†
T

ah�0�
aiB = B

†
T

ah
✓
1

2

�
u

†(i@0 + r0)u+ u(i@0 + l0)u
†�
◆
�

aiB

=
1

2

�
B

†
T

ah
�
iu

†
@0u+ u

†
r0u+ iu@0u

† + ul0u
†�

�

aiB
�

=
1

2

�
B

†
T

ah
�
iu

†
@0u+ iu@0u

† + u

†
r0u+ ul0u

†�
�

aiB
�
(2)

And,

u = exp(
i⇧

2F⇡
)

⇧ = ⇡

a
�

a

u = 1 + i

⇧

2F⇡
� 1

8

⇧2

F

2
⇡

� i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

· · · (3)

u

† = 1� i

⇧

2F⇡
� 1

8

⇧2

F

2
⇡

+
i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

· · · (4)

@0u = i

@0⇧

2F⇡
� 1

8

@0⇧
2

F

2
⇡

� i@0⇧
3

48F 3
⇡

+
@0⇧

4

384F 4
⇡

· · · (5)

@0u
† = �i

@0⇧

2F⇡
� 1

8

@0⇧
2

F

2
⇡

+
i@0⇧

3

48F 3
⇡

+
@0⇧

4

384F 4
⇡

· · · (6)

1

Meson Fields :

2.2 Mass formula without wave function renormalization

We realized that the masses are fitted very well when �Z ! 0 at the physical MK value.
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For the general form with Nc counting, First term has a factor of Nc
3 , and CHF ! 3

Nc
CHF . Second term has a factor of Nc

3 also.
In addition to that, there are some other important transformations as follows,
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Degrees of freedom : Hadrons
1 Baryon Lagrangian
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1 Baryon Lagrangian

LB = B†
(
iD0 + g̊Au
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Nc

−→
S 2 − c1
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B

1.1 First Term (L(1)
B )
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9.3.1 Meson Lagrangian

The meson fields are described using the meson Lagrangian given in Eq. (3.51)

as follows:

L⇡ =
F 2

⇡

4
h@µU

†@µUi +
F 2

⇡

4
h�U † + U�†i . (9.12)

This Lagrangian can be expanded using the definitions of Goldstone boson fields given

in Eq. (9.2), and then one can obtain the interaction vertices for vector and axial

vector currents in terms of momentum, as given in the third column of Table 9.1.

9.3.2 Baryon e↵ective Lagrangians of O (⇠), O
�

⇠2
�

and O
�

⇠3
�

The lowest order Lagrangian is O (⇠) and, reads [108]:

L(1)
B = B†

✓

iD0 + g̊AuiaGia � CHF

Nc

~̂S2 � c1

⇤
�̂+

◆

B , (9.13)

where g̊A is the axial coupling in the chiral and large Nc limits (it has to be rescaled

by a factor 5/6 to coincide with the usual axial coupling as defined for the nucleon,

i.e., gA = 5
6
g̊A). Here one notes an important point which will be present in other

instances as well: the baryon mass dependence on the current quark mass behaves

at O (Nc mq) (c1 is of zeroth order in Nc), and this indicates that in a strict large

Nc limit the expansion in the quark masses of certain quantities such as the baryon

masses cannot be defined due to divergent coe�cients of O (Nc). This in particular

impacts the � terms discussed later. In the present case those terms are spin-flavor

singlet.

The Lagrangian is manifestly invariant under chiral transformations, translations

and rotations (the latter also involving obviously the action of the Si generators of

SU(6)). It is not invariant under the contracted SU(6) transformations generated by

the X ia generators. At large Nc such transformations a↵ect the leading GB-baryon

interaction contained in the covariant derivative term D0 (the Weinberg-Tomozawa
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In the following the e↵ective HB chiral Lagrangian is implemented. It is con-

structed in terms of tensors involving the Goldstone Boson operators and the exter-

nal sources, and spin-flavor tensors built with products of the SU(6) generators that

have been already discussed. A scale “⇤” is introduced in order to render most of

the LECs dimensionless. In the calculations ⇤ = m⇢ will be conveniently chosen as

the QCD scale. In order to ensure the validity of the OZI rule for the quark mass

dependency of baryon masses, the following combination of the source �+ is defined:

�̂+ ⌘ �̃+ + Nc �0
+, (9.11)

where, �̂+ is of O (Nc), such that the non-strange baryon mass dependence on ms is

O (N0
c ). Requiring the Lagrangian to satisfy the QCD symmetries, and implementing

the dynamical symmetry constraints as discussed before, one can systematically build

the Lagrangian order by order in the chiral and 1/Nc expansions.

9.3 Interactions from the e↵ective Lagrangians

The fields which are associated with the phenomenology are Goldstone boson

fields, Baryon fields and external sources. Therefore the complete theory consist

of two main pieces of Lagrangians: the meson Lagrangian and baryon Lagrangian.

The amplitudes of interactions between these degrees of freedom are identified as

interaction vertices, and those can be obtained up to a desired order by expanding

the Lagrangians using the tools mentioned in the section 9.2.1.

176

where L(R) transforms in SU(3)L(SU(3)R), and “h” handles the SU(3) flavor trans-

formations. The Chiral transformations on baryon fields B can be defined as,

(L, R) : B = h(L, R, u)B . (9.4)

Although Chiral transformations do not commute with SU(6) group, but they leave

the commutation relations unchanged. The covariant derivative is defined,

DµB = @µB � i�µB (9.5)

with,
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1

2

�

u† (i@µ + rµ) u + u (i@µ + lµ) u†� , uµ = u† (i@µ + rµ) u � u (i@µ + lµ) u†

(9.6)

where, lµ = vµ � aµ and rµ = vµ + aµ are guage sources, and uµ is the “chiral

vielbein”. The transformation properties of all these building blocks of the covariant

derivative under chiral transformation are,

�µ ! �0
µ = h�µh

† � (@µh)h† , uµ ! u0
µ = huµh

† . (9.7)

The scalar (s) and pseudo-scalar (p) sources can be collected by recalling the defini-

tions of �± from Eq. (3.89), and � from Eq. (3.50),

� = 2B0(s + ip) ,

�± = u†�u† ± u�†u ,

�0
± = h�±i ,
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±T a, where �a

± ⌘ 1

2
h�a�±i , (9.8)

where �± transforms as �± ! K�±K† under the SU(3)L ⇥SU(3)R ⇥U(1)V sym-

metry.

Also, the field-strength associated with the gauge sources can be collected as,

1.2 Second Term (L(2)
B )

L

(2)
B = g̊AB

†
u

ia
G

ia
B

=
1

2
g̊AB

†
Trhui

�

aiGia
B

=
1

2
g̊AB

†
Trh

�
u

†(i@i + ri)u� u(i@i + li)u
†�

�

aiGia
B

=
1

2
g̊AB

†
Trh

�
iu

†
@iu+ u

†
riu� iu@iu

† � uliu
†�

�

aiGia
B

=
1

2
g̊AB

†
Trh

�
i(u†

@iu� u@iu
†) + u

†
riu� uliu

†�
�

aiGia
B

(22)

In the above steps the following definition is used,
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Introduction to the combined approach : BChPT x 1/Nc expansion  (Continued…)2

which is O(Nc) but has dependence on ms which is O(N0
c ) for all states with strangeness

O(N0
c ). For convenience a scale ⇤ is introduced, which can be chosen to be a typical QCD

scale, in order to render most of the LECs dimensionless. In the calculations ⇤ = m⇢ will

be chosen. The quark mass matrix is defined by Mq = m0 + ma �a

2 , where in the physical

case m0 = 1
3(mu + md + ms), m3 = mu � md and m8 = 1p

3
(mu + md � 2ms) and the rest of

the Ma s vanish.

Collecting the baryons in a spin flavor multiplet denoted by B, and using standard

notation for the chiral building blocks (for details see Appendix B and Ref. [24]), the

LO O(⇠) Lagrangian reads:

L(1)
B = B

†(iD0 � CHF

Nc
Ŝ2 + g̊AuiaGia +

c1
2⇤

�̂+)B, (2)

where the hyperfine mass shifts are given by the second term, Gia are the spin-flavor gener-

ators (see Appendix A), and the axial coupling is at LO g̊A = 6
5gA, being gA = 1.2732(23)

the nucleon’s axial coupling. The relevant terms in the O(⇠2) Lagrangian are:
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B, (3)

where the flavor SU(3) electric and magnetic fields are denoted by E+ and B+ and given

by Ei
+ = F 0i

+ and Bi
+ = 1

2✏
ijkF jk

+ (see Eqn. B2 in Appendix B). The term proportional to

 gives at LO the magnetic moments associated with all vector currents. The O(⇠3) and

O(⇠4) Lagrangians needed for the one-loop renormalization of the vector currents are the

following:
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B (4)

The LECs g1 and g2 will be determined by charge radii, the term proportional to g3 gives

electric quadrupole moments for decuplet baryons and for transitions between decuplet to

octet baryons, which will not be discussed here, and the term proportional to r gives
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this goes later after we obtain our results for �s While for �s one finds an nice agreement
between phenomenological determinations [22] and LQCD calculations at the physical point [12;
13; 14; 15], the situation for �⇡N is much more involved.

Since phenomenological extractions and LQCD determinations point to a small value of �s,
�s ⇠ 40 MeV [15], this contribution to �⇡N through (??) is negligible, and one expects to have
�⇡N ⇡ �̂.

perhaps discuss this later after we give the results We show that at O((ms� m̂)3/2), �̂ comes out
larger than the old results of Ref. [23; 24], and consistent with the recent evaluation of Ref. [22].
These findings imply a value of the pion-nucleon sigma term, �⇡N =??(??) MeV, and favors a large
value of �⇡N .

2. Baryon masses in BChPT ⇥ 1/Nc

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of an SU(6) dynamical
spin-flavor symmetry, broken by sub-leading corrections in 1/Nc and which requires the inclusion
of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:
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where terms not directly relevant to the baryon masses have been omitted. In addition to the well
known chiral building blocks, B represents the baryon spin-flavor multiplet field, Ŝ 2 is the square
of the baryon spin operator, Gia are the spin-flavor generators of SU(6), and Q̂ is the electric
charge operator. No baryon-spin dependent electromagnetic e↵ects are included. M0 = O(Nc) is
the spin-flavor singlet piece of the baryon mass and provides the large mass expansion parameter
for HBChPT. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO. The rest of the terms describe the quark

mass e↵ects. The combination �̂+ = Nc �0
+ + �̃+, where �0

+ =
1
3Tr �+ and �̃+ is the traceless piece

of �+, assures that the nucleon mass dependency on ms is at most O(N0
c ) (OZI). ⇤ is an arbitrary
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σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ%m̂Þ

σΣ%ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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2ffiffiffi
3
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For the physicalMK andMπ , the shown expansion is within
30% of the exact result, and the expansion gives a good
approximation for Nc > 5. Note the large cancellations that
appear within the first line and within the second line of the
equation, and also the tendency to cancel between the first
and second lines. In the physical case and not expanding in
1=Nc, it is found that the numerical dependency of ΔGMO
on CHF is not very significant. One also observes that only
43% of ΔGMO is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
ΔGMO is therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however
depends on the value the LO g

∘
A, which to be independently

determined requires the analysis of other observables,
namely the axial currents. Along the same lines ΔES can
be analyzed, although in this case the experimental un-
certainty is rather large.

Disregarding the term proportional to h2 in L
ð3Þ
B Eq. (13),

which gives SUð3Þ breaking in the hyperfine splittings, one
additional relation follows, first found by Gürsey and
Radicati [62], namely:

ΔGR ¼ mΞ% −mΣ% − ðmΞ −mΣÞ ¼ 0;

Exp∶ 21& 7 MeV; ð26Þ

which relates SUð3Þ breaking in the octet and decuplet, and
which is valid for arbitrary Nc. The deviation from that
relation (26) is due to SUð3Þ breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
such deviation starts with the term proportional to h2 which
is Oðp2=NcÞ. In addition, the one-loop contributions to it
are free of UV divergencies and the nonanalytic terms when
expanded in the large Nc limit give contributionsOð1=N2

cÞ.
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where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p
ðm̂ −msÞ. Naturally they will satisfy the

same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p
ðm̂ −msÞ. Naturally they will satisfy the

same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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Baryon masses3. 1

Baryon Masses to           in SU(2)                O(⇠2)

because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in ⇥ of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,
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mB = NcM0

+
CHF

Nc
Ŝ2 + c

1

M2

⇡ + �m1�loop+CT
B

results being fitted here, there is an additional linear
dependency, namely that of the term CA

4 which becomes
linearly dependent with the term CA

3 . So the fit will involve
seven NLO LECs in addition to g

∘
A. The results of the fits

are shown in Table V. The LO fit, which involves only
fitting the LO value of g

∘
A, shows a remarkably good

approximation to the full set of the LQCD results. This is
clearly aided by the very small dependency on Mπ of the
LQCD results. It also shows the very good approximate
spin-flavor symmetry that relates axial couplings in the
octet and decuplet. The LO fit implies that gNA ¼ 1.13 for
the physical pion mass. A fit where only tree contributions
are included up to the NNLO gives a very precise
description of the LQCD results. Indeed, turning off some
of the LECs as indicated in Table V provides a consistent
fit, and corresponds in this case to gNA ¼ 1.15. Note that in
this case δg

∘
A, which is required to cancel an UV divergency

proportional to the leading term, can be turned off, as it is
only required when the loop contributions are included.
The full NLO fit is more complicated. Although the

implemented consistency with the 1=Nc expansion gives an
important reduction of the nonanalytic contributions, these
are still significant. The most significant issue in this case
becomes the determination of the LO g

∘
A. If it is used as a

fitting parameter, then the fit naturally drives it down to
small values, suppressing the nonanalytic contributions.
Such a situation is unrealistic, and therefore an strategy is
needed. The problem originates in the need to renormalize
g
∘
A, as there is an UV divergency proportional to the LO
term of the axial current. This is performed using δg

∘
A,

which is suppressed by one power in 1=Nc with respect to
g
∘
A. Fixing both the LO g

∘
A and the counterterm would thus

require information at different values of Nc, which is not
accessible at present. One possible approach is to fix g

∘
A to

the value obtained with the LO fit, and then fit the higher-
order LECs. This however fails because the resulting fit has
too large a χ2. Another strategy is to input several different
values of g

∘
A, and determine an approximate range for it

based of obtaining a χ2 that is acceptable. Finally, a
different strategy can be used involving additional observ-
ables: for instance, as mentioned earlier, the value for g

∘
A

could be obtained by matching to ΔGMO, giving a value for
g
∘
A=Fπ , which in ΔGMO should be taken at LO. In that case,
and in the physical case one obtains g

∘
A ∼ 1.15 when

Fπ ¼ 93 MeV. This however cannot be used for the
present LQCD results, because they have the mentioned
issue of extrapolating to too low of a value for gNA at the
physical point. In that case a correspondingly smaller value
should be used, namely g

∘
A ∼ 1.05 or so. The NLO fit with

such an input for g
∘
A is almost consistent, and is shown in

Table V for three different input values. The extrapolation
of those fits to the physical Mπ give a rather low value,
gNA ∼ 0.97. This value is increased if only the LQCD results
in [55] for the nucleon are included, namely gNA ∼ 1.05. The
effective theory is also checked to fit the most recent results
on gNA [75], where the LQCD result agrees with the physical
value. Clearly, it is necessary to await additional lattice
calculations of the octet and decuplet axial couplings in
order to have a thorough test of the effective theory vis-á-
vis LQCD.
Ultimately, in order to have the LECs in BChPT × 1=Nc

fully determined, a global analysis involving LQCD
calculations of a complete set of observables is necessary.
This requires the LQCD determination of the quark mass
dependencies of the observables, and also the possibility of
results for different values of Nc, which is a more difficult
task, but which has already been initiated with the baryon
masses for two flavors [58], and which has been analyzed
with the effective theory [59].

VI. SUMMARY

Chiral symmetry and the expansion in 1=Nc are two
fundamental aspects of QCD. The former is known to play
a crucial role in light hadrons, and there are multiple
indications that the latter is also important, in particular for
baryons. In the context of effective theories, it is therefore
crucial to incorporate those two aspects of QCD consis-
tently. This is possible with the combined chiral and 1=Nc
expansions. In the present work that framework for baryons
in SUð3Þ was implemented using the ξ-expansion. The
renormalization to one-loop for baryon masses and currents
were presented for generic Nc, and LQCD results for
masses and axial couplings were analyzed. This work

TABLE V. LECs obtained by fitting to the LQCD results presented in Tables IVand Vof Ref. [55]. The results correspond to making
the choices Λ ¼ μ ¼ mρ. In the NLO full fits CHF ¼ 250 MeV, and g

∘
A is given as input, displaying fits for three different values.

Fit χ2dof g
∘
A δg

∘
A CA

1 CA
2 CA

3 CA
4 DA

1 DA
2 DA

3 DA
4

LO 3.9 1.35 ... ... ... ... ... ... ... ... ...
NLO Tree 0.91 1.42 ... −0.18 ... ... ... ... 0.009 ... ...
NLO Full 1.08 1.02 0.15 −1.11 0. 1.08 0. −0.56 −0.02 −0.08 0.

1.13 1.04 0.08 −1.17 0. 1.15 0. −0.59 −0.02 −0.09 0.
1.19 1.06 0. −1.23 0. 1.21 0. −0.62 −0.03 −0.09 0.
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in [55] for the nucleon are included, namely gNA ∼ 1.05. The
effective theory is also checked to fit the most recent results
on gNA [75], where the LQCD result agrees with the physical
value. Clearly, it is necessary to await additional lattice
calculations of the octet and decuplet axial couplings in
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vis LQCD.
Ultimately, in order to have the LECs in BChPT × 1=Nc

fully determined, a global analysis involving LQCD
calculations of a complete set of observables is necessary.
This requires the LQCD determination of the quark mass
dependencies of the observables, and also the possibility of
results for different values of Nc, which is a more difficult
task, but which has already been initiated with the baryon
masses for two flavors [58], and which has been analyzed
with the effective theory [59].

VI. SUMMARY

Chiral symmetry and the expansion in 1=Nc are two
fundamental aspects of QCD. The former is known to play
a crucial role in light hadrons, and there are multiple
indications that the latter is also important, in particular for
baryons. In the context of effective theories, it is therefore
crucial to incorporate those two aspects of QCD consis-
tently. This is possible with the combined chiral and 1=Nc
expansions. In the present work that framework for baryons
in SUð3Þ was implemented using the ξ-expansion. The
renormalization to one-loop for baryon masses and currents
were presented for generic Nc, and LQCD results for
masses and axial couplings were analyzed. This work
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spin S reads:

mB(S) = Ncm0 +
CHF

Nc
S(S + 1) + c1NcM

2
⇥ + ⇥m1�loop+CT

B (S), (13)

where ⇥m1�loop+CT
B (S) involves contributions from the one-loop diagram in Fig. 1, and CT

denotes counter-terms. From both types of contributions, there are O(⌃2) and O(⌃3) terms,

and the calculation is exact at the latter order, as can be deduced from the previous discus-

sion on power counting. Notice that CHF is equal to the LO term in M� � MN in the real

world Nc = 3.

p0

k

FIG. 1: One-loop contribution to baryon self energy. The thick propagator indicates sum over all

possible baryons that can contribute.

The leading 1-loop correction to the baryon self energy, diagram in Fig. 1, can be calculated

through the matrix element ⌅B | ⇥�1�loop | B⇧, with:

⇥�1�loop = i
g̊2

A

F 2
⇥

1

d � 1

⇧

n

GiaPnG
ia I1�loop(⇥mn � p0, M⇥) , (14)

where n indicates the possible intermediate baryon spin-isospin states in the loop, Pn are

the corresponding spin-flavor projection operators, ⇥mn = ⇥m(Sn), and the loop integral is

calculated in dimensional regularization with the result,

I1�loop(Q, M⇥) =

⌃
ddk

(2⌥)d

⇡k2

k2 � M2
⇥ + i⇤

1

k0 � Q + i⇤

=
i

16⌥2

⇤
Q

�
(3M2

⇥ � 2Q2)(⌅� � log
M2

⇥

µ2
) + (5M2

⇥ � 4Q2)

⇥

+ 2⌥(M2
⇥ � Q2)3/2 + 4(Q2 � M2

⇥)3/2 tanh�1 Q⌥
Q2 � M2

⇥

⌅
, (15)

where Q = ⇥mn � p0, ⌅� = 1
� � � + log 4⌥, and µ is the renormalization scale which will be

taken later to be of the order of m⇤. For the specific evaluation of ⇥�1�loop for a given baryon
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Several of these relations are poorly satisfied. The deviations are calculable and given by the

non-analytic contributions to one-loop. It is easy to understand why these relations receive

large corrections: they behave at large Nc as O(p3Nc). This implies that tree level relations

used to relate ms and m̂ � terms will in general receive large non-analytic deviations. In the

physical case Nc = 3, those deviations are numerically large for the first, third, and fourth

relations above. This in particular a↵ects the nucleon strangeness � term, and thus indicates

that its estimation from arguments based on tree level relations is subject to important

corrections [63]. In terms of the octet components of the quark masses, in addition to GMO

and ES relations one finds:

�N m8 =
(Nc + 3) �⇤m8 + 3(Nc � 1) �⌃m8

4(Nc � 3)
(29)

��m8 =
�5(Nc � 3) �⇤m8 + 5(Nc � 3) �⌃m8 + 4Nc �⌃⇤ m8

4(Nc � 3)
, (30)

where it can be readily checked that they are well defined for Nc ! 3 as the numerators on

the RHS are proportional to (Nc � 3). These relations are violated at large Nc as O(p3N0
c ).

For both relations in the limit Nc ! 1 one finds LHS�RHS = Nc
128⇡

⇣

g̊A
F⇡

⌘2

(MK�M⇡)(M2
K�

M2
⇡) + O(1/Nc). Thus they are not as precise as the GMO and ES relations.

Finally, if the LEC constant h3 vanishes, one extra tree-level relation related to Eqn. (26)

follows, namely,

�⌅⇤m8 � �⌃⇤m8 � (�⌅m8 � �⌃m8) = 0 (31)

which is only violated at large Nc as O(1/N2
c ), and thus expected to be very good.

To complete this section, fits to the octet and decuplet baryon masses including results

from LQCD are presented. This in particular allows for exploring the range of validity of

the calculation as the quark masses are increased. The mass formula for the fit is 4 :

mB = Ncm0 +
CHF

Nc

Ŝ2 � c1
2⇤

�̂+ � c2
⇤

�0
+ � c3

Nc⇤3
�̂2
+

� h2

N2
c ⇤

�̂+Ŝ2 � h3

Nc⇤
�0
+Ŝ2 � 2

h4

Nc⇤
�̃a
+SiGia + �m1�loop

B , (32)

where, in the isospin symmetry limit, �0
+ ! 4B0m0, �̃a

+ ! 8B0�a8m8, and �̂+ !
4B0(m8T 8 + Ncm0). The fits at Nc = 3 cannot obviously give the Nc dependence of LECs.

4 A useful formula for the term proportional to h4 is [64]:

SiGi8 = 1p
3

⇣

3
4 Î2 � 1

4 Ŝ2 � 1
48Nc(Nc + 6) + 1

8 (Nc + 3)Y � 3
16Y 2

⌘

= 1
16

p
3
(12Î2 � 4Ŝ2 + 3S(2 � S)), where

S is the strangeness. This term is responsible for the tree-level mass splitting between ⇤ and ⌃.

18

720 I.P. Fernando et al. / Physics Letters B 781 (2018) 719–722

This work analyzes the σ terms through the octet and decu-
plet baryon masses in the combined chiral and 1/Nc expansions 
BChPT × 1/Nc. The emphasis is in that the effective theory can give 
at NNLO (one chiral loop) a natural description of baryon masses, 
including LQCD results, along with the axial couplings which have 
been obtained in LQCD at different quark masses. In particular, 
the resolution of the σ term puzzle is explained by the fact that 
"σ8 ≡ σ8 − 1

3 (2mN −m# −m$) receives large non-analytic in quark 
mass corrections dominated by ms . It will also be shown that σ8 it-
self, and thus σ̂ , has a natural low energy expansion and therefore 
the origin of the puzzle resides in the large non-analytic correction 
to the mass combination 1

3 (2mN − m# − m$). In fact, a big part 
of that large correction stems from the contribution of decuplet 
baryons in the loop, as it was found in Refs. [13,23]. By analyzing 
LQCD baryon masses [24], it is found that as expected σπ N ∼ σ̂ , 
with the results σπ N = 69(8)(6) MeV, where the errors are respec-
tively the statistical and theoretical (expected NNNLO corrections) 
ones, and | σs |! 50 MeV. The connection between the devia-
tion from the GMO relation, "GM O ≡ 3m& + m# − 2(mN + m$), 
and "σ8, both calculable at NNLO and given solely in terms of 
non-analytic loop contributions, is of particular importance in the 
present work.

2. BChPT × 1/Nc analysis of masses and σ terms

The combined BChPT × 1/Nc [25–29] implements the consis-
tency of the effective theory with both the approximate chiral 
symmetry and the expansion in 1/Nc of QCD. The expansion re-
quires a link between the chiral and the 1/Nc expansions: in prac-
tice the natural link is the ξ expansion where O (p) = O (1/Nc) =
O (ξ), which is closely related to the so called small scale expan-
sion [30,31] even when that one did not strictly implement the 
constraints of the 1/Nc expansion. Consistency with 1/Nc power 
counting demands the imposition of a dynamical SU(6) spin-flavor 
symmetry, which is broken by sub-leading corrections in 1/Nc and 
requires the inclusion of the higher spin baryons (the decuplet in 
the case Nc = 3) and relates low energy constants (LECs) in the 
chiral Lagrangian. The details on the calculations of baryon masses 
concerning the present work can be found in [29].

The chiral Lagrangian to O
(
ξ3), including electromagnetic cor-

rections to the baryon masses is given by [29]:

LB = B†
(

iD0 + g̊ AuiaGia − C H F

Nc
Ŝ2 − 1

2&
c2χ̂+ + c3

Nc &3 χ̂2
+

+ h1

N3
c

Ŝ4 + h2

N2
c &

χ̂+ Ŝ2 + h3

Nc&
χ0

+ Ŝ2 + h4

Nc &
χa

+{Si, Gia}

+ α Q̂ + β Q̂ 2
)

B, (1)

where terms not directly relevant to the baryon masses have been 
omitted. The spin-flavor singlet piece of the baryon masses, M0 =
O (Nc), provides the large mass expansion parameter for HBChPT. 
In addition to the well known chiral building blocks, B repre-
sents the baryon spin-flavor multiplet field, Ŝ2 is the square of the 
baryon spin operator, Gia are the spin-flavor generators of SU(6), 
and Q̂ is the electric charge operator. No baryon-spin dependent 
electromagnetic effects are included. The term proportional to C H F

gives the leading order mass splitting between the spin 1/2 and 
3/2 baryons. g̊ A is identified with 6

5 gN
A at the LO, whose physical 

value is gN
A = 1.2723(23). The term h1 is only relevant if baryons 

with higher spin than 3/2 appear, which requires Nc ≥ 5. The rest 
of the terms describe the quark mass effects. The combination 
χ̂+ = Nc χ0

+ + χ̃+ , where χ0
+ = 1

3 Tr χ+ and χ̃+ is the traceless 

piece of χ+ , assures that the nucleon mass dependency on ms is 
at most O

(
N0

c
)

(OZI). & is an arbitrary scale, which is conveniently 
chosen to be mρ . The baryon mass formula then reads (neglecting 
isospin breaking for now) [29]:

mB = M0 + C H F

Nc
Ŝ2 − c1

&
2B0(

√
3m8Y + Ncm0) − c2

&
4B0m0

− c3

Nc&3

(
4B0(

√
3m8Y + Ncm0)

)2

− h1

N2
c &

Ŝ4 − h2

Nc&
4B0(

√
3m8Y + Ncm0) Ŝ2 − h3

Nc&
4B0m0 Ŝ2

− h4

Nc&

4B0m8√
3

(
3 Î2 − Ŝ2 − 1

12
Nc(Nc + 6)

+ 1
2
(Nc + 3)Y − 3

4
Y 2

)
+ δmloop

B , (2)

where δmloop
B can be obtained with some work using the results 

in [29], where the details on the mass renormalization and results 
for general Nc can be found.

Setting c3 = 0,2 the terms analytic in quark masses in Eqn. (2)
lead to the exact GMO and Equal Spacing mass relations, which 
are unchanged at generic Nc . On the other hand at generic Nc the 
mass relation for σ8 at tree level reads:

"σ8 = σ8 − 1
9

(
5Nc − 3

2
mN − (2Nc − 3)m# − Nc + 3

2
m$

)
.

(3)

The dominant contributions to "GM O and "σ8 are calculable non-
analytic contributions. "GM O is O

(
ξ4) and in large Nc limit it is 

O (1/Nc). On the other hand, σ8 is O (ξ) and it has a prefactor Nc , 
and "σ8 is O

(
ξ2) also with a prefactor Nc . c3 gives a contribu-

tion to the "GMO which is O
(
ξ5), and to "σ8 at O

(
ξ4), both 

being beyond the accuracy of the present work. "GMO
3 and "σ8

are thus determined by the meson masses and by the LECs g̊ A/Fπ , 
and C H F . "GMO depends rather smoothly on C H F , and drives to a 
large extent the determination of g̊ A/Fπ . One finds the interest-
ing fact that the ratio "σ8/"GMO, which is independent of g̊ A/Fπ , 
is also almost entirely independent of the value of C H F in a very 
wide range around its actual value. For Nc = 3, σ8/"GMO ∼ −13.5, 
which translates into "σ̂ /"GMO ∼ 1.68.

The analysis of the physical octet and decuplet baryon masses 
suffice to make the main point of this work. In this case, the 
LECs c2, c3 and h1 are set to vanish, because at the order of 
the calculation they are redundant. A fit is carried out including 
strong and electromagnetic isospin breaking. This requires using 
the meson masses with isospin breaking, which include η–π0 mix-
ing (required to have a consistent renormalization of the baryon 
masses) and the electromagnetic mass shifts where Dashen’s theo-
rem is used, which should be sufficient for the current application. 
The electromagnetic addition to "GMO is equal to − 4

3 β , while the 
strong isospin breaking has negligible effect, and the electromag-
netic contribution to the p–n mass difference is equal to α + β . 
The result of the fit to physical masses is shown in Table 1, Fit 1.

The information given by LQCD, where the baryon masses 
have been obtained with MK approximately constant and varying 
mu = md in a range where 213 MeV < Mπ < 430 MeV [24], is very 

2 The 27-plet SU(3) breaking produced by this term is O (
ξ5)

, and thus for the 
current purposes it can be neglected.

3 "GMO corresponds to having removed the EM corrections, otherwise it is de-

noted by "phys
GMO.
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This work analyzes the σ terms through the octet and decu-
plet baryon masses in the combined chiral and 1/Nc expansions 
BChPT × 1/Nc. The emphasis is in that the effective theory can give 
at NNLO (one chiral loop) a natural description of baryon masses, 
including LQCD results, along with the axial couplings which have 
been obtained in LQCD at different quark masses. In particular, 
the resolution of the σ term puzzle is explained by the fact that 
"σ8 ≡ σ8 − 1

3 (2mN −m# −m$) receives large non-analytic in quark 
mass corrections dominated by ms . It will also be shown that σ8 it-
self, and thus σ̂ , has a natural low energy expansion and therefore 
the origin of the puzzle resides in the large non-analytic correction 
to the mass combination 1

3 (2mN − m# − m$). In fact, a big part 
of that large correction stems from the contribution of decuplet 
baryons in the loop, as it was found in Refs. [13,23]. By analyzing 
LQCD baryon masses [24], it is found that as expected σπ N ∼ σ̂ , 
with the results σπ N = 69(8)(6) MeV, where the errors are respec-
tively the statistical and theoretical (expected NNNLO corrections) 
ones, and | σs |! 50 MeV. The connection between the devia-
tion from the GMO relation, "GM O ≡ 3m& + m# − 2(mN + m$), 
and "σ8, both calculable at NNLO and given solely in terms of 
non-analytic loop contributions, is of particular importance in the 
present work.

2. BChPT × 1/Nc analysis of masses and σ terms

The combined BChPT × 1/Nc [25–29] implements the consis-
tency of the effective theory with both the approximate chiral 
symmetry and the expansion in 1/Nc of QCD. The expansion re-
quires a link between the chiral and the 1/Nc expansions: in prac-
tice the natural link is the ξ expansion where O (p) = O (1/Nc) =
O (ξ), which is closely related to the so called small scale expan-
sion [30,31] even when that one did not strictly implement the 
constraints of the 1/Nc expansion. Consistency with 1/Nc power 
counting demands the imposition of a dynamical SU(6) spin-flavor 
symmetry, which is broken by sub-leading corrections in 1/Nc and 
requires the inclusion of the higher spin baryons (the decuplet in 
the case Nc = 3) and relates low energy constants (LECs) in the 
chiral Lagrangian. The details on the calculations of baryon masses 
concerning the present work can be found in [29].

The chiral Lagrangian to O
(
ξ3), including electromagnetic cor-

rections to the baryon masses is given by [29]:

LB = B†
(

iD0 + g̊ AuiaGia − C H F

Nc
Ŝ2 − 1

2&
c2χ̂+ + c3

Nc &3 χ̂2
+

+ h1

N3
c

Ŝ4 + h2

N2
c &

χ̂+ Ŝ2 + h3

Nc&
χ0

+ Ŝ2 + h4

Nc &
χa

+{Si, Gia}

+ α Q̂ + β Q̂ 2
)

B, (1)

where terms not directly relevant to the baryon masses have been 
omitted. The spin-flavor singlet piece of the baryon masses, M0 =
O (Nc), provides the large mass expansion parameter for HBChPT. 
In addition to the well known chiral building blocks, B repre-
sents the baryon spin-flavor multiplet field, Ŝ2 is the square of the 
baryon spin operator, Gia are the spin-flavor generators of SU(6), 
and Q̂ is the electric charge operator. No baryon-spin dependent 
electromagnetic effects are included. The term proportional to C H F

gives the leading order mass splitting between the spin 1/2 and 
3/2 baryons. g̊ A is identified with 6

5 gN
A at the LO, whose physical 

value is gN
A = 1.2723(23). The term h1 is only relevant if baryons 

with higher spin than 3/2 appear, which requires Nc ≥ 5. The rest 
of the terms describe the quark mass effects. The combination 
χ̂+ = Nc χ0

+ + χ̃+ , where χ0
+ = 1

3 Tr χ+ and χ̃+ is the traceless 

piece of χ+ , assures that the nucleon mass dependency on ms is 
at most O

(
N0

c
)

(OZI). & is an arbitrary scale, which is conveniently 
chosen to be mρ . The baryon mass formula then reads (neglecting 
isospin breaking for now) [29]:

mB = M0 + C H F

Nc
Ŝ2 − c1

&
2B0(

√
3m8Y + Ncm0) − c2

&
4B0m0

− c3

Nc&3

(
4B0(

√
3m8Y + Ncm0)

)2

− h1

N2
c &

Ŝ4 − h2

Nc&
4B0(

√
3m8Y + Ncm0) Ŝ2 − h3

Nc&
4B0m0 Ŝ2

− h4

Nc&

4B0m8√
3

(
3 Î2 − Ŝ2 − 1

12
Nc(Nc + 6)

+ 1
2
(Nc + 3)Y − 3

4
Y 2

)
+ δmloop

B , (2)

where δmloop
B can be obtained with some work using the results 

in [29], where the details on the mass renormalization and results 
for general Nc can be found.

Setting c3 = 0,2 the terms analytic in quark masses in Eqn. (2)
lead to the exact GMO and Equal Spacing mass relations, which 
are unchanged at generic Nc . On the other hand at generic Nc the 
mass relation for σ8 at tree level reads:

"σ8 = σ8 − 1
9

(
5Nc − 3

2
mN − (2Nc − 3)m# − Nc + 3

2
m$

)
.

(3)

The dominant contributions to "GM O and "σ8 are calculable non-
analytic contributions. "GM O is O

(
ξ4) and in large Nc limit it is 

O (1/Nc). On the other hand, σ8 is O (ξ) and it has a prefactor Nc , 
and "σ8 is O

(
ξ2) also with a prefactor Nc . c3 gives a contribu-

tion to the "GMO which is O
(
ξ5), and to "σ8 at O

(
ξ4), both 

being beyond the accuracy of the present work. "GMO
3 and "σ8

are thus determined by the meson masses and by the LECs g̊ A/Fπ , 
and C H F . "GMO depends rather smoothly on C H F , and drives to a 
large extent the determination of g̊ A/Fπ . One finds the interest-
ing fact that the ratio "σ8/"GMO, which is independent of g̊ A/Fπ , 
is also almost entirely independent of the value of C H F in a very 
wide range around its actual value. For Nc = 3, σ8/"GMO ∼ −13.5, 
which translates into "σ̂ /"GMO ∼ 1.68.

The analysis of the physical octet and decuplet baryon masses 
suffice to make the main point of this work. In this case, the 
LECs c2, c3 and h1 are set to vanish, because at the order of 
the calculation they are redundant. A fit is carried out including 
strong and electromagnetic isospin breaking. This requires using 
the meson masses with isospin breaking, which include η–π0 mix-
ing (required to have a consistent renormalization of the baryon 
masses) and the electromagnetic mass shifts where Dashen’s theo-
rem is used, which should be sufficient for the current application. 
The electromagnetic addition to "GMO is equal to − 4

3 β , while the 
strong isospin breaking has negligible effect, and the electromag-
netic contribution to the p–n mass difference is equal to α + β . 
The result of the fit to physical masses is shown in Table 1, Fit 1.

The information given by LQCD, where the baryon masses 
have been obtained with MK approximately constant and varying 
mu = md in a range where 213 MeV < Mπ < 430 MeV [24], is very 

2 The 27-plet SU(3) breaking produced by this term is O (
ξ5)

, and thus for the 
current purposes it can be neglected.

3 "GMO corresponds to having removed the EM corrections, otherwise it is de-

noted by "phys
GMO.

ΔGMO ¼ −
!

g
∘
A

4πFπ

"2!
2π
3

!
M3

K −
1

4
M3

π −
2ffiffiffi
3

p
!
M2

K −
1

4
M2

π

"3
2

"

þ CHF

2Nc

!
4M2

K log
!
4M2

K −M2
π

3M2
K

"
−M2

π log
!
4M2

K − 1
3M

2
π

3M2
π

"""

þOð1=N3
cÞ: ð25Þ

For the physicalMK andMπ , the shown expansion is within
30% of the exact result, and the expansion gives a good
approximation for Nc > 5. Note the large cancellations that
appear within the first line and within the second line of the
equation, and also the tendency to cancel between the first
and second lines. In the physical case and not expanding in
1=Nc, it is found that the numerical dependency of ΔGMO
on CHF is not very significant. One also observes that only
43% of ΔGMO is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
ΔGMO is therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however
depends on the value the LO g

∘
A, which to be independently

determined requires the analysis of other observables,
namely the axial currents. Along the same lines ΔES can
be analyzed, although in this case the experimental un-
certainty is rather large.

Disregarding the term proportional to h2 in L
ð3Þ
B Eq. (13),

which gives SUð3Þ breaking in the hyperfine splittings, one
additional relation follows, first found by Gürsey and
Radicati [62], namely:

ΔGR ¼ mΞ% −mΣ% − ðmΞ −mΣÞ ¼ 0;

Exp∶ 21& 7 MeV; ð26Þ

which relates SUð3Þ breaking in the octet and decuplet, and
which is valid for arbitrary Nc. The deviation from that
relation (26) is due to SUð3Þ breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
such deviation starts with the term proportional to h2 which
is Oðp2=NcÞ. In addition, the one-loop contributions to it
are free of UV divergencies and the nonanalytic terms when
expanded in the large Nc limit give contributionsOð1=N2

cÞ.
To one-loop:

ΔGR ¼ h2
Λ

12

Nc
M2

K þ
!

g
∘
A

4πFπ

"2!
2π
9
M3

K þ ð9Nc − 43Þπ
72

!
M2

K −
!
3CHF

Nc

"
2
"3

2

−
Nc − 3

24

2

643
!
M2

K −
!
5CHF

Nc

"
2
"3

2

0

B@π − 2 arctan
5CHF

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − ð5CHF
Nc

Þ2
q

1

CA

þ 10

0

B@M2
K −

!
3CHF

Nc

"
2
"3

2

arctan
3CHF

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − ð3CHF
Nc

Þ2
q þ 240

N3
c
C3
HF logM

2
K

3

75

1

CA − ðMK → MπÞ

¼ h2
Λ

12

Nc
ðM2

K −M2
πÞ þ

3π
Nc

!
g
∘
ACHF

4πFπ

"2

ðMK −MπÞ þO
!
logðMK=MπÞ

N3
c

"
; ð27Þ

where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p
ðm̂ −msÞ. Naturally they will satisfy the

same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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The breaking to the GMO relation is only coming through  
the loop corrections and it behaves like 1/Nc  
in the strict large Nc limit



σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ%m̂Þ

σΣ%ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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be fitted with natural size LECs. The LEC h2 which enters
in ΔGR is best determined by fixing it using ΔGR in the
physical case, and then the rest of the LECs are determined
by the overall fit. In this way, the deviations of the
mass relations are one of the predictions of the effective
theory, and can therefore be used as a test of LQCD
calculations. At present the errors in the LQCD calculations
are relatively large, and thus such a test is not yet very
significant.

IV. VECTOR CURRENTS: CHARGES

In this section, the one-loop corrections to the vector
current charges are calculated. The analysis is similar to
that carried out in [65], except that in that reference
higher-order terms in 1=Nc in the GB-baryon vertices
were included. In the ξ expansion and the order consid-
ered here, such higher-order terms are not required. At
lowest order the charges are simply given by the
generators Ta, the one-loop corrections are UV finite,

TABLE III. Deviations from mass relations in MeV. Here ΔES1 ¼ mΞ" − 2mΣ" þmΔ and ΔES2 ¼
mΩ− − 2mΞ" þmΣ" .

Mπ MK ΔGMO ΔGR ΔES1 ΔES2

[MeV] Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th

139 497 31$ 42 46 23$ 30 38 −6$ 30 −14 −9$ 30 −14
213 489 75$ 70 33 0$ 72 29 −40$ 97 −11 9.2$ 83 −11
246 499 124$ 77 30 −7$ 75 25 −46$ 101 −11 23$ 86 −11
255 528 133$ 89 37 −12$ 94 26 −32$ 125 −14 29$ 108 −14
261 524 139$ 99 35 24$ 103 25 −29$ 138 −13 −3$ 119 −13
302 541 77$ 87 32 −14$ 94 23 −30$ 125 −13 46$ 108 −13

FIG. 4. Baryon masses vs Mπ obtained from the combined fit (second row of Table II). The bands correspond to the 67% and
95% confidence intervals. The red points with error bars are from the LQCD calculations [48], and the squares are the theoretical values
for the values of Mπ and MK of the corresponding data point.
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1) The value of the pion-Nucleon sigma term ranges from 45 MeV to 64 MeV 

2) There is a long lasting “puzzle” associated with a combination of baryon masses (in 
SU(3) ) in the iso-spin symmetric limit, to obtain the pion-Nucleon sigma term, assuming 
the contribution by strange quark mass to the nucleon mass is negligible (OZI).
3) The connection between the pion-Nucleon sigma term and size of the correction to the 
Gell-Mann-Okubo relation

Can one explain these from the combined approach ?

Baryon sigma terms

11
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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Fig. 2 Left panel: Recent values of !πN . Right panel: Recent values
of σs . Calculations based mainly on lattice calculations are indicated in
red, and those relying more on phenomenological inputs are indicated

in green. We also show the estimates made in previous compilations
[42,57] (blue), and the values we estimate now on the basis of our new
compilation (bottom line and vertical grey bands)

Here we revisit the uncertainties in !πN and σs based
on the considerable effort during the last decade made since
[15], using lattice and other techniques, to determine !πN
and σs [59]. Although most of these recent values have been
obtained from lattice calculations, many have been based on
the phenomenology of low-energy π -nucleon interactions,
and some have made extensive use of chiral perturbation the-
ory, often in combination with lattice techniques. As already
commented in [60], and discussed in more detail below, there
is tension between these various estimates, and the uncertain-
ties are not purely statistical.

The left panel of Fig. 2 displays all the estimates of !πN
that we use, and the right panel displays all the estimates of σs
that are included in our analysis. We have tried to make a com-
plete selection of all the determinations of these quantities
that have not been superseded by later analyses by strongly-
overlapping research groups. In each case, we have indicated
by colour coding the primary phenomenological technique
used in the calculation, and we have also indicated the corre-
sponding arXiv reference number. We also indicate by shaded
bands in Fig. 2 the estimates of !πN and σs that we make on
the basis of this new compilation, using the prescription that
we describe below. More details of the determinations we
use, including their numerical values, are given in Table 1.3

We now discuss the combinations of these estimates using
the procedures adopted by the Particle Data Group (PDG)
in cases where the uncertainties are not simply statistical

3 We apologize in advance to authors whose work we have overlooked
or misrepresented in compiling this Table, and welcome suggestions
for its completion and improvement.

[44]. Assuming uncorrelated Gaussian probability distribu-
tions for each of the estimates of !πN shown in the left panel
of Fig. 2, we first construct the ideogram4 shown in the left
panel of Fig. 3. As can be discerned from Fig. 2, the values
of !πN are broadly distributed between 40 and 60 MeV, and
the ideogram exhibits 3 minor peaks, slightly favoring the
lower part of the range.

A naive weighted mean of all 21 determinations of !πN
yields

Naive : !πN = 46.1 ± 1.3 MeV, (22)

where we have combined statistical and systematic uncer-
tainties in quadrature and centred asymmetric errors. It is
clear, however, that this naive estimate would be a poor rep-
resentation of the ideogram. One option proposed by the PDG
under such circumstances is to rescale the error so that the
χ2/d.o.f.= 1. In this case, the required renormalization fac-
tor is 1.7, yielding

Rescaled : !πN = 46.1 ± 2.2 MeV. (23)

However, this would also be a poor representation of the
ideogram, in view of its serrated ridge top that is broader
than the rescaled distribution (23).5 The rescaled value is

4 The ideogram is constructed using the prescription of the PDG [44],
and is a sum of Gaussians for each measurement with an area normalized
to be 1/σi where σi is the uncertainty in the measurement.
5 This feature may reflect the existence of unidentified systematic
uncertainties that affect different lattice methods and BχPT approaches
in different ways.

123

John Ellis, Natsumi Nagata, Keith A. Olive

and m8 = 1Ô
3 (m̂ ≠ ms), where m̂ = 1

2 (mu + md). More details on the self energy one-loop
corrections obtained in BChPT ◊ 1/Nc can be found in these proceedings [7].

II. ‡-TERMS

The matrix elements of scalar quark densities are of high interest. At zero momentum
they are related via the Feynman-Hellmann theorem to the slope of the hadron mass with
respect to the corresponding quark mass, 1

‡fB(mf ) = mf
ˆ

ˆmf
mB = mf

2mB
ÈB | q̄fqf | BÍ, (3)

where mf is the mass of the f quark flavor (f = u, d, s), the state | BÍ is the physical state
for that quark mass and normalized according to ÈBÕ | BÍ = (2fi)32mB”3(p̨Õ ≠ p̨), and ‡fB

is the corresponding ‡ term. ‡ terms for combinations of quark masses such as m0, m3

and m8 are defined in the same way. Empirical access to ‡ terms is di�cult in the case of
baryons, being only possible for ‡fiN = ‡(u+d)N(m̂) via analysis of fiN scattering. In the case
of other ‡ terms it is clear that the necessary information will have to come from LQCD
calculations, where tracing the baryon mass dependency with respect to quark masses is
becoming increasingly accurate. The actual contribution of a given quark flavor mass to the
mass of the hadron, keeping the rest of the quark flavor masses fixed, is then given by:

�mf
B(mf ) =

⁄ mf

0

1
µ

‡fB(µ)dµ, (4)

which in the limit of small mf coincides with the ‡ term.
In this note, the focus is on the determination of ‡fiN using the Feynman-Hellmann

theorem and results for baryon masses in SU(3), as presented in Ref. [10], with additional
brief discussions of ‡ terms of � and hyperons, and the issue of the quark mass dependence
of ‡ terms, namely the range in mq where the e�ective theory may be trusted in their
description.

1 Although obvious, ‡ terms, being observable quantities, are independent of the renormalization scheme
used in QCD. The expression 3 normally used is valid in a mass independent scheme such as MS.

3
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emphasized. The latter is at lowest order related to a mass combination whose low value has
given rise to a � term puzzle. It is shown that while the nucleon � terms have a well behaved
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�⇡N = 69(10) MeV and �s has natural magnitude within its relative large uncertainty.
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants

2

S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d � 2s̄s contribution to the nucleon mass

aTheory Center, Je↵erson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (�GMO) and �̂ = m̂hN |ūu+ d̄d�2s̄s|Ni/2mN in large Nc chiral e↵ective field theory
up to order (ms � m̂)3/2. We generalize the known O(ms � m̂) results to arbitrary number of colors and calculate the (ms � m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, �GMO and �̂, are
extremely similar. For both, the (ms � m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find �GMO = 38(??) MeV and �̂ = 57(??) MeV up to order (ms � m̂)3/2. The latter, together with the value of �s, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of �s at the physical point, we obtain a value of
�⇡N = 60(??) MeV. This result gives a strong support to the phenomenological determinations of �⇡N versus the LQCD ones, and
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1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants

2
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].
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where terms not directly relevant to the baryon masses have been omitted. M0 = O(Nc) is the
spin-flavor singlet piece of the baryon mass that provides the large mass expansion parameter for
HBChPT. In addition to the well known chiral building blocks, B represents the baryon spin-flavor
multiplet field, Ŝ 2 is the square of the baryon spin operator, Gia are the spin-flavor generators of
SU(6), and Q̂ is the electric charge operator. No baryon-spin dependent electromagnetic e↵ects
are included. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO, whose physical value is 1.2723± 0.0023.

The term h1 is only relevant if baryons with higher spin than 3/2 appear, which requires Nc � 5.
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mass renormalization and results for general Nc can be found.
Setting c3 = 0 2, the terms analytic in quark masses in Eqn. (2) lead to the exact GMO and

Equal Spacing mass relations, which are unchanged at generic Nc. On the other hand at generic
Nc the mass relation for �8 at tree level reads:
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The dominant contributions to �GMO and ��8 are calculable non-analytic contributions. �GMO is
O(⇠4) and in large Nc limit it is O(1/Nc). On the other hand, �8 is O(⇠) and it has a prefactor Nc,

2The 27-plet SU(3) breaking produced by this term is O(⇠5), and thus for the current purposes it can be neglected

3

results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:

LB = B

†
 
iD0 + g̊AuiaGia � CHF

Nc
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where terms not directly relevant to the baryon masses have been omitted. M0 = O(Nc) is the
spin-flavor singlet piece of the baryon mass that provides the large mass expansion parameter for
HBChPT. In addition to the well known chiral building blocks, B represents the baryon spin-flavor
multiplet field, Ŝ 2 is the square of the baryon spin operator, Gia are the spin-flavor generators of
SU(6), and Q̂ is the electric charge operator. No baryon-spin dependent electromagnetic e↵ects
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1/2 and 3/2 baryons. g̊A is identified with 6
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A at the LO, whose physical value is 1.2723± 0.0023.
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S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d � 2s̄s contribution to the nucleon mass

aTheory Center, Je↵erson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (�GMO) and �̂ = m̂hN |ūu+ d̄d�2s̄s|Ni/2mN in large Nc chiral e↵ective field theory
up to order (ms � m̂)3/2. We generalize the known O(ms � m̂) results to arbitrary number of colors and calculate the (ms � m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, �GMO and �̂, are
extremely similar. For both, the (ms � m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find �GMO = 38(??) MeV and �̂ = 57(??) MeV up to order (ms � m̂)3/2. The latter, together with the value of �s, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of �s at the physical point, we obtain a value of
�⇡N = 60(??) MeV. This result gives a strong support to the phenomenological determinations of �⇡N versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

x) The results obtained for �⇡N are consistent with the larger values obtained from ⇡N analyses
[7; 8; 9; 10; 11]. Note however that a more reliable value would require some more accurate and
extensive LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with
other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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There is a (hidden) large correction ~ 44 MeV from 
non-analytic contributions from baryon self-energies

results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
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a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d � 2s̄s contribution to the nucleon mass

aTheory Center, Je↵erson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (�GMO) and �̂ = m̂hN |ūu+ d̄d�2s̄s|Ni/2mN in large Nc chiral e↵ective field theory
up to order (ms � m̂)3/2. We generalize the known O(ms � m̂) results to arbitrary number of colors and calculate the (ms � m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, �GMO and �̂, are
extremely similar. For both, the (ms � m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find �GMO = 38(??) MeV and �̂ = 57(??) MeV up to order (ms � m̂)3/2. The latter, together with the value of �s, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of �s at the physical point, we obtain a value of
�⇡N = 60(??) MeV. This result gives a strong support to the phenomenological determinations of �⇡N versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a

Preprint submitted to Elsevier August 25, 2017

results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:

LB = B

†
 
iD0 + g̊AuiaGia � CHF

Nc
Ŝ 2 � 1

2⇤
c2�̂+ +

c3

Nc⇤3 �̂
2
+

+
h1

N3
c

Ŝ 4 +
h2

N2
c⇤
�̂+Ŝ 2 +

h3

Nc⇤
�0
+Ŝ

2 +
h4

Nc⇤
�a
+{S i,Gia} + ↵Q̂ + �Q̂2

!
B. (1)

where terms not directly relevant to the baryon masses have been omitted. M0 = O(Nc) is the
spin-flavor singlet piece of the baryon mass that provides the large mass expansion parameter for
HBChPT. In addition to the well known chiral building blocks, B represents the baryon spin-flavor
multiplet field, Ŝ 2 is the square of the baryon spin operator, Gia are the spin-flavor generators of
SU(6), and Q̂ is the electric charge operator. No baryon-spin dependent electromagnetic e↵ects
are included. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO, whose physical value is 1.2723± 0.0023.

The term h1 is only relevant if baryons with higher spin than 3/2 appear, which requires Nc � 5.
The rest of the terms describe the quark mass e↵ects. The combination �̂+ = Nc �0

+ + �̃+, where
�0
+ =

1
3Tr �+ and �̃+ is the traceless piece of �+, assures that the nucleon mass dependency on ms

is at most O(N0
c ) (OZI). ⇤ is an arbitrary scale, which is conveniently chosen to be m⇢. The baryon

mass formula then reads (neglecting isospin breaking for now)[29]:

mB = M0 +
CHF

Nc
Ŝ 2 � c1

⇤
2B0(

p
3m8Y + Ncm0) � c2

⇤
4B0m0 � c3

Nc⇤3

⇣
4B0(

p
3m8Y + Ncm0)

⌘2

� h1

N2
c⇤

Ŝ 4 � h2

Nc⇤
4B0(

p
3m8Y + Ncm0)Ŝ 2 � h3

Nc⇤
4B0m0Ŝ 2

� h4

Nc⇤

4B0m8p
3

 
3Î2 � Ŝ 2 � 1

12
Nc(Nc + 6) +

1
2

(Nc + 3)Y � 3
4

Y2
!
+ �mloop

B , (2)

where �mloop
B can be obtained with some work using the results in [29], where the details on the

mass renormalization and results for general Nc can be found.
Setting c3 = 0 2, the terms analytic in quark masses in Eqn. (2) lead to the exact GMO and

Equal Spacing mass relations, which are unchanged at generic Nc. On the other hand at generic
Nc the mass relation for �8 at tree level reads:

��8 = �8 � 1
9

 
5Nc � 3

2
mN � (2Nc � 3)m⌃ � Nc + 3

2
m⌅

!
, (3)

The dominant contributions to �GMO and ��8 are calculable non-analytic contributions. �GMO is
O(⇠4) and in large Nc limit it is O(1/Nc). On the other hand, �8 is O(⇠) and it has a prefactor Nc,

2The 27-plet SU(3) breaking produced by this term is O(⇠5), and thus for the current purposes it can be neglected

3

and ��8 is O(⇠2) also with a prefactor Nc. c3 gives a contribution to the �GMO which is O(⇠5),
and to ��8 at O(⇠4), both being beyond the accuracy of the present work. �GMO

3 and ��8 are thus
determined by the meson masses and by the LECs g̊A/F⇡, and CHF . �GMO depends rather smoothly
on CHF , and drives to a large extent the determination of g̊A/F⇡. One finds the interesting fact that
the ratio ��8/�GMO (⇠ �13.5 for Nc = 3), which is independent of g̊A/F⇡, is also almost entirely
independent of the value of CHF in a very wide range around its actual value.

The analysis of the physical octet and decuplet baryon masses su�ce to make the main point
of this work. In this case, the LECs c2, c3 and h1 are set to vanish, because at the order of the
calculation they are redundant (actually h1 is altogether irrelevant unless Nc � 5). A fit is carried
out including strong and electromagnetic isospin breaking. This requires using the meson masses
with isospin breaking, which include ⌘ � ⇡0 mixing (required to have a consistent renormalization
of the baryon masses) and the electromagnetic mass shifts where Dashen’s theorem is used, which
should be su�cient for the current application. The electromagnetic addition to �GMO is equal to
�4

3�, while the strong isospin breaking has negligible e↵ect, and the electromagnetic contribution
to the p-n mass di↵erence is equal to ↵ + �. The result of the fit to physical masses is shown in
Table (1), Fit 1.

g̊A
F⇡

M0
Nc

CHF c1 c2 h2 h3 h4 ↵ �

Fit MeV�1 MeV MeV MeV MeV

1 0.0126(2) 364(1) 166(23) �1.48(4) 0 0 0.67(9) 0.56(2) �1.63(24) 2.16(22)
2 0.0126(3) 213(1) 179(20) �1.49(4) �1.02(5) �0.018(20) 0.69(7) 0.56(2) �1.62(24) 2.14(22)
3 0.0126⇤ 262(30) 147(52) �1.55(3) �0.67(8) 0 0.64(3) 0.63(3) �1.63⇤ 2.14⇤

�
phys
GMO �8 ��8 �̂ �⇡N �s �3 �u+d(p � n)

MeV MeV MeV MeV MeV MeV MeV MeV

1 25.6(1.1) �583(24)�382(13) 70(3)(6) � � �1.0(3) �1.6(6)
2 25.5(1.5) �582(55)�381(20) 70(7)(6) 69(8)(6) �3(32) �1.0(4) �1.6(8)
3 25.8⇤ �615(80) �384(2) 74(1)(6) 65(15)(6) �121(15) � �

Table 1: Results from fits to baryon masses. Fit 1 uses only the physical octet and decuplet masses, Fit 2 uses the
physical and the LQCD masses from Ref. [24] with M⇡ . 300 MeV, and Fit 3 uses only those LQCD masses and
imposes the value of �phys

GMO determined by the physical masses. The renormalization scale µ and the scale ⇤ are taken
to be equal to m⇢. ⇤ indicates an input. An estimated theoretical error of 6 MeV is indicated for �̂ and �⇡N .

The information given by LQCD, where the baryon masses have been obtained with MK ap-
proximately constant and varying mu = md in a range where 213 MeV < M⇡ < 430 MeV [24], is
very useful for testing the e↵ective theory, and necessary for calculating�⇡N . Two di↵erent fits that
include LQCD baryon masses were performed, shown in Table (1). One fit combines the physical
and LQCD masses, up to M⇡ ⇠ 300 MeV, and the other uses only LQCD and the physical value of

3�GMO corresponds to having removed the EM corrections, otherwise it is denoted by �phys
GMO

4

:

results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants

2

Sigma Terms

13

4



Sigma Terms (Results)

14

4
extrapolating to too small of a value at the physical limit. For the physical case isospin
breaking was taking into account, which allows to fix the EM coe�cients – and —. For
the present analysis, the importance of that correction is its e�ect on �GMO, whose value
without EM is that obtained with the physical masses plus 4

3—, a non-negligible e�ect of
almost 3 MeV increase.

g̊A

Ffi

M0
Nc

CHF c1 c2 h2 h3 h4 – —

Fit MeV≠1 MeV MeV MeV MeV

1 0.0126(2) 364(1) 166(23) ≠1.48(4) 0 0 0.67(9) 0.56(2) ≠1.63(24) 2.16(22)

2 0.0126(3) 213(1) 179(20) ≠1.49(4) ≠1.02(5) ≠0.018(20) 0.69(7) 0.56(2) ≠1.62(24) 2.14(22)

3 0.0126ú 262(30) 147(52) ≠1.55(3) ≠0.67(8) 0 0.64(3) 0.63(3) ≠1.63ú 2.14ú

�phys
GMO ‡8N �‡8N ‡̂N ‡fiN ‡sN ‡8� �‡8� ‡̂�

MeV MeV MeV MeV MeV MeV MeV MeV MeV

1 25.6(1.1) ≠583(24) ≠382(13) 70(3)(6) ≠ ≠ ≠496(46) ≠348(16) 59(5)(6)

2 25.5(1.5) ≠582(55) ≠381(20) 70(7)(6) 69(8)(6) ≠3(32) ≠511(52) ≠352(22) 60(10)(6)

3 25.8ú ≠615(80) ≠384(2) 74(1)(6) 65(15)(6) ≠121(15) ≠469(26) 350(27) 56(4)(6)

TABLE I: Results of fits to baryon masses [10]. Fit 1 uses only the physical octet and decuplet

masses, Fit 2 uses the physical and the LQCD masses from Ref. [11] with Mfi . 300 MeV, and

Fit 3 uses only those LQCD masses and imposes the value of �phys
GMO determined by the physical

masses (corrected in the calculation by the isospin breaking e�ects). The renormalization scale µ

and the scale � are taken to be equal to mfl. ú indicates an input. A theoretical error of 6 MeV is

estimated for ‡̂ and ‡fiN .

It is important to stress that the resulting LECs and the respective errors are natural
have natural size. More accurate LQCD results and, as emphasized later, with smaller ms

would help determine how reliable is the e�ective theory is. Indeed, the behavior of ‡sN

as a function of ms shown in Figs. 1 and 4 indicates that the physical value of ms is too
large for trusting the result obtained here. As discussed later, a qualitative picture in the
limit of a heavy ms suggests a small value for ‡s vanishing in the large quark mass limit.
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ChPT and the 1/Nc expansion provide systematic frameworks for the strong interactions at low

energy. A combined framework of both expansions has been developed and applied for baryons

with three light-quark-flavors. The small scale expansion of the combined approach is identified

as the ›-expansion, in which the power counting of the expansions is linked according to O(p) =

O(1/Nc) = O(›). The physical baryon masses as well as lattice QCD baryon masses for di�erent

quark mass masses are analyzed to O(›3) in that framework. ‡ terms are addressed using the

Feynman Hellmann theorem. For the nucleon, a useful connection between the deviation of the

Gell-Mann-Okubo relation and the ‡ term ‡8N associated with the scalar density ūu + d̄d ≠ 2s̄s

is identified. In particular, the deviation from the tree level relation ‡8N = 1
3(2mN ≠ m� ≠ m�),

which gives rise to the so called ‡-term puzzle, is studied in the ›-expansion. A large correction

non-analytic in › results for that relation, making plausible the resolution of the puzzle. Issues

with the determination of the strangeness ‡ terms are discussed, emphasizing the need for lattice

calculations at smaller ms for better understanding the range of validity of the e�ective theory.

The analysis presented here leads to ‡fiN = 69(10) MeV and ‡fi� = 60(10) MeV.
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extrapolating to too small of a value at the physical limit. For the physical case isospin
breaking was taking into account, which allows to fix the EM coe�cients – and —. For
the present analysis, the importance of that correction is its e�ect on �GMO, whose value
without EM is that obtained with the physical masses plus 4

3—, a non-negligible e�ect of
almost 3 MeV increase.

g̊A

Ffi

M0
Nc

CHF c1 c2 h2 h3 h4 – —

Fit MeV≠1 MeV MeV MeV MeV

1 0.0126(2) 364(1) 166(23) ≠1.48(4) 0 0 0.67(9) 0.56(2) ≠1.63(24) 2.16(22)

2 0.0126(3) 213(1) 179(20) ≠1.49(4) ≠1.02(5) ≠0.018(20) 0.69(7) 0.56(2) ≠1.62(24) 2.14(22)

3 0.0126ú 262(30) 147(52) ≠1.55(3) ≠0.67(8) 0 0.64(3) 0.63(3) ≠1.63ú 2.14ú

�phys
GMO ‡8N �‡8N ‡̂N ‡fiN ‡sN ‡8� �‡8� ‡̂�

MeV MeV MeV MeV MeV MeV MeV MeV MeV

1 25.6(1.1) ≠583(24) ≠382(13) 70(3)(6) ≠ ≠ ≠496(46) ≠348(16) 59(5)(6)

2 25.5(1.5) ≠582(55) ≠381(20) 70(7)(6) 69(8)(6) ≠3(32) ≠511(52) ≠352(22) 60(10)(6)

3 25.8ú ≠615(80) ≠384(2) 74(1)(6) 65(15)(6) ≠121(15) ≠469(26) 350(27) 56(4)(6)

TABLE I: Results of fits to baryon masses [10]. Fit 1 uses only the physical octet and decuplet

masses, Fit 2 uses the physical and the LQCD masses from Ref. [11] with Mfi . 300 MeV, and

Fit 3 uses only those LQCD masses and imposes the value of �phys
GMO determined by the physical

masses (corrected in the calculation by the isospin breaking e�ects). The renormalization scale µ

and the scale � are taken to be equal to mfl. ú indicates an input. A theoretical error of 6 MeV is

estimated for ‡̂ and ‡fiN .

It is important to stress that the resulting LECs and the respective errors are natural
have natural size. More accurate LQCD results and, as emphasized later, with smaller ms

would help determine how reliable is the e�ective theory is. Indeed, the behavior of ‡sN

as a function of ms shown in Figs. 1 and 4 indicates that the physical value of ms is too
large for trusting the result obtained here. As discussed later, a qualitative picture in the
limit of a heavy ms suggests a small value for ‡s vanishing in the large quark mass limit.
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A. ‡fiN

The determination of ‡fiN has a long history spanning many decades. Its extraction from
the analyses of fiN scattering has given values that range from 45 MeV [12–14] to 64 MeV
[15–18], with the larger values being from more recent analyses where their increment with
respect to the olg ones is understood to be a consequence of a change in the input fiN

scattering lengths. From a practical use point of view, ‡fiN has become very important
in the studies of dark matter searches [19] in the scenarios where dark matter has scalar
couplings to quarks.

‡fiN can be expressed by the combination of ‡ terms:

‡fiN = ‡̂ + 2 m̂

ms
‡sN , (5)

where ‡̂ =
Ô

3 m̂
m8

‡8N . To LO in quark masses ‡8N is given by a combination of octet baryon
masses, namely:

‡8N = 1
3(2mN ≠ m� ≠ m�), (6)

= 1
9

35Nc ≠ 3
2 mN ≠ (2Nc ≠ 3)m� ≠ Nc + 3

2 m�

4
for general Nc,

which leads to ‡̂ ≥ 25 MeV. Since the contribution of the term proportional to ‡sN , being
OZI suppressed, should be expected to be small, at this lowest order in the quark masses
there is a puzzle between the empirically obtained values of ‡fiN and the relation ‡fiN ≥ ‡̂.
Either the latter is badly broken, and/or the relation 6 has large corrections. It will be
shown that the latter is the case. It is argued that the puzzle is further emphasized by
the observation that the Gell-Mann-Okubo relation 2 receives small deviations, and so it
would be di�cult to understand why 6 should receive large corrections [20]. Following Ref.
[5], and based on the 1/Nc expansion one finds that the corrections to the GMO relation
are suppressed by a factor 1/Nc at large Nc, while the corrections to the mass relation
generalized in Nc as shown in 6 are O(Nc). The deviation from the GMO relation, �GMO,
in the calculation to one-loop is independent of the NLO LECs and given solely by non-
analytic finite contributions, which depend on g̊A/Ffi, CHF and the GB masses. The same
is the case for the deviations from 6, denoted here by �‡8N . Performing the analysis at

2 The GMO relation is defined by the mass combination: 3m� + m� ≠ 2(mn + m�), valid for all Nc.
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B. Other ‡ terms

A similar analysis to the case of the Nucleon can be carried out for the �. In that case
there is the following LO relation for ‡8

�:

‡8� = Nc

3 (m� ≠ m�ú) ≠ 5(Nc ≠ 3)
12 (m� ≠ m�) , (7)

whose deviations at NLO are again calculable as in the case of the Nucleon. Since in the
large Nc limit the � and Nucleon become degenerate, their respective ‡ terms must also
become identical up to terms sub-leading in 1/Nc. That regime is however reached at very
large Nc (fixed mq) for the contributions non-analytic in Ô

mq ◊ Nc.
‡ terms satisfy the same tree level relations as baryon masses do. Indeed, the GMO,

Equal spacing and the Gürsey-Radicati (if the LEC h3 is neglected) mass relations, satisfied
by tree contributions up to O(›3), are automatically satisfied by the corresponding ‡ terms.
Since the non-analytic corrections to those relations are all 1/Nc suppressed, the correspond-
ing ‡ term relations have small deviations. There are further tree level relations satisfied by
‡ terms corresponding to di�erent quark masses, in particular relating the ‡ terms corre-
sponding to ms with the m̂ ones. The corrections to those are not 1/Nc suppressed and thus
they receive large non-analytic corrections. As shown later, the ‡s

B terms show significant
curvature starting at MK ≥ 250 MeV, indicating the range where the e�ective theory can
be trusted with their calculation. Those additional ‡ terms may be of general interest in
LQCD calculations and the corresponding tests of the e�ective theory they can provide.

III. RESULTS USING LQCD INPUTS

In the analysis of Ref. [10], both physical and LQCD baryon masses are considered. The
LQCD baryon masses have been obtained for approximately fixed MK , varying mu = md

in a range from the physical limit up to Mfi ≥ 300 MeV [11]. Three di�erent fits were
performed, shown in the Table (I), which contains some additional results to those given in
[10]. The ratio g̊A/Ffi is also a fitting parameter for the first two fits and it is consistent
with the value extracted from �GMO and also the one obtained from the analysis of axial
couplings [5, 7]. The value of CHF is determined most accurately by the physical � ≠ N

mass splitting; its value obtained solely from the LQCD results is significantly di�erent and
indication that the LQCD results do not determine accurately the hyperfine mass splittings,

7
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Hadronic weak currents possess the V-A structure of the weak interactions. In

general, a hadronic weak current Jµ can be defined as,

Jµ = Vµ � Aµ , (11.1)

where,

Vµ = Vudū�µd + Vusū�µs : Vector current ,

Aµ = Vudū�µ�5d + Vusū�µ�5s : Axial-vector current . (11.2)

Vud, Vus are the elements of Cabibbo-Kobayashi-Maskawa matrix (or CKM matrix)

[122, 123]. Therefore the matrix elements of Vµ and Aµ between the baryon states

with same spin (denoted as B1 and B2) has the general forms [121] :

hB2|Vµ|B1i = VCKM ūB2(p2)



f1(q
2)�µ +

f2(q2)

MB1

�µ⌫q
⌫ +

f3(q2)

MB1

qµ

�

uB1(p1) ,

(11.3)

hB2|Aµ|B1i = VCKM ūB2(p2)



g1(q
2)�µ +

g2(q2)

MB1

�µ⌫q
⌫ +

g3(q2)

MB1

qµ

�

�5uB1(p1) ,

(11.4)

where VCKM represents the corresponding element of CKM matrix, q ⌘ p1 � p2

is the momentum transfer, and uBi
is the Dirac spinor of the ith baryon.

In addition to the introduction, this chapter includes two more sections dedicated

to vector currents, axial-vector currents including fit results to LQCD calculations [6].

11.2 Vector currents: charges

In this section the one-loop corrections to the vector current charges are calcu-

lated. The study is similar to that carried out in [121]. In the rest frame of a baryon

with the presence of an external current, the dominant contribution to the matrix

elements of the vector current is the corresponding charge, which is of O (⇠0). The
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which is O(Nc) but has dependence on ms which is O(N0
c ) for all states with strangeness

O(N0
c ). For convenience a scale ⇤ is introduced, which can be chosen to be a typical QCD

scale, in order to render most of the LECs dimensionless. In the calculations ⇤ = m⇢ will

be chosen. The quark mass matrix is defined by Mq = m0 + ma �a

2 , where in the physical

case m0 = 1
3(mu + md + ms), m3 = mu � md and m8 = 1p

3
(mu + md � 2ms) and the rest of

the Ma s vanish.

Collecting the baryons in a spin flavor multiplet denoted by B, and using standard

notation for the chiral building blocks (for details see Appendix B and Ref. [24]), the

LO O(⇠) Lagrangian reads:

L(1)
B = B

†(iD0 � CHF

Nc
Ŝ2 + g̊AuiaGia +

c1
2⇤

�̂+)B, (2)

where the hyperfine mass shifts are given by the second term, Gia are the spin-flavor gener-

ators (see Appendix A), and the axial coupling is at LO g̊A = 6
5gA, being gA = 1.2732(23)

the nucleon’s axial coupling. The relevant terms in the O(⇠2) Lagrangian are:

L(2)
B = B

†
✓

c2
⇤

�0
+ +

CA
1

Nc
uiaSiT a +



2⇤
Bia

+Gia + · · ·
◆

B, (3)

where the flavor SU(3) electric and magnetic fields are denoted by E+ and B+ and given

by Ei
+ = F 0i

+ and Bi
+ = 1

2✏
ijkF jk

+ (see Eqn. B2 in Appendix B). The term proportional to

 gives at LO the magnetic moments associated with all vector currents. The O(⇠3) and

O(⇠4) Lagrangians needed for the one-loop renormalization of the vector currents are the

following:

L(3)
B = B

†
⇣ g1

⇤2
DiE

a
+iT

a +
1

2⇤Nc
Bia

+SiT a + · · ·
⌘

B

L(4)
B = B
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The term proportional to g3 gives electric quadrupole moment for 10B

and 10B ! 8B transitions.
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The term proportional to r gives contribution to magnetic radii
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The renormalization of the magnetic moments is provided by the Lagrangians with the

LECs D,F,1,··· ,5, and the magnetic radii receive only finite one-loop contributions and a

finite renormalization by the term r. The � functions of the magnetic LECs resulting from

Eqn.(12) are shown in Table IV.
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TABLE IV: � functions of LECs associated with magnetic moments and radii. The renormalized

LECs are defined according to X = X(µ) + �X

(4⇡)2 �✏.

For Nc = 3 the set of local terms that contribute to the magnetic moments remains

linearly independent. If one only considers the EM current, the term proportional to F

does not contribute, and for the known magnetic moments together with the information

on the M1 transition � ! N� one can fit the rest of the LECs. Note that in the absence

of information on the SU(3) singlet quark mass m0 dependence, the LEC 2 is subsumed

into , and the lack of knowledge on the �S = 1 weak magnetic moments does prevents at

present a determination of F .
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Baryon vector currents 5.1

magnetic field). The rest are quark mass and higher order in 1/Nc corrections to the magnetic

moments.

Throughout, spin-flavor operators in the Lagrangians are scaled by appropriate powers

of 1/Nc such that all LECs start at zeroth order in Nc. Of course, LECs have themselves an

expansion in 1/Nc, kept implicit, which requires information for Nc > 3 to be determined. In

that sense each Lagrangian term has a leading power in 1/Nc which is used to assign its order

in the ⇠ power counting, followed by sub-leading terms in 1/Nc due to the expansion of the

corresponding LEC. In addition, each term in the Lagrangian is explicitly chiral invariant

and its expansion in powers of the Goldstone Boson fields yields factors 1/F⇡ = O(1/
p

Nc)

for each additional factor of a GB field.

For convenience the following definition is used:

�m̂ ⌘ CHF

Nc
Ŝ2 � c1

2⇤
�̂+. (5)

Note that �m̂ gives rise to mass splittings between baryons which are the O(1/Nc) hyper-

fine term in Eqn.(2) and the O(p2) quark mass term. The O(mqNc) term in �̂+ becomes

immaterial in the loop calculations as only di↵erences of baryon masses appear for which

such terms exactly cancel.

III. ONE LOOP CORRECTIONS TO CURRENTS

The one-loop corrections to the vector currents involve the two sets of gauge invariant

diagrams A and B in Fig. 1, where the vertices are given in Appendix D. The explicit results

are the following:
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fabcf bcd�µdI(0, 1, M2
b ) (6)

V µa(B2) = gµ0 i

4F 2
⇡

fabcf bcdT d(q0
2K(q, Mb, Mc) + 4q0K

0(q, Mb, Mc) + 4K00(q, Mb, Mc)),

5

q0 = SU(3)breaking mass di↵erence + kinetic energy
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where Pn are projectors onto the corresponding baryon in the loop, p0 is the resid-

ual energy of the initial baryon, q0 is the incoming energy in the current, and �µa =

gµ0T a + i ⇤✏0µijfabcf cbdqiGjd contains both the electric charge and magnetic moment compo-

nents. The one-loop wave function renormalization factor �Ẑ1�loop can be found in [24], and
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current, which are all O(⇠2) or higher and must therefore be neglected in this calculation.

In the evaluations one sets p0 ! �min and p0 + q0 ! �mout. In particular, for diagram A1,

if it requires evaluation at q0 = 0 such a limit must be taken in the end of the evaluation.

The U(1) baryon number current can used to check the calculation: only diagrams A1+2
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magnetic field). The rest are quark mass and higher order in 1/Nc corrections to the magnetic

moments.

Throughout, spin-flavor operators in the Lagrangians are scaled by appropriate powers

of 1/Nc such that all LECs start at zeroth order in Nc. Of course, LECs have themselves an

expansion in 1/Nc, kept implicit, which requires information for Nc > 3 to be determined. In
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Reduction formulas that can be found in [25] are used to express the above in a base of

irreducible operators, Eqns.(9) and (12) below.
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Ademollo-Gatto Theorem (AGT)  is “satisfied” : The amplitude of 
vector currents in the                 limit are uniquely predicted  
up to first order in symmetry breaking. 
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sub-leading terms are proportional to O (q/Nc), where q is the 4-momentum transfer

through the external current. Therefore, q ⇠ MB1 � MB2 ⇠ O (p2), where MBi
is the

rest-mass of the ith baryon involve with the vector current.

At q2 = 0, the baryon matrix elements for the vector current in the limit of exact

SU(3) symmetry are simply given by the matrix elements of the associated charge or

SU(3) generator T a. According the the Ademollo-Gatto theorem (AGT) [124], the

vector coupling constants to the first order in the symmetry-breaking interaction, are

not renormalized. An application to this theorem is strangeness-violating leptonic

decays of baryons and mesons. The theorem implies the amplitude of the vector

currents in the limit q2 ! 0 are uniquely predicted up to first order in symmetry

breaking. In other words, the matrix elements of charge operator can deviate from

the symmetry only to second order in symmetry breaking [125]. Therefore, at lowest

order, the charges are simply given by the SU(3) generators : T a, and the one-loop

corrections are UV finite. Since up to O (⇠3) the AGT is satisfied, the corrections to

the charges are unambiguously given at one-loop by the non-analytic contributions

from the loops.

The one-loop diagrams are given in Fig. 11.1, and the corrections to the charges

are obtained by evaluating the diagrams at q ! 0. In that limit the UV divergencies

as well as the finite polynomial terms in quark masses and �m̂ cancel in each of the

two sets of diagrams, {A+B}, and {C +D+E}, as required by the AGT. The results

for the diagrams are the following:

related by Cabibbo’s theory, with the further generalization
to six quarks by Kobayashi and Maskawa.
At the present level of experimental accuracy on BSD,

only the form factors f1ðq2Þ and f2ðq2Þ of the vector
current and g1ðq2Þ and g2ðq2Þ of the axial-vector current are
involved in electron modes, whereas the f3ðq2Þ and g3ðq2Þ
contributions can be neglected because of the small factor
m2

e that comes along with them. At a more detailed level,
the q2 dependence of the leading form factors can be
parametrized in a dipole form whereas the q2 dependence
of f2 and g2 can be neglected due to the q factor already
present in the matrix elements (5) and (6).
In the limit of exact flavor SUð3Þ symmetry f1 and f2

are predicted in terms of the EM form factors of p and n
via SUð3Þ transformations. The g2 form factor for
diagonal matrix elements of Hermitian currents vanishes
by Hermiticity and time-reversal invariance. Therefore,
SUð3Þ symmetry yields g2 ¼ 0 in the symmetry limit.
Finally, g1 is given in terms of the familiar couplings F
and D.
The decay widths driven by vector and axial-vector

currents do not interfere, thus, Γ ¼ ΓV þ ΓA. The deter-
mination of jVusj and the mentioned form factors can be
extracted from the total decay rate R, and, to a high degree
of precision, R must include radiative corrections. The
actual expression for R reads

R ¼ R0

!
1þ α

π
Φ
"
; ð7Þ

where R0 is the uncorrected decay rate and model-
independent radiative corrections are encoded in the term
ðα=πÞΦ [1]. R0 is a quadratic function of the form factors
and can be written in the most general form as1

R0 ¼ jVCKMj2
!X6

i≤j¼1

aRijfifj þ
X6

i≤j¼1

bRijðfiλfj þ fjλfiÞ
"
;

ð8Þ

where the dipole parametrizations assumed for all form
factors introduce six slope parameters λfi . For the sake of
shortening Eq. (8), g1 ¼ f4, g2 ¼ f5, g3 ¼ f6, λg1 ¼ λf4 ,
λg2 ¼ λf5 , and λg3 ¼ λf6 have been momentarily redefined.
The analytic expressions for R0 in HSD can be found in
Ref. [2]. The short distance contributions of radiative
corrections, given by the factor Sew, can be accounted
for in the usual way by defining an effective weak coupling
constant.
The jΔSj ¼ 1 form factors f1 satisfy the Ademollo-

Gatto (AG) theorem, which states that the SUð3Þ symmetry

breaking (SB) corrections to their SUð3Þ limit values are
proportional to ðms − m̂Þ2. One must note that this does not
mean the corrections are Oðp4Þ in the chiral expansion.
As it happens with Kl3 decays [3,4], the dominant such
corrections are nonanalytic in quark masses and stem from
the chiral loop contributions. Those corrections, if
expanded in ðms − m̂Þ, will behave as the AG theorem
requires but with small denominators proportional to quark
masses, and therefore the nonanalytic corrections are
Oðp2Þ. The analytic contributions are of course Oðp4Þ
and beyond the accuracy of the calculation in this paper.
Therefore, the dominant SUð3Þ SB corrections to f1
calculated here are ultraviolet finite and well defined.
In this paper, the formalism of the 1=Nc expansion

combined with heavy baryon chiral perturbation theory
(HBChPT) is used to calculate the one-loop corrections to
the baryon vector currents. The approach has been success-
fully applied to compute flavor-27 baryon mass splittings
[5], baryon axial-vector couplings [6,7] and baryon mag-
netic moments [8,9], as well as to the study of lattice QCD
results for baryon masses and axial couplings [10,11]. Here
its applicability is extended to the analysis of one-loop
corrections to the baryon vector current operator.
Consistency with the 1=Nc expansion requires that the

baryon decuplet be also included with specific couplings.
Here it is shown how to carry out the calculation following
the strictures of the 1=Nc expansion, which imposes
relations between the various couplings involved. The
present paper will give the SUð3Þ SB corrections to the
vector current at the leading order of the breaking, i.e.
Oðp2Þ, and represents an important step towards a more
accurate calculation where the first subleading SUð3Þ SB
effects are also included. Thus the approximations
involved, which will be discussed in more detail later,
are the following: (i) The SUð3Þ breaking mass splittings in
the baryon propagators involved in the loop are disre-
garded; it will be shown that such effects are of subleading
order in the chiral expansion. (ii) The calculation involves
the mass splittings between octet and decuplet baryons;
in the present paper the SUð3Þ SB in those splittings are
ignored as per (i). The SUð3Þ SB corrections to (i) and (ii)
will be studied in detail in future work as they will
contribute to subleading SUð3Þ SB effects. (iii) The one-
loop correction, as discussed below, is proportional to
Aia ⊗ Aib, where Aia is the axial-vector current operator.
The 1=Nc expansion of Aia is truncated at the physical
value Nc ¼ 3, so in the correction there appear up to six-
body operators, which are suppressed by 1=N4

c factors.
Working out to this order is twofold. First, the operator
reductions are doable; second, the complete expressions
will allow a rigorous comparison with chiral perturbation
theory results order by order. Knowing that the chiral and
1=Nc expansions do not commute, an expansion scheme
can be implemented, such as the low scale or ξ expansion
discussed recently in [10]. This will be presented in the

1Strictly speaking, the model dependence of radiative correc-
tions can be absorbed into the leading form factors f1 and g1 [1]
so Eq. (7) should be written in terms of f01 and g

0
1. Actually, these

primed form factors are the ones accessible to experiment.
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The analytic expressions for R0 in HSD can be found in
Ref. [2]. The short distance contributions of radiative
corrections, given by the factor Sew, can be accounted
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garded; it will be shown that such effects are of subleading
order in the chiral expansion. (ii) The calculation involves
the mass splittings between octet and decuplet baryons;
in the present paper the SUð3Þ SB in those splittings are
ignored as per (i). The SUð3Þ SB corrections to (i) and (ii)
will be studied in detail in future work as they will
contribute to subleading SUð3Þ SB effects. (iii) The one-
loop correction, as discussed below, is proportional to
Aia ⊗ Aib, where Aia is the axial-vector current operator.
The 1=Nc expansion of Aia is truncated at the physical
value Nc ¼ 3, so in the correction there appear up to six-
body operators, which are suppressed by 1=N4

c factors.
Working out to this order is twofold. First, the operator
reductions are doable; second, the complete expressions
will allow a rigorous comparison with chiral perturbation
theory results order by order. Knowing that the chiral and
1=Nc expansions do not commute, an expansion scheme
can be implemented, such as the low scale or ξ expansion
discussed recently in [10]. This will be presented in the

1Strictly speaking, the model dependence of radiative correc-
tions can be absorbed into the leading form factors f1 and g1 [1]
so Eq. (7) should be written in terms of f01 and g

0
1. Actually, these

primed form factors are the ones accessible to experiment.
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where terms of higher powers in p0 have been disre-
garded. A few observations on δΣpoly are in order: (1) the
contributions to the spin-flavor singlet component of the
masses is Oðp2N0

cÞ and proportional to CHF, the spin-
symmetry breaking is Oð1=N2

cÞ, and the SUð3Þ breaking
is Oðp2=NcÞ, (2) the UV divergencies in the mass are
produced by the contribution of the partner baryon in the
loop, i.e. baryon of different spin, and is therefore
determined by the mass splitting, i.e., by CHF, and
(3) the contributions to δZ are suppressed by powers
of 1=Nc, but with two exceptions, namely, there is a spin-
flavor singlet contribution proportional to m0 which is
OðNcÞ and a term proportional to ma which is OðN0

cÞ.
The term OðNcÞ in δZ is of key importance for the
mechanism of cancellations of 1=Nc power counting
violating terms, as it is shown later in the analysis of
the one-loop contributions to the currents.
The counterterms for renormalizing the masses and

wave functions are Oðξ2Þ and Oðξ3Þ (all contributions
Oðξ4Þ are consistently dropped) and involve terms that
appear in Lð1Þ

B with higher-order terms in 1=Nc in the

LECs and terms in Lð2;3Þ
B . To renormalize, the LECs

are written as: X ¼ XðμÞ þ 1
ð4πÞ2 βXλϵ, where μ is the

renormalization scale and the beta-functions βX necessary
to renormalize the masses are given in Table I. The reader
can easily work out the renormalization of the wave
functions.
Finally, the nonanalytic contributions to δΣ are
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At tree level, and up to order ξ3, baryon masses satisfy
the GMO and Equal Spacing (ES) relations, which hold
unchanged at arbitrary Nc. The deviations from these
relations are given by the nonanalytic terms in the self-
energy; i.e., they are calculable to the one-loop order,
and in the strict large Nc limit they are Oðp3=NcÞ and
Oðp2=N2

cÞ. The calculated deviations compare to the
observed ones as follows: GMO∶ ð3mΛ þmΣÞ − 2ðmN þ
mΞÞ ¼ ΔGMO ¼ Th∶ ðgNA=FπÞ2 × 2.42 105 MeV3 vs Exp:
25.8 MeV, and ES: mΞ% − 2mΣ% þmΔ ¼ ΔES ¼
ðgNA=FπÞ2 × ð−3.72 104Þ MeV3 vs −4& 7 MeV, where
for the theoretical evaluation CHF ¼ mΔ −mN was used.
Note that using the physical gNA ¼ 1.267& 0.004 and
Fπ ¼ 93 MeV, the value of ΔGMO turns out to be
significantly larger than the physical one. When studying
the axial couplings, it will be found that the LO value of
the axial coupling is smaller than the physical one. In
fact, ΔGMO could be used in determining the ratio gNA=Fπ
at LO. Expanding ΔGMO in the strict large Nc limit one
obtains:

TABLE I. β functions for mass renormalization.

LEC F2
πβ=g2A

m0 − Ncþ6
N3

c
C3
HF

CHF
36−5NcðNcþ6Þ

3N2
c

C3
HF

c1 − 3
8
Ncþ3
Nc

ΛCHF

c2 3
16 ð2Nc þ 9ÞΛCHF

c3 0
h1 − 12

Λ C3
HF

h2 0
h3 7

4ΛCHF

h4 1
2ΛCHF
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Ŝ2
"
m0þ

!
7

12
fSi; Giag − 3

8
ðNc þ 3ÞTa

"
ma

"

þ ð2þ λϵÞ
C2
HF

N2
c

!
3

2
NcðNc þ 6Þ þ ð−18þ NcðNc þ 6ÞÞŜ2 − 4Ŝ4
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OðNcÞ and a term proportional to ma which is OðN0
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At tree level, and up to order ξ3, baryon masses satisfy
the GMO and Equal Spacing (ES) relations, which hold
unchanged at arbitrary Nc. The deviations from these
relations are given by the nonanalytic terms in the self-
energy; i.e., they are calculable to the one-loop order,
and in the strict large Nc limit they are Oðp3=NcÞ and
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cÞ. The calculated deviations compare to the
observed ones as follows: GMO∶ ð3mΛ þmΣÞ − 2ðmN þ
mΞÞ ¼ ΔGMO ¼ Th∶ ðgNA=FπÞ2 × 2.42 105 MeV3 vs Exp:
25.8 MeV, and ES: mΞ% − 2mΣ% þmΔ ¼ ΔES ¼
ðgNA=FπÞ2 × ð−3.72 104Þ MeV3 vs −4& 7 MeV, where
for the theoretical evaluation CHF ¼ mΔ −mN was used.
Note that using the physical gNA ¼ 1.267& 0.004 and
Fπ ¼ 93 MeV, the value of ΔGMO turns out to be
significantly larger than the physical one. When studying
the axial couplings, it will be found that the LO value of
the axial coupling is smaller than the physical one. In
fact, ΔGMO could be used in determining the ratio gNA=Fπ
at LO. Expanding ΔGMO in the strict large Nc limit one
obtains:

TABLE I. β functions for mass renormalization.

LEC F2
πβ=g2A

m0 − Ncþ6
N3

c
C3
HF

CHF
36−5NcðNcþ6Þ

3N2
c

C3
HF

c1 − 3
8
Ncþ3
Nc

ΛCHF

c2 3
16 ð2Nc þ 9ÞΛCHF

c3 0
h1 − 12

Λ C3
HF

h2 0
h3 7

4ΛCHF

h4 1
2ΛCHF

I. P. FERNANDO and J. L. GOITY PHYS. REV. D 97, 054010 (2018)

054010-8



18

Baryon vector currents charges5.2

charges, which are proportional to Q2 = ~q 2:

fa
1 (A1+2+3)

poly =
�✏ � 3

(4⇡)2

✓

g̊A
4F⇡

◆2

Q2 T a

fa
1 (B1+2)

poly = ��✏ + 1

(4⇡)2
Q2

4F 2
⇡

T a, (9)

where fa
1 ⌘ V 0a.

The corrections to the | �S |= 1 charges, already discussed in [20], are evaluated using

the physical values g̊A = 6
5 ⇥ 1.27 and F⇡ = 92 MeV, however one needs to be aware that

their values are e↵ected by the NLO corrections, leading to a theoretical uncertainty. With

the usual notation for those charges [20], evaluating the ratios �f1/f1 in the large Nc limit

one finds that �f1/f1 = O(1/Nc). Since the corrections are entirely given by non-analytic

terms in ⇠, the naive 1/Nc scaling sets in rather slowly at Nc ⇠ 20, emphasizing that the

non commutativity of the low energy and 1/Nc expansions is very important at the physical

Nc = 3. The results are shown in Table I, where the errors are estimated from the above

mentioned theoretical uncertainty. The agreement with recent LQCD calculations [4] is

encouraging, and further improvement in the precision of those calculations would be very

useful.

�f1
f1

One-loop LQCD

⇤p �0.067(15) �0.05(2)

⌃�n �0.025(10) �0.02(3)

⌅�⇤ �0.053(10) �0.06(4)

⌅�⌃0 �0.068(17) �0.05(2)

TABLE I: SU(3) breaking corrections to the �S = 1 vector charges. The LQCD results are from

Ref. [4].

For the charge radii the loop contributions are from diagrams A3 and B2 and the renor-

malization is provided by the LECs g1 and g2 in L(3)
B and L(4)

B respectively, of which only g1

is required for canceling the loop UV divergence according to Eqn. (9) 2. As is the case with

2 In Ref. [24] the finite term proportional to g2 was overlooked.
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UV finite ; Q2 ! 0
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terms due to SU(3) breaking in �m̂ are disregarded. The consistency with the 1/Nc power

counting can be readily checked. Diagrams A3 and B1,2 are separately consistent with the

1/Nc power counting. Their polynomial contributions are the following:
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Reduction formulas that can be found in [25] are used to express the above in a base of

irreducible operators, Eqns.(9) and (12) below.

IV. VECTOR CHARGES

In this section the SU(3) vector current charges and corresponding radii are analyzed.

The SU(3) breaking corrections to the charges already presented in [20] and [24] are discussed

for completeness. At lowest order the charges are represented by the flavor generators T a.

The one-loop corrections are UV finite at Q2 ⌘ �q2 = 0, and since up to O(⇠3) the AGT

is satisfied, the corrections to the charges are unambiguously given by UV finite one-loop

contributions. Note that the AGT applies to the whole baryon spin-flavor multiplet. On

the other hand, at finite Q2 the one-loop correction has an UV divergent piece which is

independent of quark masses and is renormalized via the terms g1 and g2 in LB, one of them

removes the UV divergence (g1) and the other one is a finite counterterm (g2).

Combining the polynomial pieces in Eqns.(7) and (8) and using that, [�m̂, T a] =

[�m̂, Ĝ2] = [�m̂, GibT aGib] = 0 one obtains the polynomial loop contributions to vector

7
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1 + �f1
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At Q2 ! finite :

UV divergent terms renormalized via

g1 and g2 in the Lagrangian

<latexit sha1_base64="VEyFbBv2l2DI0ycBeI4vQIP3dj4="></latexit>

Results

charges, which are proportional to Q2 = ~q 2:
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Q2

4F 2
⇡

T a, (9)

where fa
1 ⌘ V 0a.

The corrections to the | �S |= 1 charges, already discussed in [20], are evaluated using

the physical values g̊A = 6
5 ⇥ 1.27 and F⇡ = 92 MeV, however one needs to be aware that

their values are e↵ected by the NLO corrections, leading to a theoretical uncertainty. With

the usual notation for those charges [20], evaluating the ratios �f1/f1 in the large Nc limit

one finds that �f1/f1 = O(1/Nc). Since the corrections are entirely given by non-analytic

terms in ⇠, the naive 1/Nc scaling sets in rather slowly at Nc ⇠ 20, emphasizing that the

non commutativity of the low energy and 1/Nc expansions is very important at the physical

Nc = 3. The results are shown in Table I, where the errors are estimated from the above

mentioned theoretical uncertainty. The agreement with recent LQCD calculations [4] is

encouraging, and further improvement in the precision of those calculations would be very

useful.

�f1
f1

One-loop LQCD

⇤p �0.067(15) �0.05(2)

⌃�n �0.025(10) �0.02(3)

⌅�⇤ �0.053(10) �0.06(4)

⌅�⌃0 �0.068(17) �0.05(2)

TABLE I: SU(3) breaking corrections to the �S = 1 vector charges. The LQCD results are from

Ref. [4].

For the charge radii the loop contributions are from diagrams A3 and B2 and the renor-

malization is provided by the LECs g1 and g2 in L(3)
B and L(4)

B respectively, of which only g1

is required for canceling the loop UV divergence according to Eqn. (9) 2. As is the case with

2 In Ref. [24] the finite term proportional to g2 was overlooked.
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where Pn are projectors onto the corresponding baryon in the loop, p0 is the resid-

ual energy of the initial baryon, q0 is the incoming energy in the current, and �µa =

gµ0T a + i ⇤✏0µijfabcf cbdqiGjd contains both the electric charge and magnetic moment compo-

nents. The one-loop wave function renormalization factor �Ẑ1�loop can be found in [24], and

the loop integrals I, K, Kµ, Kµ⌫ , H ij and H ijµ are given in Appendix C. Since the temporal

component of the current can only connect baryons with the same spin, q0 is equal to the

SU(3) breaking mass di↵erence between them plus the kinetic energy transferred by the

current, which are all O(⇠2) or higher and must therefore be neglected in this calculation.

In the evaluations one sets p0 ! �min and p0 + q0 ! �mout. In particular, for diagram A1,

if it requires evaluation at q0 = 0 such a limit must be taken in the end of the evaluation.

The U(1) baryon number current can used to check the calculation: only diagrams A1+2

contribute, and as required they cancel each other.

p0p0p0
q µaq µa

A1 A2

p0

q µa
B2

p0

q µa
A3

p0
q µa

B1

q µa

FIG. 1: Diagrams contributing to the 1-loop corrections to the vector currents.

For a generic current vertex �, the combined UV divergent and polynomial piece of

diagrams A1+2 can be written as:

�(A1+2)
poly =

1

(4⇡)2

✓

g̊A
F⇡

◆2 ✓1

2
(�✏ + 1)M2

ab[G
ia, [Gib, �]]

+
1

3
(�✏ + 2)

�

2[[Gia, �], [�m̂, [�m̂, Gia]]] + [[�, [�m̂, Gia]], [�m̂, Gia]]
�

◆

, (7)

where �✏ = 1
✏ � � + log 4⇡. The first term is proportional to quark masses through the GB

mass-square matrix M2
ab = m0�ab + 1

2d
abcmc, and the second involves the baryon hyperfine

mass splittings �m̂ which are O(1/Nc) and, following the strict ⇠ power counting, the O(p2)

6

where Pn are projectors onto the corresponding baryon in the loop, p0 is the resid-

ual energy of the initial baryon, q0 is the incoming energy in the current, and �µa =

gµ0T a + i ⇤✏0µijfabcf cbdqiGjd contains both the electric charge and magnetic moment compo-

nents. The one-loop wave function renormalization factor �Ẑ1�loop can be found in [24], and
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where �✏ = 1
✏ � � + log 4⇡. The first term is proportional to quark masses through the GB

mass-square matrix M2
ab = m0�ab + 1

2d
abcmc, and the second involves the baryon hyperfine

mass splittings �m̂ which are O(1/Nc) and, following the strict ⇠ power counting, the O(p2)
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Only the following diagrams contribute

form factors in ChPT, the charge radii depend logarithmically in the GB masses. They can

be determined by fitting to the known electric charge radii of proton, neutron and ⌃�, or

simply fixed using the first two. If one wishes to study also the large Nc limit, an assignment

at generic Nc of the quark electric charges has to be done. One such an assignment that

respects all gauge and gauge-gravitational anomaly cancellations in the Standard Model is

is given by [39] Q̂ = T 3 + 1p
3
T 8 + 3�Nc

6Nc
B. The last term comes from the baryon number

charge B, and can be implemented by simply adding to the Lagrangians the corresponding

terms with an SU(3) singlet vector source field. This charge operator gives for the states

identified with the physical octet and decuplet the same electric charges as the physical ones

for any Nc. The analysis of the charge radii in the present framework is revealing: in the

strict large Nc limit one finds that the non-analytic loop contributions to the T 3 charge ra-

dius of nucleons by Diagram A3 is O(N0
c ), where the contribution is driven by the hyperfine

mass splitting term, i.e, for CHF ! 0 the contribution becomes O(1/Nc), and Diagram B2

gives only contributions O(1/Nc). For the charge T 8 the loop contributions are O(N0
c ). One

however notes that for the physical ⇡ and K meson masses the non-analytic terms join the

large Nc scaling at rather large Nc. The charge radii of the neutral baryons receive only UV

finite loop contributions and are renormalized only by the finite g2 term.

Using the three known charge radii, g1,2 are determined modulo the main uncertainty

stemming from the value used for g̊A. At the renormalization scale µ = m⇢, using the value

of g̊A ⇠ 1 obtained by the analysis of the axial couplings [24], CHF ⇠ 200 MeV, and with

⇤ = m⇢ one finds g1 ' 1.33 and g2 ' 0.74. g2 is sensitive to CHF , which is understood as

a result that the non-analytic contributions to the neutron radius is very important, and

thus sensitive to that parameter, while g1 is not. One also observes that both LECs are

crucial for obtaining a good description of the radii. For the used value of µ, the fraction

of the loop contribution to hr2i of the proton is 15%, and for the neutron it is about 60%.

The short distance contributions are thus very important in both cases. The dominant

non-analytic contributions to the radii are proportional to log mq, with other non-analytic

terms involving the LEC CHF giving almost negligible contributions, making the results

insensitive to it. Table II shows the results for the charge radii of the baryon octet along

with the contributions by the CTs. The latter contributions to hr2i satisfy the exact linear

relation, in obvious notation: a⇤+p+⌃++ 1
3(a�4)(n+⌃0+⌅0)+⌃�+⌅� = 0 valid for any

a and resulting from the electric charge being a U-spin singlet; it is violated only by finite

9

Charge operator for generic Nc

Some important observations

loop contributions\       

Diagram A3

Diagram B2

T a
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Dominant non-analytic contributions to the radii  
are proportional to

form factors in ChPT, the charge radii depend logarithmically in the GB masses. They can

be determined by fitting to the known electric charge radii of proton, neutron and ⌃�, or

simply fixed using the first two. If one wishes to study also the large Nc limit, an assignment

at generic Nc of the quark electric charges has to be done. One such an assignment that

respects all gauge and gauge-gravitational anomaly cancellations in the Standard Model is

is given by [39] Q̂ = T 3 + 1p
3
T 8 + 3�Nc

6Nc
B. The last term comes from the baryon number

charge B, and can be implemented by simply adding to the Lagrangians the corresponding

terms with an SU(3) singlet vector source field. This charge operator gives for the states

identified with the physical octet and decuplet the same electric charges as the physical ones

for any Nc. The analysis of the charge radii in the present framework is revealing: in the

strict large Nc limit one finds that the non-analytic loop contributions to the T 3 charge ra-

dius of nucleons by Diagram A3 is O(N0
c ), where the contribution is driven by the hyperfine

mass splitting term, i.e, for CHF ! 0 the contribution becomes O(1/Nc), and Diagram B2

gives only contributions O(1/Nc). For the charge T 8 the loop contributions are O(N0
c ). One

however notes that for the physical ⇡ and K meson masses the non-analytic terms join the

large Nc scaling at rather large Nc. The charge radii of the neutral baryons receive only UV

finite loop contributions and are renormalized only by the finite g2 term.

Using the three known charge radii, g1,2 are determined modulo the main uncertainty

stemming from the value used for g̊A. At the renormalization scale µ = m⇢, using the value

of g̊A ⇠ 1 obtained by the analysis of the axial couplings [24], CHF ⇠ 200 MeV, and with

⇤ = m⇢ one finds g1 ' 1.33 and g2 ' 0.74. g2 is sensitive to CHF , which is understood as

a result that the non-analytic contributions to the neutron radius is very important, and

thus sensitive to that parameter, while g1 is not. One also observes that both LECs are

crucial for obtaining a good description of the radii. For the used value of µ, the fraction

of the loop contribution to hr2i of the proton is 15%, and for the neutron it is about 60%.

The short distance contributions are thus very important in both cases. The dominant

non-analytic contributions to the radii are proportional to log mq, with other non-analytic

terms involving the LEC CHF giving almost negligible contributions, making the results

insensitive to it. Table II shows the results for the charge radii of the baryon octet along

with the contributions by the CTs. The latter contributions to hr2i satisfy the exact linear

relation, in obvious notation: a⇤+p+⌃++ 1
3(a�4)(n+⌃0+⌅0)+⌃�+⌅� = 0 valid for any

a and resulting from the electric charge being a U-spin singlet; it is violated only by finite

9

(at strict large Nc limit)
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where Pn are projectors onto the corresponding baryon in the loop, p0 is the resid-

ual energy of the initial baryon, q0 is the incoming energy in the current, and �µa =

gµ0T a + i ⇤✏0µijfabcf cbdqiGjd contains both the electric charge and magnetic moment compo-

nents. The one-loop wave function renormalization factor �Ẑ1�loop can be found in [24], and

the loop integrals I, K, Kµ, Kµ⌫ , H ij and H ijµ are given in Appendix C. Since the temporal

component of the current can only connect baryons with the same spin, q0 is equal to the

SU(3) breaking mass di↵erence between them plus the kinetic energy transferred by the

current, which are all O(⇠2) or higher and must therefore be neglected in this calculation.

In the evaluations one sets p0 ! �min and p0 + q0 ! �mout. In particular, for diagram A1,

if it requires evaluation at q0 = 0 such a limit must be taken in the end of the evaluation.

The U(1) baryon number current can used to check the calculation: only diagrams A1+2

contribute, and as required they cancel each other.
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FIG. 1: Diagrams contributing to the 1-loop corrections to the vector currents.

For a generic current vertex �, the combined UV divergent and polynomial piece of
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where �✏ = 1
✏ � � + log 4⇡. The first term is proportional to quark masses through the GB

mass-square matrix M2
ab = m0�ab + 1

2d
abcmc, and the second involves the baryon hyperfine

mass splittings �m̂ which are O(1/Nc) and, following the strict ⇠ power counting, the O(p2)
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mass-square matrix M2
ab = m0�ab + 1

2d
abcmc, and the second involves the baryon hyperfine

mass splittings �m̂ which are O(1/Nc) and, following the strict ⇠ power counting, the O(p2)
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SU(3) breaking loop contributions. The isotriplet nucleon charge radius is O(N0
c ), while

the isosinglet one receives loop and g2 contributions O(N0
c ) and a g1 contribution O(Nc),

where the O(Nc) term contribution to the EM charge radius must be cancelled by adding

to the Lagrangian a finite charge-radius CT proportional to baryon number and weighted

according to the electric charge assignment at arbitrary Nc mentioned above.

hr2i[fm2]

Full CT Exp

p 0.707 0.596 0.7071(7)

n �0.116 �0.049 �0.116(2)

⇤ �0.029 �0.024 · · ·
⌃+ 0.742 0.596 · · ·
⌃0 0.029 0.024 · · ·
⌃� 0.683 0.548 0.608(156)

⌅0 �0.016 �0.049 · · ·
⌅� 0.633 0.548 · · ·

TABLE II: Electric charge radii of octet baryons. The proton and neutron radii are inputs. The

proton radius used is the one resulting from the muonic Hydrogen Lamb shift [40]. The second

column shows the contribution by contact terms g1,2 for µ = m⇢.

At the present order in the ⇠ expansion, the curvature of the form factors, proportional

to hr4i = 60 d2f1
d(Q2)2 , is given by the one-loop non-analytic terms with contributions that are

inversely proportional to quark masses. The curvature is nominally an e↵ect O(⇠4) in the

form factor, which therefore receives contributions from terms O(⇠6) in the Lagrangian,

and only in the limit of su�ciently small quark masses will the non-analytic contributions

obtained here be dominant. In the recent work of Ref. [38] the electric charge higher

moments have been studied, where t-channel elastic unitarity has been implemented in

the EFT along with the constraints of the 1/Nc expansion [34–38]. In particular, for the

curvature they find hr4ip = 0.735(35) fm4 and hr4in = �0.540(35) fm4, to be compared with

the one-loop contributions found here, 0.032 and �0.021 fm4 respectively, roughly a factor

25 smaller in magnitude in each case. Clearly the description of the curvature must be

primarily given by higher order contact terms, and to the order of the expansion followed
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form factors in ChPT, the charge radii depend logarithmically in the GB masses. They can

be determined by fitting to the known electric charge radii of proton, neutron and ⌃�, or

simply fixed using the first two. If one wishes to study also the large Nc limit, an assignment

at generic Nc of the quark electric charges has to be done. One such an assignment that

respects all gauge and gauge-gravitational anomaly cancellations in the Standard Model is

is given by [39] Q̂ = T 3 + 1p
3
T 8 + 3�Nc

6Nc
B. The last term comes from the baryon number

charge B, and can be implemented by simply adding to the Lagrangians the corresponding

terms with an SU(3) singlet vector source field. This charge operator gives for the states

identified with the physical octet and decuplet the same electric charges as the physical ones

for any Nc. The analysis of the charge radii in the present framework is revealing: in the

strict large Nc limit one finds that the non-analytic loop contributions to the T 3 charge ra-

dius of nucleons by Diagram A3 is O(N0
c ), where the contribution is driven by the hyperfine

mass splitting term, i.e, for CHF ! 0 the contribution becomes O(1/Nc), and Diagram B2

gives only contributions O(1/Nc). For the charge T 8 the loop contributions are O(N0
c ). One

however notes that for the physical ⇡ and K meson masses the non-analytic terms join the

large Nc scaling at rather large Nc. The charge radii of the neutral baryons receive only UV

finite loop contributions and are renormalized only by the finite g2 term.

Using the three known charge radii, g1,2 are determined modulo the main uncertainty

stemming from the value used for g̊A. At the renormalization scale µ = m⇢, using the value

of g̊A ⇠ 1 obtained by the analysis of the axial couplings [24], CHF ⇠ 200 MeV, and with

⇤ = m⇢ one finds g1 ' 1.33 and g2 ' 0.74. g2 is sensitive to CHF , which is understood as

a result that the non-analytic contributions to the neutron radius is very important, and

thus sensitive to that parameter, while g1 is not. One also observes that both LECs are

crucial for obtaining a good description of the radii. For the used value of µ, the fraction

of the loop contribution to hr2i of the proton is 15%, and for the neutron it is about 60%.

The short distance contributions are thus very important in both cases. The dominant

non-analytic contributions to the radii are proportional to log mq, with other non-analytic

terms involving the LEC CHF giving almost negligible contributions, making the results

insensitive to it. Table II shows the results for the charge radii of the baryon octet along

with the contributions by the CTs. The latter contributions to hr2i satisfy the exact linear

relation, in obvious notation: a⇤+p+⌃++ 1
3(a�4)(n+⌃0+⌅0)+⌃�+⌅� = 0 valid for any

a and resulting from the electric charge being a U-spin singlet; it is violated only by finite

9
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Baryon magnetic moments5.4

LO magnetic moment is given by, 

which is O(Nc) but has dependence on ms which is O(N0
c ) for all states with strangeness

O(N0
c ). For convenience a scale ⇤ is introduced, which can be chosen to be a typical QCD

scale, in order to render most of the LECs dimensionless. In the calculations ⇤ = m⇢ will

be chosen. The quark mass matrix is defined by Mq = m0 + ma �a

2 , where in the physical

case m0 = 1
3(mu + md + ms), m3 = mu � md and m8 = 1p

3
(mu + md � 2ms) and the rest of

the Ma s vanish.

Collecting the baryons in a spin flavor multiplet denoted by B, and using standard

notation for the chiral building blocks (for details see Appendix B and Ref. [24]), the

LO O(⇠) Lagrangian reads:

L(1)
B = B

†(iD0 � CHF

Nc
Ŝ2 + g̊AuiaGia +

c1
2⇤

�̂+)B, (2)

where the hyperfine mass shifts are given by the second term, Gia are the spin-flavor gener-

ators (see Appendix A), and the axial coupling is at LO g̊A = 6
5gA, being gA = 1.2732(23)

the nucleon’s axial coupling. The relevant terms in the O(⇠2) Lagrangian are:

L(2)
B = B

†
✓

c2
⇤

�0
+ +

CA
1

Nc
uiaSiT a +



2⇤
Bia

+Gia + · · ·
◆

B, (3)

where the flavor SU(3) electric and magnetic fields are denoted by E+ and B+ and given

by Ei
+ = F 0i

+ and Bi
+ = 1

2✏
ijkF jk

+ (see Eqn. B2 in Appendix B). The term proportional to

 gives at LO the magnetic moments associated with all vector currents. The O(⇠3) and

O(⇠4) Lagrangians needed for the one-loop renormalization of the vector currents are the

following:

L(3)
B = B

†
⇣ g1

⇤2
DiE

a
+iT

a +
1

2⇤Nc
Bia

+SiT a + · · ·
⌘

B

L(4)
B = B

†
✓

1

Nc⇤2
(g2DiE

a
+iS

jGja + g3DiE
a
+j{Si, Gja}`=2) +

r

⇤3
D2Bia

+Gia

+
1

2⇤3
(2�

0
+Bia

+Gia + iFfabc�a
+Bib

+Gic + Ddabc�a
+Bib

+Gic + 3�
a
+Bia

+Si)

+
1

2⇤N2
c

(4B
ia
+ {Ŝ2, Gia} + 5B

ia
+SiSjGja) + · · ·

◆

B (4)

The LECs g1 and g2 will be determined by charge radii, the term proportional to g3 gives

electric quadrupole moments for decuplet baryons and for transitions between decuplet to

octet baryons, which will not be discussed here, and the term proportional to r gives

a contribution to magnetic radii (D2B+ ⌘ DµDµB+ being the covariant divergence of the
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electric quadrupole moments for decuplet baryons and for transitions between decuplet to

octet baryons, which will not be discussed here, and the term proportional to r gives

a contribution to magnetic radii (D2B+ ⌘ DµDµB+ being the covariant divergence of the

4

here, the failure to account for the curvature limits the present description of charge form

factors to the expected range given by the radii, Q2 . 0.05 GeV2.

V. MAGNETIC MOMENTS

As mentioned earlier, at lowest order the magnetic moments of all vector currents are

given in terms of the single LEC . In particular, using the EM current the LO value of 
⇤

can be fixed from the proton’s magnetic moment µp in units of the nuclear magneton µN ,

namely e 
2⇤ = µp = 2.7928 µN . Also, the M1 radiative decay width of the � at LO is given

by:

��!N� =
e2

9⇡

⇣

⇤

⌘2 mN

m�
!3, (10)

where ! is the photon energy. Using the above result for 
⇤ gives �LO

�!N� = 0.38 MeV, to be

compared with the experimental value 0.70± 0.06 MeV. In terms of the transition magnetic

moment, the LO result is µ�+p = 2
p
2

3 µp while the experimental one from Eqn.(10) and from

the helicity N � � photo-couplings [41] are 3.58(10)µN and 3.46(3)µN respectively. This

shows the need for a significant spin-symmetry breaking e↵ect of 30% to be accounted for

by the higher order corrections.

The LO magnetic moment operator Gia is proportional to the LO axial currents, and the

NLO e↵ects stem from quark masses and spin symmetry breaking. In the strict large Nc

limit those corrections scale as follows: SU(3) breaking corrections O((ms � m̂)Nc), i.e. the

same scaling in Nc as the LO term, and spin symmetry breaking corrections O(1/Nc), i.e.

O(1/N2
c ) with respect to the LO term, well known from tree level analyses in Refs. [42, 43].

The experimentally available magnetic moment ratios and the corresponding LO results

are represented in Table III. It is evident that there are significant SU(3) breaking e↵ects,

which together with the important spin-symmetry breaking observed. in particular in the

�N M1 amplitude indicate the relevance of the NNLO calculation. Note that all weak

magnetic moments, i.e., magnetic moments associated with the �S = 1 currents are also

fixed at LO, as they are empirically unknown. In the case of the neutron � decay the

weak magnetic term is obtained from the isovector part of the EM magnetic moments of

proton and neutron, which in this case, due to isospin symmetry, is quite accurate. On

the other hand, in hyperon beta decay the e↵ect of weak magnetism is too small to be at

present experimentally accessible. Fortunately the advent of LQCD calculations of magnetic
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�!N� = 0.38 MeV, to be

compared with the experimental value 0.70± 0.06 MeV. In terms of the transition magnetic

moment, the LO result is µ�+p = 2
p
2

3 µp while the experimental one from Eqn.(10) and from

the helicity N � � photo-couplings [41] are 3.58(10)µN and 3.46(3)µN respectively. This

shows the need for a significant spin-symmetry breaking e↵ect of 30% to be accounted for

by the higher order corrections.

The LO magnetic moment operator Gia is proportional to the LO axial currents, and the

NLO e↵ects stem from quark masses and spin symmetry breaking. In the strict large Nc

limit those corrections scale as follows: SU(3) breaking corrections O((ms � m̂)Nc), i.e. the

same scaling in Nc as the LO term, and spin symmetry breaking corrections O(1/Nc), i.e.

O(1/N2
c ) with respect to the LO term, well known from tree level analyses in Refs. [42, 43].

The experimentally available magnetic moment ratios and the corresponding LO results

are represented in Table III. It is evident that there are significant SU(3) breaking e↵ects,

which together with the important spin-symmetry breaking observed. in particular in the

�N M1 amplitude indicate the relevance of the NNLO calculation. Note that all weak

magnetic moments, i.e., magnetic moments associated with the �S = 1 currents are also

fixed at LO, as they are empirically unknown. In the case of the neutron � decay the

weak magnetic term is obtained from the isovector part of the EM magnetic moments of

proton and neutron, which in this case, due to isospin symmetry, is quite accurate. On

the other hand, in hyperon beta decay the e↵ect of weak magnetism is too small to be at

present experimentally accessible. Fortunately the advent of LQCD calculations of magnetic
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2
p
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q

3
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p/(⌃⇤+⌃+) �0.88 � 3
2
p
2

TABLE III: LO ratios of magnetic moments.

moments with increasing accuracy will allow the study of weak magnetism.

The one loop corrections to the magnetic moments are obtained from the spatial compo-

nents of the vector currents depicted in Fig. 1, where the contributions stem from diagrams

A and B1. Diagrams A1,2 involve � / Gia, which is similar to the axial currents already

analyzed in Ref. [24]. The loop contributions to the Q2 dependence of the magnetic form

factors stem from diagram A3.

The UV divergencies of the one loop diagrams contributing to the magnetic moments

after reduction of the corresponding expressions Eqns.(7) and (8) using a basis of spin-flavor

operators read as follows:

V µa
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Note that the experimentally available magnetic moment ratios  
and corresponding LO results shows that the combined approach  
can describe well these ratios at LO 
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One loop corrections to the magnetic moments are obtained from 
the spatial components of the following diagrams 

where Pn are projectors onto the corresponding baryon in the loop, p0 is the resid-

ual energy of the initial baryon, q0 is the incoming energy in the current, and �µa =

gµ0T a + i ⇤✏0µijfabcf cbdqiGjd contains both the electric charge and magnetic moment compo-

nents. The one-loop wave function renormalization factor �Ẑ1�loop can be found in [24], and

the loop integrals I, K, Kµ, Kµ⌫ , H ij and H ijµ are given in Appendix C. Since the temporal

component of the current can only connect baryons with the same spin, q0 is equal to the

SU(3) breaking mass di↵erence between them plus the kinetic energy transferred by the

current, which are all O(⇠2) or higher and must therefore be neglected in this calculation.

In the evaluations one sets p0 ! �min and p0 + q0 ! �mout. In particular, for diagram A1,

if it requires evaluation at q0 = 0 such a limit must be taken in the end of the evaluation.

The U(1) baryon number current can used to check the calculation: only diagrams A1+2

contribute, and as required they cancel each other.

p0p0p0
q µaq µa

A1 A2

p0

q µa
B2

p0

q µa
A3

p0
q µa

B1

q µa

FIG. 1: Diagrams contributing to the 1-loop corrections to the vector currents.

For a generic current vertex �, the combined UV divergent and polynomial piece of

diagrams A1+2 can be written as:

�(A1+2)
poly =

1

(4⇡)2

✓

g̊A
F⇡

◆2 ✓1

2
(�✏ + 1)M2

ab[G
ia, [Gib, �]]

+
1

3
(�✏ + 2)

�

2[[Gia, �], [�m̂, [�m̂, Gia]]] + [[�, [�m̂, Gia]], [�m̂, Gia]]
�

◆

, (7)

where �✏ = 1
✏ � � + log 4⇡. The first term is proportional to quark masses through the GB

mass-square matrix M2
ab = m0�ab + 1

2d
abcmc, and the second involves the baryon hyperfine

mass splittings �m̂ which are O(1/Nc) and, following the strict ⇠ power counting, the O(p2)

6

Renormalization of magnetic moments

Magnetic moments
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+ {Ŝ2, Gia}+ 6
1

N2
c
Bia

+ SiSjGja
o

<latexit sha1_base64="OCgdCM0dP2mlgrKxsdwxyXGfOgo="></latexit>

which is O(Nc) but has dependence on ms which is O(N0
c ) for all states with strangeness

O(N0
c ). For convenience a scale ⇤ is introduced, which can be chosen to be a typical QCD

scale, in order to render most of the LECs dimensionless. In the calculations ⇤ = m⇢ will

be chosen. The quark mass matrix is defined by Mq = m0 + ma �a

2 , where in the physical

case m0 = 1
3(mu + md + ms), m3 = mu � md and m8 = 1p

3
(mu + md � 2ms) and the rest of

the Ma s vanish.

Collecting the baryons in a spin flavor multiplet denoted by B, and using standard

notation for the chiral building blocks (for details see Appendix B and Ref. [24]), the

LO O(⇠) Lagrangian reads:

L(1)
B = B

†(iD0 � CHF

Nc
Ŝ2 + g̊AuiaGia +

c1
2⇤

�̂+)B, (2)

where the hyperfine mass shifts are given by the second term, Gia are the spin-flavor gener-

ators (see Appendix A), and the axial coupling is at LO g̊A = 6
5gA, being gA = 1.2732(23)

the nucleon’s axial coupling. The relevant terms in the O(⇠2) Lagrangian are:
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†
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+ +
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where the flavor SU(3) electric and magnetic fields are denoted by E+ and B+ and given

by Ei
+ = F 0i

+ and Bi
+ = 1

2✏
ijkF jk

+ (see Eqn. B2 in Appendix B). The term proportional to

 gives at LO the magnetic moments associated with all vector currents. The O(⇠3) and

O(⇠4) Lagrangians needed for the one-loop renormalization of the vector currents are the

following:
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The LECs g1 and g2 will be determined by charge radii, the term proportional to g3 gives

electric quadrupole moments for decuplet baryons and for transitions between decuplet to

octet baryons, which will not be discussed here, and the term proportional to r gives

a contribution to magnetic radii (D2B+ ⌘ DµDµB+ being the covariant divergence of the

4

Renormalization of magnetic radii
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Baryon magnetic moments5.4

As an input proton and neutron magnetic moments giving the following relation between LECs

The results of the fits are shown in Table V. The input magnetic moments have errors

(much) smaller than the theoretical error of the present calculation, estimated to be given

by the magnitude of NNNLO corrections, about 5 to 10%. Here the proton and neutron

magnetic moments are used as exact inputs giving the following relations between the pa-

rameters:

1 = �19.662 + 6.926  � 0.833
⇣

4 +
5

2

⌘

+ 2.550 D

3 = �5.136 + 1.648  � 0.218
⇣

4 +
5

2

⌘

+ D. (13)

The �2 is then given by fitting to the rest of the magnetic moments, where still the errors

of the inputs are smaller than the theoretical error. Errors can be assigned to the fitted

LECs by defining them in terms of the expected magnitude of the NNNLO corrections. For

such an estimation of the parameters’ errors, the minimum obtained for the �2 per degree of

freedom is normalized to unity or alternatively the experimental inputs are assigned larger

errors compatible with the mentioned magnitude of NNNLO corrections, which leads to a

similar result. Here the first procedure is followed. Important correlation is found within

the following pairs of LECs: �D, and 4 �5. The eigenvectors of the correlation matrix

of the first pair are (0.8  + 0.6 D) and (0.6  � 0.8 D), with respective errors ±0.004 and

±0.04, and for the second pair: (0.9 4 +
p

0.19 5) and (
p

0.19 4 � 0.9 5) with respective

errors ±0.3 and ±2.1. This provides the necessary information for the LEC’s error analysis.

As mentioned earlier, the �N� amplitude at LO is too small by roughly 30%, a manifesta-

tion of an important spin-symmetry breaking e↵ect. The e↵ect receives a small non-analytic

contribution (at µ = m⇢), and the contributions from the contact terms are as follows:

D : O((ms � m̂)Nc), and 4 : O(1/Nc). From the fit one finds a modest contribution from

D and a dominant contribution from 4. Since the latter is a 1/N2
c correction with respect

to the LO magnetic moment, it seems to be unnaturally large. This is a bit surprising as

a similar kind of e↵ect in the �N axial vector coupling is actually unnaturally small. This

contrast remains to be understood. Finally, a fit where the �N transition is not an input

shows an enhancement but only by about half of what is needed.

An interesting case is the magnetic moment of ⌃⇤0: all LO and NLO tree level and quark

mass independent contributions vanish, receiving only NNLO tree and loop contributions

which vanish in the SU(3) symmetry limit. On the other hand, the experimental value of

the magnetic moment of ⌃� quoted as average by the PDG [40] cannot be described: U-spin

14

LEC⇥mN
⇤ LO NNLO

 2.80 2.887

1 0 3.29

2 0 0.00

D 0 0.397

F 0 · · ·
3 0 0.53

4 0 �2.85

5 0 1.05

µLO µNNLO µExp

p 2.691 Input 2.792847356(23)

n �1.794 Input �1.9130427(5)

⌃+ 2.691 2.367 2.458(10)

⌃0 0.897 0.869 · · ·
⌃� �0.897 �0.629 �1.160(25)

⇤ �0.897 �0.611 �0.613(4)

⌅0 �1.794 �1.275 �1.250(14)

⌅� �0.897 �0.652 �0.6507(25)

�+p 2.537 3.65 3.58(10)

⌃0⇤ 1.553 1.57 1.61(8)

⌃⇤0⇤ 2.197 2.68 2.73(25)a

⌃⇤+⌃+ �2.537 �2.35 �3.17(36)b

µLO µNNLO µExp

�++ 5.381 5.962 3.7 � 7.5

�+ 2.691 3.049 2.7(3.6)

�0 0 0.136 · · ·
�� �2.691 �2.777 · · ·
⌃⇤+ 2.691 3.151 · · ·
⌃⇤0 0 0.343 · · ·
⌃⇤� �2.691 �2.465 · · ·
⌅⇤0 0 0.490 · · ·
⌅⇤� �2.691 �2.208 · · ·
⌦ �2.691 �2.005 �2.02(5)

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear

magneton µN . The renormalization scale was set to µ = ⇤ = m⇢. F requires �S = 1 weak

magnetic moments to be determined. Empirical results from PDG and references a[44], b[45].

symmetry implies that it must be equal to the magnetic moment of the ⌅� up to NNLO

SU(3) breaking by quark masses. The experimental results imply a very large e↵ect which

is very di�cult to reconcile with the other U-spin multiplets, where the e↵ect is between

12% and 25% per unit of strangeness, while for the pair ⌃� ⌅� case it is 44%!. The present

analysis shows that µ⌃� is an outlier.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-

Glashow (CG) relation, namely µp �µn �µ⌃+ +µ⌃� +µ⌅0 �µ⌅� = 0. This relation remains

valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Explicit calculation gives the deviation with estimated theoretical error �CG = 1.09±0.25 µN

to be compared with the experimental deviation 0.49± 0.03 µN , a↵ected however by the ⌃�

issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on

the LEC F which does not appear in the EM case. The result for the LECs from the EM case

15

LEC⇥mN
⇤ LO NNLO

 2.80 2.887

1 0 3.29

2 0 0.00

D 0 0.397

F 0 · · ·
3 0 0.53

4 0 �2.85

5 0 1.05

µLO µNNLO µExp

p 2.691 Input 2.792847356(23)

n �1.794 Input �1.9130427(5)

⌃+ 2.691 2.367 2.458(10)

⌃0 0.897 0.869 · · ·
⌃� �0.897 �0.629 �1.160(25)

⇤ �0.897 �0.611 �0.613(4)

⌅0 �1.794 �1.275 �1.250(14)

⌅� �0.897 �0.652 �0.6507(25)

�+p 2.537 3.65 3.58(10)

⌃0⇤ 1.553 1.57 1.61(8)

⌃⇤0⇤ 2.197 2.68 2.73(25)a

⌃⇤+⌃+ �2.537 �2.35 �3.17(36)b

µLO µNNLO µExp

�++ 5.381 5.962 3.7 � 7.5

�+ 2.691 3.049 2.7(3.6)

�0 0 0.136 · · ·
�� �2.691 �2.777 · · ·
⌃⇤+ 2.691 3.151 · · ·
⌃⇤0 0 0.343 · · ·
⌃⇤� �2.691 �2.465 · · ·
⌅⇤0 0 0.490 · · ·
⌅⇤� �2.691 �2.208 · · ·
⌦ �2.691 �2.005 �2.02(5)

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear

magneton µN . The renormalization scale was set to µ = ⇤ = m⇢. F requires �S = 1 weak

magnetic moments to be determined. Empirical results from PDG and references a[44], b[45].

symmetry implies that it must be equal to the magnetic moment of the ⌅� up to NNLO

SU(3) breaking by quark masses. The experimental results imply a very large e↵ect which

is very di�cult to reconcile with the other U-spin multiplets, where the e↵ect is between

12% and 25% per unit of strangeness, while for the pair ⌃� ⌅� case it is 44%!. The present

analysis shows that µ⌃� is an outlier.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-

Glashow (CG) relation, namely µp �µn �µ⌃+ +µ⌃� +µ⌅0 �µ⌅� = 0. This relation remains

valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Explicit calculation gives the deviation with estimated theoretical error �CG = 1.09±0.25 µN

to be compared with the experimental deviation 0.49± 0.03 µN , a↵ected however by the ⌃�

issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on

the LEC F which does not appear in the EM case. The result for the LECs from the EM case

15

LEC⇥mN
⇤ LO NNLO

 2.80 2.887

1 0 3.29

2 0 0.00

D 0 0.397

F 0 · · ·
3 0 0.53

4 0 �2.85

5 0 1.05

µLO µNNLO µExp

p 2.691 Input 2.792847356(23)

n �1.794 Input �1.9130427(5)

⌃+ 2.691 2.367 2.458(10)

⌃0 0.897 0.869 · · ·
⌃� �0.897 �0.629 �1.160(25)

⇤ �0.897 �0.611 �0.613(4)

⌅0 �1.794 �1.275 �1.250(14)

⌅� �0.897 �0.652 �0.6507(25)

�+p 2.537 3.65 3.58(10)

⌃0⇤ 1.553 1.57 1.61(8)

⌃⇤0⇤ 2.197 2.68 2.73(25)a

⌃⇤+⌃+ �2.537 �2.35 �3.17(36)b

µLO µNNLO µExp

�++ 5.381 5.962 3.7 � 7.5

�+ 2.691 3.049 2.7(3.6)

�0 0 0.136 · · ·
�� �2.691 �2.777 · · ·
⌃⇤+ 2.691 3.151 · · ·
⌃⇤0 0 0.343 · · ·
⌃⇤� �2.691 �2.465 · · ·
⌅⇤0 0 0.490 · · ·
⌅⇤� �2.691 �2.208 · · ·
⌦ �2.691 �2.005 �2.02(5)

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear

magneton µN . The renormalization scale was set to µ = ⇤ = m⇢. F requires �S = 1 weak

magnetic moments to be determined. Empirical results from PDG and references a[44], b[45].

symmetry implies that it must be equal to the magnetic moment of the ⌅� up to NNLO

SU(3) breaking by quark masses. The experimental results imply a very large e↵ect which

is very di�cult to reconcile with the other U-spin multiplets, where the e↵ect is between

12% and 25% per unit of strangeness, while for the pair ⌃� ⌅� case it is 44%!. The present

analysis shows that µ⌃� is an outlier.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-

Glashow (CG) relation, namely µp �µn �µ⌃+ +µ⌃� +µ⌅0 �µ⌅� = 0. This relation remains

valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Explicit calculation gives the deviation with estimated theoretical error �CG = 1.09±0.25 µN

to be compared with the experimental deviation 0.49± 0.03 µN , a↵ected however by the ⌃�

issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on

the LEC F which does not appear in the EM case. The result for the LECs from the EM case

15

Coleman Glashow (CG) relation

LEC⇥mN
⇤ LO NNLO

 2.80 2.887

1 0 3.29

2 0 0.00

D 0 0.397

F 0 · · ·
3 0 0.53

4 0 �2.85

5 0 1.05

µLO µNNLO µExp

p 2.691 Input 2.792847356(23)

n �1.794 Input �1.9130427(5)

⌃+ 2.691 2.367 2.458(10)

⌃0 0.897 0.869 · · ·
⌃� �0.897 �0.629 �1.160(25)

⇤ �0.897 �0.611 �0.613(4)

⌅0 �1.794 �1.275 �1.250(14)

⌅� �0.897 �0.652 �0.6507(25)

�+p 2.537 3.65 3.58(10)

⌃0⇤ 1.553 1.57 1.61(8)

⌃⇤0⇤ 2.197 2.68 2.73(25)a

⌃⇤+⌃+ �2.537 �2.35 �3.17(36)b

µLO µNNLO µExp

�++ 5.381 5.962 3.7 � 7.5

�+ 2.691 3.049 2.7(3.6)

�0 0 0.136 · · ·
�� �2.691 �2.777 · · ·
⌃⇤+ 2.691 3.151 · · ·
⌃⇤0 0 0.343 · · ·
⌃⇤� �2.691 �2.465 · · ·
⌅⇤0 0 0.490 · · ·
⌅⇤� �2.691 �2.208 · · ·
⌦ �2.691 �2.005 �2.02(5)

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear

magneton µN . The renormalization scale was set to µ = ⇤ = m⇢. F requires �S = 1 weak

magnetic moments to be determined. Empirical results from PDG and references a[44], b[45].

symmetry implies that it must be equal to the magnetic moment of the ⌅� up to NNLO

SU(3) breaking by quark masses. The experimental results imply a very large e↵ect which

is very di�cult to reconcile with the other U-spin multiplets, where the e↵ect is between

12% and 25% per unit of strangeness, while for the pair ⌃� ⌅� case it is 44%!. The present

analysis shows that µ⌃� is an outlier.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-

Glashow (CG) relation, namely µp �µn �µ⌃+ +µ⌃� +µ⌅0 �µ⌅� = 0. This relation remains

valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Explicit calculation gives the deviation with estimated theoretical error �CG = 1.09±0.25 µN

to be compared with the experimental deviation 0.49± 0.03 µN , a↵ected however by the ⌃�

issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on

the LEC F which does not appear in the EM case. The result for the LECs from the EM case

15

LEC⇥mN
⇤ LO NNLO

 2.80 2.887

1 0 3.29

2 0 0.00

D 0 0.397

F 0 · · ·
3 0 0.53

4 0 �2.85

5 0 1.05

µLO µNNLO µExp

p 2.691 Input 2.792847356(23)

n �1.794 Input �1.9130427(5)

⌃+ 2.691 2.367 2.458(10)

⌃0 0.897 0.869 · · ·
⌃� �0.897 �0.629 �1.160(25)

⇤ �0.897 �0.611 �0.613(4)

⌅0 �1.794 �1.275 �1.250(14)

⌅� �0.897 �0.652 �0.6507(25)

�+p 2.537 3.65 3.58(10)

⌃0⇤ 1.553 1.57 1.61(8)

⌃⇤0⇤ 2.197 2.68 2.73(25)a

⌃⇤+⌃+ �2.537 �2.35 �3.17(36)b

µLO µNNLO µExp

�++ 5.381 5.962 3.7 � 7.5

�+ 2.691 3.049 2.7(3.6)

�0 0 0.136 · · ·
�� �2.691 �2.777 · · ·
⌃⇤+ 2.691 3.151 · · ·
⌃⇤0 0 0.343 · · ·
⌃⇤� �2.691 �2.465 · · ·
⌅⇤0 0 0.490 · · ·
⌅⇤� �2.691 �2.208 · · ·
⌦ �2.691 �2.005 �2.02(5)

TABLE V: Results from fits to the electric current magnetic moments, in units of the nuclear

magneton µN . The renormalization scale was set to µ = ⇤ = m⇢. F requires �S = 1 weak

magnetic moments to be determined. Empirical results from PDG and references a[44], b[45].

symmetry implies that it must be equal to the magnetic moment of the ⌅� up to NNLO

SU(3) breaking by quark masses. The experimental results imply a very large e↵ect which

is very di�cult to reconcile with the other U-spin multiplets, where the e↵ect is between

12% and 25% per unit of strangeness, while for the pair ⌃� ⌅� case it is 44%!. The present

analysis shows that µ⌃� is an outlier.

One of the early tests of the magnetic moments in SU(3) was provided by the Coleman-

Glashow (CG) relation, namely µp �µn �µ⌃+ +µ⌃� +µ⌅0 �µ⌅� = 0. This relation remains

valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Explicit calculation gives the deviation with estimated theoretical error �CG = 1.09±0.25 µN

to be compared with the experimental deviation 0.49± 0.03 µN , a↵ected however by the ⌃�

issue.

Finally, the weak interaction magnetic moments for hyperon decays turn out to depend on

the LEC F which does not appear in the EM case. The result for the LECs from the EM case

15



24

Baryon magnetic radii5.5

Only the magnetic radii of proton and neutron are experimentally known

gives the predictions: µ⌃�n = (0.516�0.180 F ) g
2mN

and µ⇤p = (�1.41+0.66 F ) g
2mN

, where

g = e/ sin ✓W . At LO one has the large hierarchy µ⇤p/µ⌃�n = �p

27/2. A determination of

F will require a LQCD calculation.

A. Magnetic radii

The magnetic radii are theoretically very constrained at the order of the present calcu-

lation. For all the vector currents and baryons they are determined only by UV finite loop

contributions and the single available finite counterterm fixed by the LEC r. Since only

the magnetic radii of proton and neutron are experimentally known, one can use these to fit

that LEC leading to the results shown in Table VI. The rest of the radii are then predictions

which can hopefully be tested in the future with LQCD calculations. Note that the lion

share of the magnetic radii is from the short distance terms proportional to r with the loop

contribution from diagram A3 in Fig. 1 giving up to 20% for proton, neutron and ⌃� and

less than 10% for the rest.

r = �2.63 hr2i[fm2]

Exp Th Loop

p 0.724 0.718 0.134

n 0.746 0.747 0.179

⌃+ · · · 0.766 0.100

⌃0 · · · 0.698 0.061

⌃� · · · 0.922 0.189

⇤ · · · 0.895 0.079

⌅0 · · · 0.872 0.081

⌅� · · · 0.796 0.035

�+p · · · 0.875 0.226

TABLE VI: Magnetic radii from a fit to nucleons.

Finally, a calculation of the curvature of the EM magnetic moments yields: hr4ip =

0.38 fm4 and hr4in = 0.54 fm4 to be compared with those obtained in Ref. [38], which are

respectively 1.72(6) and 2.04(1) fm4, leading to a similar assessment as in the case of the

16
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At tree level

At the leading order, axial couplings are given in terms of   

226

11.3 Axial couplings

In this section, the axial vector currents are studied to one-loop. At the tree level

the axial vector currents have two contributions, namely the contact term and the

GB pole ones, and reads:

Aµa = g̊AGja(gµ
j � qµqj

q2 � M2
a

). (11.8)

In the non-relativistic limit, or equivalently large Nc limit, the time component of

the axial vector current is suppressed with respect to the spatial components. The

couplings associated with the latter are analyzed below to O (⇠2).

At the leading order the axial couplings are all given in by the coupling g̊A. For

Nc = 3 one obtains: F = g̊A/3, D = g̊A/2, and the axial coupling in the decuplet

baryons is H = g̊A/6. The one-loop diagrams contributing at that order are shown in

Fig. (11.2). The matrix elements of interest for the axial currents are hB0 | Aia | Bi

evaluated at vanishing external 3-momentum. The axial couplings are then defined

by:

hB0 | Aia | Bi = gBB0

A

6

5
hB0 | Gia | Bi . (11.9)

The axial couplings defined here are O (N0
c ). The O (Nc) of the matrix elements of

the axial currents is due to the operator Gia. The factor 6/5 mentioned earlier is

included so that gNN
A at Nc = 3 exactly corresponds to the usual nucleon gA, which

has the value 1.2723±0.0023 [126]. This definition of the axial couplings is convenient

in the context of the 1/Nc expansion, as the di↵erences between the di↵erent axial

couplings are O (1/N2
c ).

At vanishing 3-momentum

In the large Nc limit
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The calculations up to 1-loop corrections to the axial-currents are performed  in SU(3)
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Table 9.7. Axial-Vector Currents (II)

Axial-vector current diagram Expression

p0

k, a

q, c

�i
⇣

gA
2F 2

⇡

⌘

�µif caef edaGidµ(4�d)
R

ddk
(2⇡)d

1
k2�M2

a+i✏

p0

k, a

q, c

b
i
⇣

gA
6F 2

⇡

⌘

f baefdae(qiqµ)Gidµ(4�d)
R

ddk
(2⇡)d

1
(k2�M2

a+i✏)(q2�M2
b +i✏)

p0

k, a

q, c

d

b

�i gA
3F 2

⇡

qµqi
q2�M2

c
Gibf caef baeµ4�d

R

ddk
(2⇡)d

1
k2�M2

a+i✏

p0

k, a

q, c

b

�i 2gA
3F 2

⇡

qµqi
q2�M2

b +i✏
Gidf caef bae

⇣

µ4�d
R

ddk
(2⇡)d

1
k2�M2

a+i✏

⌘
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Baryon axial-vector currents6

One can consider the case of two-loop diagrams, in
particular diagrams where the same GB-baryon vertex
Eq. (10) appears four times. For the self-energy, the chiral
power is νpðjÞ ¼ 5, and individual diagrams give
ν 1
Nc
¼ −2. Thus a cancellation among the different dia-

grams must therefore occur. A comment is here in order: in
Refs. [34,59], the wave function renormalization factor was
included in defining the baryon mass, but that is not correct
as in includes an incomplete inclusion of the two-loop
contributions. In all cases, and as shown in this work, the
diagrams that invoke the wave function renormalization
factors play a key role in such cancellations.
Using the linked power counting ξ,Oð1=NcÞ ¼ OðpÞ ¼

OðξÞ, the ξ order of a given Feynman diagram will then be
equal to νp þ ν 1

Nc
as given by Eqs. (15) and (16), which

upon use of the topological formulas Eq. (14) leads to

νξ ¼ 1þ 3Lþ nπ
2
þ
X

i

niðνOi
þ νpi

− 1Þ: ð17Þ

The ξ-power counting of the UV divergencies is obvious
from the earlier discussion. At one-loop the masses have
Oðξ2Þ andOðξ3Þ counterterms, while the axial currents will

have OðξÞ and Oðξ2Þ counterterms. To two loops there are
in addition Oðξ4Þ and Oðξ5Þ, and Oðξ3Þ and Oðξ4Þ
counterterms for masses and axial currents, respectively.
The noncommutativity of limits is manifested in the finite
terms where the GB masses and/or momenta, and δm̂
appear combined in nonanalytic terms, and are therefore
sensitive to the linking of the two expansions. The ξ
expansion corresponds to not expanding such terms at all.

III. BARYON MASSES

In this section, the baryon masses are analyzed to order
ξ3, or next-to-next-to-leading order (NNLO), in the limit of
exact isospin symmetry. To that order, one must include the
one-loop contribution depicted in Fig. 1 with the vertices
from Lð1Þ

B given in Appendix B. The contribution to the
self-energy is then given by

δΣ1−loop ¼ i
g
∘2
A

F2
π

X8

a¼1

X

n

GiaPnGia Γð1 −
d
2Þ

ð4πÞd2

× Jð1; 0;M2
a − ðp0 − δmnÞ2; 1; p0 − δmnÞ;

ð18Þ

A D

E

B
q,ia

C

q,ia

p0

q,ia

p0

q,ia

p0 p0

p0
q,ia

p0

q,ia

p0
q,ia

p0

q,ia

F

p0
p0

q,ia
q,ia

FIG. 3. Diagrams contributing to the 1-loop corrections to the axial vector currents.
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from Lð1Þ

B given in Appendix B. The contribution to the
self-energy is then given by

δΣ1−loop ¼ i
g
∘2
A

F2
π

X8

a¼1

X

n

GiaPnGia Γð1 −
d
2Þ

ð4πÞd2

× Jð1; 0;M2
a − ðp0 − δmnÞ2; 1; p0 − δmnÞ;

ð18Þ
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FIG. 3. Diagrams contributing to the 1-loop corrections to the axial vector currents.
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particular for baryons. It is therefore very important to
have a theoretical framework where both of these aspects
of QCD are consistently incorporated. This is possible
with the combined 1=Nc and chiral expansions of QCD,
which in the baryon sector is implemented with the effec-
tive theory discussed in this work. A particular power
counting, the ! expansion, which links the 1=Nc and low
energy expansions as 1=Nc ¼ Oð!Þ ¼ OðpÞ is proposed as
the most realistic one for studying baryons at Nc ¼ 3.
Results for the masses and axial couplings at NNLO
have been given, and applied to current LQCD results.

The ! expansion at NNLO clearly provides a satisfac-
tory description of the LQCD results, and in particular it
illuminates the mild dependence of the axial couplings on
the quark masses as a result of important cancellations,
which had been realized in various previous analysis by
various groups. It is important to complete the study in
SUð3Þ, in particular because the one-loop contributions to
the baryon masses become larger in magnitude, and a
smaller range of convergence is expected [71]. These results
will be presented elsewhere [72]. Recently, results for the
axial currents with three flavors in a similar framework to
the one developed here were presented in Ref. [73].

The deficit in gNN
A at the physical point is expected to

be a LQCD issue rather than a problem of convergence of
the effective theory. The main reason for this expectation
is that the ! expansion is especially well behaved for gA.
Among the possible sources of systematic errors in
the extraction of gA from LQCD calculations might be
the finite volume effects and/or the contamination in the
three-point functions by excited baryon states.

In addition to the tests LQCD can provide on quark
mass dependencies, it is also an ideal tool to test the Nc

behavior of QCD. Baryon LQCD is becoming accessible
at varying values of Nc [74], which is a promising
development.
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APPENDIX A: SPIN-FLAVOR ALGEBRA

The 4N2
f $ 1 generators of the spin-flavor group

SUð2NfÞ consist of the three spin generators Si, the
N2

f $ 1 flavor SUðNfÞ generators Ta, and the remaining

3ðN2
f $ 1Þ spin/flavor generators Gia. The commutation

relations are

½Si;Sj&¼ i"ijkS
k; ½Ta;Tb&¼ ifabcT

c; ½Ta;Si&¼0;

½Si;Gja&¼ i"ijkG
ka; ½Ta;Gib&¼ ifabcG

ic;

½Gia;Gjb&¼ i

4
#ijfabcTcþ i

2Nf
#ab"ijkSkþ i

2
"ijkdabcGkc:

(A1)

For two flavors one has the isospin generators
Ia a ¼ 1, 2, 3.
In representations with Nc indices (baryons), the gener-

ators Gia have matrix elements OðNcÞ on states with
S ¼ OðN0

cÞ. A contracted SUð4Þ algebra is defined by the
generators fSi; Ia; Xiag, where Xia ¼ Gia=Nc. In large Nc,
the generators Xia become semiclassical as ½Xia; Xjb& ¼
Oð1=N2

cÞ, while having matrix elements Oð1Þ in baryon
representations.

APPENDIX B: NONLINEAR REALIZATION OF
CHIRAL SYMMETRYAND SPIN-FLAVOR

TRANSFORMATIONS

In the symmetric representations of SUð4Þ the baryon
spin-flavor multiplet consists of the baryon states with
I ¼ S. In particular, isospin transformations will act on
the spin-flavor multiplet in an obvious way. This permits a
straightforward implementation of the nonlinear realiza-
tion of chiral SULð2Þ ( SURð2Þ on the spin-flavor multi-
plet. Defining as usual the Goldstone boson fields $a

through the unitary parametrization u ¼ expði $aIa

F$
Þ (note

that in the fundamental representation Ia ¼ %a=2), for any
isospin representation one defines a nonlinear realization
of chiral symmetry according to [3,4]

ðL; RÞ: u ¼ u0 ¼ RuhyðL; R; uÞ ¼ hðL; R; uÞuLy; (B1)

where ðL; RÞ is a SULð2Þ ( SURð2Þ transformation.
This equation defines h, and since h is an isospin SUð2Þ
transformation itself, it can be written as h ¼ expðicaIaÞ.
The chiral transformation on the baryon multipletB is then
given by

ðL; RÞ: B ¼ B0 ¼ hðL; R; uÞB: (B2)

On the other hand, spin-flavor transformations of interest
are the contracted ones, namely those generated by
fSi; Ia; Xia ¼ 1

Nc
Giag. While the isospin transformations

act on the pion fields in the usual way, the spin
transformations must be performed along with the

TABLE II. Results for the N and ! & terms. These results
correspond to the fits in the first two rows of Table I.

LQCD input Order &N [MeV] &! [MeV]

PACS-CSþ LHP LO 27 27
NLO 58 68
NNLO 66 (4) 90 (5)

LHPþ LHP LO 21 21
NLO 55 66
NNLO 76 (4) 99 (4)
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corresponding spatial rotations. The transformations gen-
erated by Xia are defined to only act on the baryons.

APPENDIX C: TOOLS FOR BUILDING
EFFECTIVE LAGRANGIANS

The effective baryon Lagrangian can be expressed in the
usual way as a series of terms which are SULð2Þ # SURð2Þ
invariant (upon introduction of appropriate sources; see for
instance [75] for details). In addition, implemented in the
effective Lagrangian is the approximate SUð4Þ symmetry
and its breaking as a power series in 1=Nc [27]. The fields
in the effective Lagrangian are the Goldstone bosons
parametrized by the unitary SUð2Þ matrix field u and
the baryons given by the symmetric SUð4Þ multiplet B of
I ¼ S fields.

The building blocks for the effective theory consist of
low energy operators, and spin-flavor operators.

The low energy operators are the usual ones, namely,

D! ¼ @! % i!!;

!! ¼ !y
! ¼ 1

2
ðuyði@! þ r!Þuþ uði@! þ ‘!ÞuyÞ;

u! ¼ uy! ¼ uyði@! þ r!Þu% uði@! þ ‘!Þuy;
" ¼ 2B0ðsþ ipÞ; "' ¼ uy"uy ' u"yu;

F!#
L ¼ @!‘# % @#‘! % i½‘!; ‘#);

F!#
R ¼ @!r# % @#r! % i½r!; r#);

(C1)

where D! is the chiral covariant derivative, s and p are
scalar and pseudoscalar sources, "' ¼ 2M2

$ þ * * * , and
‘! and r! are gauge sources. The spin-flavor operators are
tensor operators consisting of products of the spin-flavor
generators. These operators can be reduced by means of
the commutation relations to forms which only contain
anticommutators. A set of identities shown in Table III
permits one to arrive at sets of basis operators at each order
in 1=Nc for a given spin/isospin tensor type of operator.
The 1=Nc order #O of an operator O, reduced as men-
tioned, is #O ¼ n% 1% % [51], where n is the number of
generators appearing as factors in the operator (one then
says that the operator is an n-body operator), and % is the
number of generators Gia in the product.

The leading order equations of motion can be used in the
construction of the higher order terms, namely, iD0B ¼
ðCHF

Nc
SðSþ 1Þ þ c1

2 Nc"þÞB, and r!u
! ¼ i

2"%.

APPENDIX D: MATRIX ELEMENTS OF
SPIN-FLAVOR OPERATORS IN THE

SYMMETRIC REPRESENTATIONS OF SU(4)

The evaluation of the matrix elements of spin-flavor
operators in the present work can be carried out starting
from the following matrix elements of the spin-flavor gen-
erators in the totally symmetric representation of SUð4Þ

corresponding to the Young tableux with a single row ofNc

boxes. The basis states of the symmetric representation
consist of the states with I ¼ S, namely j SS3I3i, where S3
and I3 are the spin and isospin projections respectively:

hS0S03I03 jSi jSS3I3i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
&SS0&I3I

0
3
hSS3;1i jS0S03i;

hS0S03I03 j Ia jSS3I3i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
&SS0&S3S

0
3
hSI3;1a jS0I03i;

hS0S03I03 jGia jSS3I3i¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1

2S0þ1

s
'ðNc;S;S

0Þ

# hSS3;1i jS0S03ihSI3;1a jS0I03i;
(D1)

where 'ðNc;S;S
0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þNcÞ2%ðS%S0Þ2ðSþS0þ 1Þ2

p

[76]. The products of generators can be reduced by means
of the use of the commutation relations, and further, for
matrix elements in the symmetric representation, via the
reduction rules [51], which for convenience are displayed
in Table III.
Useful matrix elements
It is always convenient to express matrix elements in

terms of reduced matrix elements (RMEs) defined in the
ordinary Wigner-Eckart fashion [77]. The RMEs defined
here are with respect to SUspinð2Þ # SUIð2Þ. For matrix
elements in the symmetric representation of spin-flavor the
Wigner-Eckart theorem reads

hS0S03I03 jO
JJ3
II3

jSS3I3i

¼ hS0kOJ
I jjSi

2S0þ1
hSS3;JJ3 jS0S03ihSI3;II3 jS0I03i; (D2)

where O is an SUSð2Þ # SUIð2Þ irreducible tensor opera-
tor, and hS0kOJ

IkSi is the reduced matrix element. Note
that the notation kSi indicates the spin-flavor states in
the symmetric representation ðNc; 0; 0Þ with I ¼ S. The
reduced matrix elements of the SUð4Þ generators read

TABLE III. The SUð4Þ operator identities in the totally sym-
metric irreducible representation ðNc; 0; 0Þ of SUð4Þ. The last
column gives the operator’s quantum numbers ðJ; IÞ under
SUð2Þ # SUð2Þ.

fSi; Sig% fIa; Iag ¼ 0 (0,0)
fSi; Sigþ fIa; Iagþ 4fGia; Giag ¼ 3

2Ncð4þ NcÞ (0,0)
2fSi; Giag ¼ ð2þ NcÞIa (0,1)
2fIa; Giag ¼ ð2þ NcÞSi (1,0)
1
2 fSk; Icg% (ijk(abcfGia; Gjbg ¼ ð2þ NcÞGkc (1,1)
(ijkfSi; Gjcg ¼ (abcfIa; Gkbg (1,1)
4fGia;GibgjI¼2 ¼ fIa; IbgjI¼2 (0,2)
4fGia;GjagjJ¼2 ¼ fSi; SjgjJ¼2 (2,0)
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in works where the ! has been included explicitly
[16,19,20,68–71]. The main advantage of the
present approach of the ! expansion is its system-
atic character, which in particular will be more
prominently shown when carrying out higher order
calculations than the ones considered here.

VI. DISCUSSION AND CONCLUSIONS

Chiral symmetry and the large Nc limit are of funda-
mental conceptual importance in QCD. The former is
known to play a crucial role in light hadrons, and there
are multiple indications that the latter is also important, in

FIG. 3. Combined fits to PACS-CS [37] and LHP [44] corresponding to the results shown in the first row of Table I. The diamonds
depict the physical values. The fits correspond to LO (long-dashed line), NLO (short-dashed line), and NNLO (solid line). The bands
correspond to the theoretical 68% confidence interval.

FIG. 4. Finite parts of the one-loop contributions to gNN
A : the upper left panel shows the individual contributions of the diagrams in

Fig. 2 up toOð!3Þ, and the right panel shows the effect of switching off the contribution of the! in the loops. The third panel shows the
effect of removing the contributions of the counterterms to the masses. Throughout " ¼ 700 MeV.
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SU(2)

GB-baryon coupling is Oð
ffiffiffiffiffiffi
Nc

p
Þ. This strong coupling at

large Nc demands the constraints of SUð6Þ, which will
allow for Nc consistency at higher orders in the effective
theory. The third term gives the SUð3Þ singlet mass
splittings between baryons of different spins, and it is
Oðp0=NcÞ. The fourth term gives the contributions of
quark masses to the baryon masses, it isOðp2NcÞ and gives
SUð3Þ breaking effects which are Oðp2N0

cÞ. This indicates
a first issue with the interchange of chiral and large Nc
limits. As it becomes evident at the NLO due to the
nonanalytic terms of loop corrections, the limits do not
commute, and for that reason it becomes necessary to make
a choice: the choice made here is that 1=Nc is counted as a
quantity of order p: 1=Nc ¼ OðpÞ ¼ OðξÞ, which is
coined as the ξ expansion. The Lagrangian is now organ-
ized in powers of ξ. If the Nc dependencies of the matrix
elements of the spin-flavor operators are disregarded, Lð1Þ

B
is OðξÞ.
The construction of higher-order Lagrangians is accom-

plished making use of the tools provided in Appendixes A

and B. In this work, the Lagrangians of Oðξ2Þ and Oðξ3Þ
are needed. Throughout, the spin-flavor operators appear-
ing in the effective Lagrangians will be scaled by the
appropriate powers of 1=Nc in such a way that all LECs are
of zeroth order in Nc. The 1=Nc power of a Lagrangian
term with nπ pion fields is given by [57], n − 1 − κ þ nπ

2 ,
where the spin-flavor operator is n-body (n is the number of
factors of SUð6Þ generators appearing in the operator), and
κ takes into account the Nc dependency of the spin-flavor
matrix elements. The last term, nπ=2, stems from the factor
ð1=FπÞnπ carried by any term with nπ GB fields.
For convenience, the following definitions are used:

δm̂≡ CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ

iD̃0 ≡ iD0 − δm̂: ð11Þ

Note that δm̂ gives rise to mass splittings between baryons
which are Oð1=NcÞ or Oðp2Þ.

With this, the Oðξ2Þ Lagrangian is given by3:

Lð2Þ
B ¼ B†

""
−

1

2Ncm0

þ w1

Λ

#
D⃗2þ

"
1

2Ncm0

−
w2

Λ

#
D̃2

0 þ
c2
Λ
χ0þ

þ CA
1

Nc
uiaSiTa þ CA

2

Nc
ϵijkuiafSj; Gkag

þ κ0ϵijkF0
þijS

k þ κ1ϵijkFa
þijG

ka þ ρ0F0
−0iS

i þ ρ1Fa
−0iG

ia

þ τ1
Nc

ua0G
iaDi þ

τ2
N2

c
ua0S

iTaDi þ
τ3
Nc

∇iua0S
iTa þ τ4∇iua0G

ia þ % % %
#
B; ð12Þ

where additional terms not explicitly displayed are not needed in the present work. Note that there are also Oðξ2Þ terms
stemming from the 1=Nc suppressed terms in the LECs of the lower-order Lagrangian. Similar comments apply to the
higher-order Lagrangians. Such terms require knowledge of the physics at Nc > 3 to be determined, which can in principle
be obtained using LQCD results at varying Nc [58,59].
Similarly, the Oðξ3Þ Lagrangian needed here is given by

Lð3Þ
B ¼ B†

"
c3

NcΛ3
χ̂2þ þ h1Λ

N3
c
Ŝ4 þ h2

N2
cΛ

χ̂þŜ
2 þ h3

NcΛ
χ0þŜ

2 þ h4
NcΛ

χaþfSi; Giag

þ CA
3

N2
c
uiafŜ2; Giagþ CA

4

N2
c
uiaSiSjGja

þDA
1

Λ2
χ0þuiaGia þDA

2

Λ2
χaþuiaSi þ

DA
3 ðdÞ
Λ2

dabcχaþuibGic þDA
3 ðfÞ
Λ2

fabcχaþuibGic

þ gE½Di; Fþi0' þ α1
i
Nc

ϵijkFa
þ0iG

iaDk þ β1
i
Nc

Fa
−ijG

iaDj þ % % %
#
B ð13Þ

3The notation for the LECs used here differs from the ones used in ordinary BChPT due to the unification of terms demanded by the
1=Nc expansion. The notation aims at distinguishing classes of terms in the Lagrangian, e.g., spin-independent mass terms, spin-
dependent mass terms, axial-vector couplings, etc. The identification of some of the LECs with those used in ordinary versions of
BChPT are straightforward.
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δm̂≡ CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ

iD̃0 ≡ iD0 − δm̂: ð11Þ

Note that δm̂ gives rise to mass splittings between baryons
which are Oð1=NcÞ or Oðp2Þ.

With this, the Oðξ2Þ Lagrangian is given by3:

Lð2Þ
B ¼ B†

""
−

1

2Ncm0

þ w1

Λ

#
D⃗2þ

"
1

2Ncm0

−
w2

Λ

#
D̃2

0 þ
c2
Λ
χ0þ

þ CA
1

Nc
uiaSiTa þ CA

2

Nc
ϵijkuiafSj; Gkag

þ κ0ϵijkF0
þijS

k þ κ1ϵijkFa
þijG

ka þ ρ0F0
−0iS

i þ ρ1Fa
−0iG

ia

þ τ1
Nc

ua0G
iaDi þ

τ2
N2

c
ua0S

iTaDi þ
τ3
Nc

∇iua0S
iTa þ τ4∇iua0G

ia þ % % %
#
B; ð12Þ

where additional terms not explicitly displayed are not needed in the present work. Note that there are also Oðξ2Þ terms
stemming from the 1=Nc suppressed terms in the LECs of the lower-order Lagrangian. Similar comments apply to the
higher-order Lagrangians. Such terms require knowledge of the physics at Nc > 3 to be determined, which can in principle
be obtained using LQCD results at varying Nc [58,59].
Similarly, the Oðξ3Þ Lagrangian needed here is given by

Lð3Þ
B ¼ B†

"
c3

NcΛ3
χ̂2þ þ h1Λ

N3
c
Ŝ4 þ h2

N2
cΛ

χ̂þŜ
2 þ h3

NcΛ
χ0þŜ

2 þ h4
NcΛ

χaþfSi; Giag

þ CA
3

N2
c
uiafŜ2; Giagþ CA

4

N2
c
uiaSiSjGja

þDA
1

Λ2
χ0þuiaGia þDA

2

Λ2
χaþuiaSi þ

DA
3 ðdÞ
Λ2

dabcχaþuibGic þDA
3 ðfÞ
Λ2

fabcχaþuibGic

þ gE½Di; Fþi0' þ α1
i
Nc

ϵijkFa
þ0iG

iaDk þ β1
i
Nc

Fa
−ijG

iaDj þ % % %
#
B ð13Þ

3The notation for the LECs used here differs from the ones used in ordinary BChPT due to the unification of terms demanded by the
1=Nc expansion. The notation aims at distinguishing classes of terms in the Lagrangian, e.g., spin-independent mass terms, spin-
dependent mass terms, axial-vector couplings, etc. The identification of some of the LECs with those used in ordinary versions of
BChPT are straightforward.
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relations between the couplings gaBB0
A and the ones displayed in [59] are as follows:

hB
8

| Ai=0 3 | B
8

i =
1

2
gB8
A

hB
10

| Ai=0 3 | B
10

i =
1

6
gB10
A

hB
8

| Ai=0 8 | B
8

i =
1

2
p

3
gB8
8

hB
10

| Ai=0 8 | B
10

i =
1

6
p

3
gB10
8

(54)

where B
8,10 is an octet (decuplet) baryon with spin projection +1/2, and the couplings on

the RHS are those used in [59] and displayed in Tables IV and V of that reference. The

LQCD results are given for several ⇡ and K masses. The values of M⇡ for the di↵erent cases

are given in Table I of [59], and the corresponding MK is determined using the physical

masses by the LO relation: M2

K = MK
2

phys

+ 1

2

(M2

⇡ � M⇡
2

phys

), which corresponds to keeping

ms fixed. While for general Nc the nine terms associated with the LECs in Table VI are

linearly independent, at Nc = 3 the term associated with C2

A becomes linearly dependent

with LO term, and thus its e↵ects are absorbed into �g̊A. In the case of the LQCD results

being fitted here there is an additional linear dependency, namely that of the term C4

A which

becomes linearly dependent with the term C3

A . So the fit will involve seven NLO LECs in

addition to g̊A. The results of the fits are shown in Table VII.

Fit �2

dof

g̊A �g̊A CA
1

CA
2

CA
3

CA
4

DA
1

DA
2

DA
3

DA
4

LO 3.9 1.35 - - - - - - - - -

NLO Tree 0.91 1.42 - -0.18 - - - - 0.009 - -

NLO Full 1.08 1.02 0.15 -1.11 0. 1.08 0. -0.56 -0.02 -0.08 0.

1.13 1.04 0.08 -1.17 0. 1.15 0. -0.59 -0.02 -0.09 0.

1.19 1.06 0. -1.23 0. 1.21 0. -0.62 -0.03 -0.09 0.

TABLE VII: LECs obtained by fitting to the LQCD results presented in Tables IV and V of Ref.

[59]. The results correspond to making the choices ⇤ = µ = m⇢ . In the NLO full fits CHF = 250

MeV, and g̊A is given as input, displaying fits for three di↵erent values.

The LO fit, which involves only fitting the LO value of g̊A, shows a remarkably good

approximation to the full set of the LQCD results. This is clearly aided by the very small

dependency on M⇡ of the LQCD results. It also shows the very good approximate spin-flavor
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Fit results

LQCD gA’s

Key observed feature:@ fixed MK, gA’s have little dependence on M�

SU(3) calculation by Cyprus Group [Alexandrou et al, (2016)]
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A and g8BB

A
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3
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2

DA
3
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4

LO 4 1.35 - - - - - - - - -
NLO Tree 0.6 1.31 - -0.18 - - - 0.088 0.018 0.041 -
NLO Full 1 3.6 1.35 -.36 -2.7 - - 6 -0.98 -0.08 -0.13 -
NLO Full 2 1.1 0.94 0 -1.03 - - 2.1 -0.25 -0.02 -0.05 -
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First LQCD 
calculations 
for baryon 

axial currents 
including 

hyperons and 
the decuplet :

Baryon axial-vector currents : Fits to LQCD6
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[LQCD from Alexandrou et al, (2016)]

Baryon axial-vector currents : Fits to LQCD6



The σ terms of nucleons were calculated using SU(3) BChPT × 1/Nc

Our value for sigma Pi-N is in agreement with similar determinations in calculations that included the 
decuplet baryons as explicit degrees of freedom 

The “σ term puzzle” is understood as the result of large non-analytic contributions to the mass 
combination, while the higher order corrections to the σ terms have natural magnitude.

The analysis carried out here shows that there is compatibility in the description of GMO and the nucleon σ 
terms

The value of σπN = 69 ± 10 MeV obtained here from fitting to Physical & LQCD baryon masses agrees 
with the more recent results from πN analyses 

Gasser et al. [5]

Pavan et al. [7]

Alarcón et al. [8]

Hoferichter et al. [9]

Dürr et al. [14]

Yang et al. [15]

Abdel-Rehim et al. [16]

Bali et al. [17]
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

x) The results obtained for �⇡N are consistent with the larger values obtained from ⇡N analyses
[7; 8; 9; 10; 11]. Note however that a more reliable value would require some more accurate and
extensive LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with
other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
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[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

( )

Alarcón et al. (2011)

(

�
�

� ��
���

�
�

� ��
���

!"# $## $"# %##
&##

!###

!!##

!$##

!%##

!'##

!"##

!(##

!� !)*+"

!
!
!!

�
!!
"#

"

Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

(

Dürr et al. (2015)

( )

�
�

� ��
���

�
�

� ��
���

!"# $## $"# %##
&##

!###

!!##

!$##

!%##

!'##

!"##

!(##

!� !)*+"

!
!
!!

�
!!
"#

"

Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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where m = Ncm0 is the spin-flavor singlet baryon mass in chiral limit, and the magnetic moment terms
consist of the one coming from the Dirac term 1

m ( ~B0
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+T
a) · ~S and the anomalous terms involving 0

(isoscalar) and 1,2 (isovector). Note that the magnetic transition between baryons of di↵erent spin are
meadited only by the term 2.Do we need w1,2 terms?
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• The value of g̊A/F⇡ can be fixed by �GMO, and it is consistent with the other calculations.

• Octet baryons in the intermediate states contribute 43% to �GMO and 33% to �8.

• One can realize that this is a well behaved expansion by considering the contribution to the baryon
mass from each LEC.

• �GMO and delta ��8 can be determined only by g̊A/F⇡, CHF and the meson masses, where as the
ratio ��8/�GMO doesn’t depend on g̊A/F⇡.

• Fit 2 is compatible with Fit 1: implies that the chiral extrapolation of the LQCD to the physical case
is consistent.

• The LQCD masses do not describe correctly the hyperfine mass shifts between the octet and decuplet
.

• Both �̂ and �⇡N has mild dependence on MK .

• Determination of �s was not precise because the LQCD results are at approximately fixed ms.

• Our result for �⇡N is consistent with the larger values obtained from ⇡ �N analyses.

• Iso spin breaking sigma terms �3 and �(u+d) were estimated.

• With the information we have we can determine the contribution of Nucleon mass due to the mass
di↵erence o↵ mu�d and therefore mProton and mNeutron di↵erence.

The intermediate spin 3/2 baryons play an important role in enhancing �̂ and thus �⇡N .
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SU(3) BChPT ⇥ 1/Nc shows a great improvement in describing charge, charge-radii,

magnetic moments, magnetic-radii

<latexit sha1_base64="uea/tqhSTdzSozvlPYK3WG1BMKg="></latexit>

Only two LECs are needed to determine charge-radii of baryons
<latexit sha1_base64="jfTs6bik4OtvRh2SCL0QcZO8s3c="></latexit>

Only eight LECs are needed to determine magnetic moments of baryons
<latexit sha1_base64="Ie02R3TJu+Be8lom/dLOJWVX64w=">AAACNXicbZA9axtBEIb3FCdRlC/FKdMsFgmpxJ0SSEoRYXAhsAPRB0hC7O3NSYv249idMxaH/pQb/49UduEiJqT1X/CerMKW8sLCyzszO8wTZ1I4DMOroPJk7+mz59UXtZevXr95W3+333cmtxx63EhjhzFzIIWGHgqUMMwsMBVLGMSLTlkfnIJ1wuhfuMxgothMi1Rwhj6a1ruf6BjhDItjLZcUxGyOtHvYcZRZoBoggYSioQkgWOV30HIeUHCqjAKNjpqUxswujXarab0RNsO16K6JNqZBNjqZ1n+PE8Pz8iMumXOjKMxwUjDrF0hY1ca5g4zxBZvByFvNFLhJsb56RT/6JKGpsf5ppOv04UTBlHNLFftOxXDutmtl+L/aKMf0+6QQOssRNL9flOay5FAipImwwNHjSgTjVpQw+JxZxj0jV/MQou2Td02/1Yy+NFs/vzbaPzY4quQDOSCfSUS+kTY5IiekRzg5J5fkD7kJLoLr4G/w7761Emxm3pNHCm7vAO+oq5s=</latexit>

Only one LEC is needed to determine magnetic radii of baryons
<latexit sha1_base64="4fdWdr/NSvzfPFTDnYiF8tiJCjo="></latexit>

BChPT ⇥ 1/Nc improves convergence by eliminating large Nc power power violating

terms in loop corrections

<latexit sha1_base64="xIOZSBz3cpV8t/3WuIeKZFodexI="></latexit>

Axial couplings are also an important test of this approach

<latexit sha1_base64="WpccM382sOeSxpl/pJm399y0kBk="></latexit>

More LQCD calculations are welcome, and current predictions can be used to test

experimentally as well as in LQCD

<latexit sha1_base64="8oIsnJL6p/phebVYPXClAql3a+A="></latexit>
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