Sorting out energy loss for medium-modified jets

Jasmine Brewer

With Guilherme Milhano and Jesse Thaler

arXiv: 1812.05111
Jets: a multi-scale probe of the QGP
Jets: a multi-scale probe of the QGP

- How is a jet modified by the quark-gluon plasma?
Jets: a multi-scale probe of the QGP

• How is a jet modified by the quark-gluon plasma?
• What can we learn about the medium on different length scales?
How can jet modification be quantified?

Ideally…
How can jet modification be quantified?

Ideally…
How can jet modification be quantified?

Ideally…

p-p

A-A

jet

modified jet
How can jet modification be quantified?

Ideally…

How do jets from an identical hard process differ in vacuum and in medium?
Features of hard process can generally not be observed.

Reality…

- p-p
- A-A

jet

modified jet
Features of hard process can generally not be observed

Reality…

(Except: rare processes where boson recoils a jet)
Features of hard process can generally not be observed

Reality…

Without knowing the properties of the initial hard process, standard is to compare p-p and A-A jets of the same final jet p_T.
“Jet modification” observables: part modification and part bias

Compare features of p-p and A-A jets

modified jet

jet
“Jet modification” observables: part modification and part bias

Compare features of p-p and A-A jets

• Significant biases from migration of jets to lower energy
“Jet modification” observables: part modification and part bias

Compare features of p-p and A-A jets

• Significant biases from migration of jets to lower energy
• Strongly emphasizes jets which are modified least
“Jet modification” observables: part modification and part bias

- Significant biases from migration of jets to lower energy
- Strongly emphasizes jets which are modified least

Often requires significant theory input to interpret measurements
Goal: data-driven approach to interpreting jet modification
Roadmap
Roadmap

• Demonstrate new strategy for matching p-p and A-A jets
Roadmap

- Demonstrate new strategy for matching p-p and A-A jets
- Discuss impact for interpretation of jet modification observables
Roadmap

• Demonstrate new strategy for matching p-p and A-A jets
• Discuss impact for interpretation of jet modification observables
• Demonstrate in Monte Carlo that it does a reasonable job of comparing p-p and A-A jets with the same hard process
Roadmap

• Demonstrate new strategy for matching p-p and A-A jets
• Discuss impact for interpretation of jet modification observables
• Demonstrate in Monte Carlo that it does a reasonable job of comparing p-p and A-A jets with the same hard process
• Advertisement: relevance for finding features that control jet quenching
Key question: compare A-A jets to which p-p jets?
Key question: compare A-A jets to which p-p jets?

- Standard answer: match final (reconstructed) p_T
Key question: compare A-A jets to which p-p jets?

- Standard answer: match final (reconstructed) p_T
Is m/p_T modified or not?
Is m/p_T modified or not?
Is m/p_T modified or not?

A-A jets were higher p_T when they were produced.
Is m/p_T modified or not?

A-A jets were higher p_T when they were produced.

Jet quenching

p_T^vac [GeV]

p_T^HI [GeV]
Is m/p_T modified or not?

A-A jets were higher p_T when they were produced

- How to isolate jet samples with the same initial parton p_T?
Key question: compare A-A jets to which p-p jets?

• Another answer: match in (effective) cumulative jet cross-section

\[\sigma_{\text{eff}} = \sigma_{\text{pp}}, \sigma_{\text{HI}} / \langle T_{\text{AA}} \rangle \]

\[\Sigma_{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma_{\text{eff}}}{dp_T} \]

• “Quantile” matching
Key question: compare A-A jets to which p-p jets?

• Another answer: match in (effective) cumulative jet cross-section

\[
\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle \\
\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}
\]

• “Quantile” matching
Key question: compare A-A jets to which p-p jets?

- Another answer: match in (effective) cumulative jet cross-section

\[
\sigma_{\text{eff}} = \sigma_{\text{pp}}, \sigma_{\text{HI}} / \langle T_{\text{AA}} \rangle
\]

\[
\Sigma_{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma_{\text{eff}}}{dp_T}
\]

- “Quantile” matching
Key question: compare A-A jets to which p-p jets?

- Another answer: match in (effective) cumulative jet cross-section

\[\sigma_{\text{eff}} = \sigma_{\text{pp}}, \sigma_{\text{HI}} / \langle T_{\text{AA}} \rangle \]

\[\Sigma_{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma_{\text{eff}}}{dp_T} \]

- “Quantile” matching

\[Q_{\text{AA}} = \frac{p_{T}^{\text{HI}}}{p_{T}^{\text{vac}}} \mid \Sigma \]
Interpretation of R_{AA} and Q_{AA} is significantly different…

Average jet loss per p_T

Average p_T loss per jet
Sorting out energy loss: quantile matching
Sorting out energy loss: quantile matching

Quenched and initial p_T have same ordering
Sorting out energy loss: quantile matching

Quenched and initial p_T have same ordering \^ may
Sorting out energy loss: quantile matching

Energy loss is...

on average monotonic in p_T
Sorting out energy loss: quantile matching

Energy loss is...

- on average monotonic in p_T
- monotonic in p_T
Sorting out energy loss: quantile matching

Energy loss is...

In this limit, quantile matching gives equivalent jets in p-p and A-A

on average monotonic in p_T

monotonic in p_T
Sorting out energy loss: quantile matching

Energy loss is...

on average monotonic in p_T

monotonic in p_T

How does quantile matching work in the more realistic case?
How to quantify that?
How to quantify that?

$Z + \text{jet}$
How to quantify that?

$Z + \text{jet} \quad p_T^Z \quad p_T^{\text{jet}}$
How to quantify that?

\[Z + \text{jet} \]

\[p_T^Z \sim p_T^{\text{jet}} \]
How to quantify that?

Probe of p_T^jet in data
How to quantify that?

Probe of p_T^{jet} in data

$Z+\text{jet}$

$\sim p_T^{Z}$

$\sim p_T^{\text{jet}}$

Di-jets

$p_T^{\text{MC,1}}$

$p_T^{\text{MC,2}}$
How to quantify that?

Probe of p_T^{jet} in data
How to quantify that?

Probe of p_T in data

Unphysical $p_{T,MC} \sim p_T$
How to quantify that?

Z+jet

- $p_T^Z \sim p_T^{jet}$
- Probe of p_T^{jet} in data

Di-jets

- Unphysical $p_T^{MC} \sim p_T^{jet}$
- Probe of p_T^{jet} in Monte Carlo
Quantile matching approximates initial p_T of A-A jets

Z+jet
Quantile matching approximates initial p_T of A-A jets

Z+jet

![Graph showing $\langle \frac{p_T^{jet}}{p_T^{Z}} \rangle$ for Z+jet events.]

Di-jets

![Graph showing $\langle \frac{p_T^{jet}}{p_T^{MC}} \rangle$ for Di-jet events.]

- **Z+Jet Events**
 - JEWEL 2.1.0
 - $\sqrt{s} = 2.76$ TeV, $R = 0.4$

- **Dijet Events**
 - JEWEL 2.1.0
 - $\sqrt{s} = 2.76$ TeV, $R = 0.4$
Quantile matching approximates initial p_T of A-A jets

Compared to reconstructed p_T in A-A…
Quantile procedure does not undo energy loss fluctuations
Is \(m/p_T \) modified or not?
Is m/p_T modified or not?

- Sensitivity to matching indicates significant jet p_T migration effects
Ongoing work
What features F control fractional energy loss of a jet?
What features F control fractional energy loss of a jet?

all jets; $p(p_T^{\text{fin}}|p_T^{\text{in}})$
What features F control fractional energy loss of a jet?

all jets: $p(p_T^{\text{fin}} | p_T^{\text{in}})$

averaging over other features F gives wide range of fractional energy loss for jets with the same initial p_T
What features F control fractional energy loss of a jet?

all jets: $p(p_T^{\text{fin}} | p_T^{\text{in}})$

subset of jets with same features F:

$p(p_T^{\text{fin}} | p_T^{\text{in}}, \{F_i\})$
What features F control fractional energy loss of a jet?

all jets: $p(p_T^{\text{fin}}|p_T^{\text{in}})$

subset of jets with same features F $p(p_T^{\text{fin}}|p_T^{\text{in}}, \{F_i\})$

By definition, have same fractional energy loss
What features F control fractional energy loss of a jet?

all jets; $p(p_T^{\text{fin}} | p_T^{\text{in}})$

subset of jets with same features F

$p(p_T^{\text{fin}} | p_T^{\text{in}}, \{F_i\})$

By definition, have same fractional energy loss

Quantile procedure gives exact result in this case
What features F control fractional energy loss of a jet?

all jets: $p(p_T^{\text{fin}} | p_T^{\text{in}})$

subset of jets with same features F $p(p_T^{\text{fin}} | p_T^{\text{in}}, \{F_i\})$

By definition, have same fractional energy loss

- HOWEVER: features in F may be unobservable (e.g. path length)
What *observable* features (if any) control jet quenching?
What *observable* features (if any) control jet quenching?

all jets; \(p\left(p_T^{\text{fin}} \mid p_T^{\text{in}}\right) \)
What *observable* features (if any) control jet quenching?

subset of jets with same features F; $p\left(p_{T}^{\text{fin}} \mid p_{T}^{\text{in}}, \{F_i\}\right)$
What **observable** features (if any) control jet quenching?

subset of jets with same features \(F \);
\[p(p_{T}^{\text{fin}} | p_{T}^{\text{in}}, \{F_i\}) \]

Expectation: performance of the quantile procedure provides quantitative test of extent to which a feature controls jet energy loss
Summary

Going beyond matching p-p and A-A jets in reconstructed p_T
Summary

Going beyond matching p-p and A-A jets in reconstructed p_T

- New “quantile matching” inspired by (approximate) monotonicity of energy loss in p_T
Summary

Going beyond matching p-p and A-A jets in reconstructed p_T

• New “quantile matching” inspired by (approximate) monotonicity of energy loss in p_T

• New interpretation of jet modification observables
Summary

Going beyond matching p-p and A-A jets in reconstructed p_T

• New “quantile matching” inspired by (approximate) monotonicity of energy loss in p_T

• New interpretation of jet modification observables

• Resulting p_T^{quant} gives a reasonable handle on the initial energy of an A-A jet in di-jet events
Summary

Going beyond matching p-p and A-A jets in reconstructed p_T

• New “quantile matching” inspired by (approximate) monotonicity of energy loss in p_T

• New interpretation of jet modification observables

• Resulting p_T^{quant} gives a reasonable handle on the initial energy of an A-A jet in di-jet events

• Minimizes effect of p_T migration in jet modification observables
Summary

Going beyond matching p-p and A-A jets in reconstructed p_T

- New “quantile matching” inspired by (approximate) monotonicity of energy loss in p_T
- New interpretation of jet modification observables
- Resulting p_T^{quant} gives a reasonable handle on the initial energy of an A-A jet in di-jet events
- Minimizes effect of p_T migration in jet modification observables

Going forward: finding jet features that control quenching?
For more on all that…
Comments on the definition of the quantile matching

To match the *cumulative* jet cross-section, the formal definition of p_T^{quant} is

$$
\int_{p_T^{\text{HI}}}^{\infty} dp_T \left(\frac{d\sigma_{\text{HI}}^{\text{eff}}}{dp_T} \right) = \int_{p_T^{\text{quant}}}^{\infty} dp_T \left(\frac{d\sigma_{\text{pp}}^{\text{eff}}}{dp_T} \right)
$$

However, for steeply-falling spectra this is identical (to ~1\% level corrections) to simply matching jets in the same cross-section

$$
\sigma_{\text{HI}}^{\text{eff}} (p_T^{\text{HI}}) = \sigma_{\text{pp}}^{\text{eff}} (p_T^{\text{quant}})
$$
mean more similar

standard deviation larger

Compared to reconstructed p_T in A-A…
m/p_T for Z+jet and di-jet events