Sorting out energy loss for medium-modified jets

Jasmine Brewer

With Guilherme Milhano and Jesse Thaler

arXiv: 1812.05111

Jets: a multi-scale probe of the QGP

Jets: a multi-scale probe of the QGP

• How is a jet modified by the quark-gluon plasma?

Jets: a multi-scale probe of the QGP

- How is a jet modified by the quark-gluon plasma?
- What can we learn about the medium on different length scales?

Ideally...

How do jets from an identical hard process differ in vacuum and in medium?

Features of hard process can generally not be observed

Features of hard process can generally not be observed

(Exception: rare processes where boson recoils a jet)

Features of hard process can generally not be observed

Without knowing the properties of the initial hard process, standard is to compare p-p and A-A jets of the same final jet p_T

• Significant biases from migration of jets to lower energy

- Significant biases from migration of jets to lower energy
- Strongly emphasizes jets which are modified least

- Significant biases from migration of jets to lower energy
- Strongly emphasizes jets which are modified least

Often requires significant theory input to interpret measurements

Goal: data-driven approach to interpreting jet modification

• Demonstrate new strategy for matching p-p and A-A jets

- Demonstrate new strategy for matching p-p and A-A jets
- Discuss impact for interpretation of jet modification observables

- Demonstrate new strategy for matching p-p and A-A jets
- Discuss impact for interpretation of jet modification observables
- Demonstrate in Monte Carlo that it does a reasonable job of comparing p-p and A-A jets with the same hard process

- Demonstrate new strategy for matching p-p and A-A jets
- Discuss impact for interpretation of jet modification observables
- Demonstrate in Monte Carlo that it does a reasonable job of comparing p-p and A-A jets with the same hard process
- Advertisement: relevance for finding features that control jet quenching

• Standard answer: match final (reconstructed) p_T

Standard answer: • match final (reconstructed) p_T

Jasmine Brewer (MIT)

A-A jets were higher p_T when they were produced

A-A jets were higher p_T when they were produced

A-A jets were higher p_T when they were produced

• How to isolate jet samples with the same initial parton p_T ?

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

Interpretation of R_{AA} and Q_{AA} is significantly different...

Average jet loss per p_T

Average p_T loss per jet

Quenched and initial p_T have same ordering

Energy loss is...

Energy loss is...

Energy loss is...

In this limit, quantile matching gives equivalent jets in p-p and A-A

Energy loss is...

How does quantile matching work in the more realistic case?

How to quantify that?

Di-jets

How to quantify that?

How to quantify that?

Probe of p_T^{jet} in data

Probe of p_T^{jet} in Monte Carlo

Quantile matching approximates initial p_T of A-A jets

Z+jet

Quantile matching approximates initial p_T of A-A jets

Z+jet

Di-jets

Quantile matching approximates initial p_T of A-A jets

Z+jet

Di-jets

Quantile procedure does not undo energy loss fluctuations

Is m/p_T modified or not?

Is m/p_T modified or not?

• Sensitivity to matching indicates significant jet p_T migration effects

Ongoing work

averaging over other features F gives wide range of fractional energy loss for jets with the same initial p_T

By definition, have same fractional energy loss

Quantile procedure gives exact result in this case

By definition, have same fractional energy loss

• HOWEVER: features in *F* may be unobservable (e.g. path length)

all jets; $p(p_T^{\text{fin}}|p_T^{\text{in}})$

subset of jets with same features F; $p(p_T^{\text{fin}}|p_T^{\text{in}}, \{F_i\})$

subset of jets with same features F; $p(p_T^{\text{fin}}|p_T^{\text{in}}, \{F_i\})$

Expectation: performance of the quantile procedure provides quantitative test of extent to which a feature controls jet energy loss

Summary

Going beyond matching p-p and A-A jets in reconstructed p_T
Going beyond matching p-p and A-A jets in reconstructed p_T

• New "quantile matching" inspired by (approximate) monotonicity of energy loss in p_T

Going beyond matching p-p and A-A jets in reconstructed p_T

- New "quantile matching" inspired by (approximate) monotonicity of energy loss in p_T
- New interpretation of jet modification observables

Going beyond matching p-p and A-A jets in reconstructed p_T

- New "quantile matching" inspired by (approximate) monotonicity of energy loss in p_T
- New interpretation of jet modification observables
- Resulting p_T^{quant} gives a reasonable handle on the initial energy of an A-A jet in di-jet events

Going beyond matching p-p and A-A jets in reconstructed p_T

- New "quantile matching" inspired by (approximate) monotonicity of energy loss in p_T
- New interpretation of jet modification observables
- Resulting p_T^{quant} gives a reasonable handle on the initial energy of an A-A jet in di-jet events
- Minimizes effect of p_T migration in jet modification observables

Going beyond matching p-p and A-A jets in reconstructed p_T

- New "quantile matching" inspired by (approximate) monotonicity of energy loss in p_T
- New interpretation of jet modification observables
- Resulting p_T^{quant} gives a reasonable handle on the initial energy of an A-A jet in di-jet events
- Minimizes effect of p_T migration in jet modification observables

Going forward: finding jet features that control quenching?

For more on all that...

Comments on the definition of the quantile matching

To match the *cumulative* jet cross-section, the formal definition of p_T^{quant} is

$$\int_{p_T^{\rm HI}}^{\infty} dp_T \left(\frac{d\sigma_{\rm HI}^{\rm eff}}{dp_T}\right) = \int_{p_T^{\rm quant}}^{\infty} dp_T \left(\frac{d\sigma_{\rm pp}^{\rm eff}}{dp_T}\right)$$

However, for steeply-falling spectra this is identical (to $\sim 1\%$ level corrections) to simply matching jets in the same cross-section

$$\sigma_{\rm HI}^{\rm eff}\left(p_T^{\rm HI}\right) = \sigma_{\rm pp}^{\rm eff}\left(p_T^{\rm quant}\right)$$

A-A...

m/p_T for Z+jet and di-jet events

