Fernando Romero-López University of Valencia

fernando.romero@uv.es

Seminar@JLab, 14th Dec

IFIC people

Jorge Baeza-Ballesteros Pilar Hernández

Three-particle people

Tyler Blanton Raúl Briceño Drew Hanlon Max Hansen Ben Hörz Steve Sharpe

VniverSitat de València

Bonn Lattice Group

Mathias Fischer Bartek Kostrzewa Liuming Liu Akaki Rusetsky Nikolas Schlage Martin Ueding Carsten Urbach

1. Introduction 2. Lattice GCD 3. Finike-Volume Spectrum 4. Two-particle scattering 5. Three particles in finite volume 6. Conclusions

Quantum chromodynamics is conceptually simple. Its realization in nature, however, is usually very complex. But not always.

Frank Wilczek

 $\mathscr{L}_{QCD} = \sum_{i}^{N_f} \bar{q}_i \left(D_{\mu} \gamma^{\mu} + m_i \right) q_i + \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$

QCD effects in experimental signatures of particle decays 0

- **Final state interactions**
- "QCD background"

- **QCD** effects in experimental signatures of particle decays 0
 - **Final state interactions**
 - "QCD background"
- O Nonperturbative QCD dynamics present in relevant processes:

 - Hadronic processes with CP violation: new Physics?

Amplitudes of weak decays: $K \to \pi\pi$, $K \to \pi\pi\pi$, $D \to \pi\pi, K\bar{K}, (\pi\pi\pi\pi\pi), \dots$

- **QCD** effects in experimental signatures of particle decays 0
 - **Final state interactions**
 - "QCD background"
- O Nonperturbative QCD dynamics present in relevant processes:
 - Amplitudes of weak decays: $K \to \pi\pi$, $K \to \pi\pi\pi$, $D \to \pi\pi, K\bar{K}, (\pi\pi\pi\pi\pi), \dots$
 - Hadronic processes with CP violation: new Physics?
- There are still many puzzling hadrons out there
 - XYZ, charmonium, bottomonium
 - Roper resonance, $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

- **O** QCD effects in experimental signatures of particle decays
 - Final state interactions
 - "QCD background"
- **O** Nonperturbative QCD dynamics present in relevant processes:
 - Amplitudes of weak decays: $K \to \pi\pi$, $K \to \pi\pi\pi$, $D \to \pi\pi, K\bar{K}, (\pi\pi\pi\pi\pi), \dots$
 - Hadronic processes with CP violation: new Physics?
- **O** There are still many puzzling hadrons out there
 - XYZ, charmonium, bottomonium
 - Roper resonance, $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$
- **O** First-principles nuclear interactions:
 - 2N & 3N interactions: Input for neutron stars and larger nuclei EFT treatment

Towards the GCD S-Matrix

- Lattice results three-particle scattering

O Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

C Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

Euclidean time: action has statistical meaning $\mathcal{Z} = \left[D\psi D\bar{\psi} DAe^{-S_E(\psi,\bar{\psi},A_\mu)} \right]$

O Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

Euclidean time: action has statistical meaning $\mathcal{Z} = \int D\psi D\bar{\psi} DAe^{-S_E(\psi,\bar{\psi},A_\mu)}$

Discretize gauge fields and fermion fields:

 \rightarrow Under control but technical

(e.g., discretization effects and continuum limit)

O Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

Euclidean time: action has statistical meaning $\mathcal{Z} = \int D\psi D\bar{\psi} DAe^{-S_E(\psi,\bar{\psi},A_\mu)}$

Discretize gauge fields and fermion fields:

 \rightarrow Under control but technical

(e.g., discretization effects and continuum limit)

Compute correlation functions

O In Lattice QCD, we measure energy levels and matrix elements: "Spectral decomposition"

$$C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle = \sum_{n} \langle 0 | \mathcal{O}(t) | n \rangle \langle n | \mathcal{O}(0) |$$
$$= \sum_{n} \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^{2} e^{-E_{n}t}$$

 $|0\rangle$

O In Lattice QCD, we measure energy levels and matrix elements: "Spectral decomposition"

$$C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle = \sum_{n} \langle 0 | \mathcal{O}(t) | n \rangle \langle n | \mathcal{O}(0) |$$
$$= \sum_{n} \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^{2} e^{-E_{n}t}$$

 $|0\rangle$

O In Lattice QCD, we measure energy levels and matrix elements: "Spectral decomposition"

$$C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle = \sum_{n} \langle 0 | \mathcal{O}(t) | n \rangle \langle n | \mathcal{O}(0) |$$
$$= \sum_{n} \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^{2} e^{-E_{n}t}$$

O Multiple operators to obtain several energy levels

The Spectrum

 $|0\rangle$

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n}^2$$

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$= 2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}^2$$

Interactions change the spectrum: it can be treated as a perturbation

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$= 2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}^2$$

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $\underline{E}_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\Delta E_2 = \frac{\mathcal{M}_2(E=2m)}{8m^2L^3} + O(L^{-4})$ [Huang, Yang, 1958]

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$= 2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}^2$$

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $E_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\Delta E_2 = \frac{\mathscr{M}_2(E = 2m)}{8m^2L^3} + O(L^{-4})$ [Huang, Yang, 1958]

The energy shift of the two-particle ground state is related to the $2\to 2$ scattering amplitude

Interactions change the spectrum: it can be treated as a perturbation

d state to leading order

 $2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$

$$E_2 = \frac{\mathscr{M}_2(E=2m)}{8m^2L^3} + O(L^{-4})$$

[Huang, Yang, 1958]

The energy shift of the two-particle ground state is related to the $2 \rightarrow 2$ scattering amplitude

The 1/L expansion was worked out by M. Lüscher to NNLO: 0

$$\Delta E_2 = \frac{4\pi a_0}{mL^3} \left[1 + c_1 \left(\frac{a_0}{L}\right) + c_2 \left(\frac{a_0}{L}\right)^2 \right]$$

$$a_0 \equiv \text{ scattering length}$$

$$\mathcal{M}_2(E = 2m) = 32\pi m a_0$$

$$c_2 = 6.375183$$

 $c_1 = 2.837297$

 $+ O(L^{-6})$

The 1/L expansion was worked out by M. Lüscher to NNLO: 0

$$\Delta E_2 = \frac{4\pi a_0}{mL^3} \left[1 + c_1 \left(\frac{a_0}{L}\right) + c_2 \left(\frac{a_0}{L}\right)^2 \right]$$
$$a_0 \equiv \text{ scattering length}$$

 $\mathcal{M}_{2}(E = 2m) = 32\pi m a_{0}$ $c_2 = 6.375183$

 $c_1 = 2.837297$

one-to-one relation between scattering length and ground state energy!

> **Extensions:** [Beane et al.], [Hansen&Sharpe], [Pang et al.], [FRL et al.], [Müller et al.]

 $+ O(L^{-6})$

The 1/L expansion was worked out by M. Lüscher to NNLO: 0

$$\Delta E_2 = \frac{4\pi a_0}{mL^3} \left[1 + c_1 \left(\frac{a_0}{L}\right) + c_2 \left(\frac{a_0}{L}\right)^2 \right]$$
$$a_0 \equiv \text{ scattering length}$$

 $\mathcal{M}_2(E=2m) = 32\pi m a_0$ $c_2 = 6.375183$

 $c_1 = 2.837297$

one-to-one relation between scattering length and ground state energy!

> **Extensions:** [Beane et al.], [Hansen&Sharpe], [Pang et al.], [FRL et al.], [Müller et al.]

O Non-relativistic EFT in finite volume:

$$egin{aligned} \mathcal{L} &= \psi^\dagger \left(i \partial^0 - m + rac{
abla^2}{2m} + rac{
abla^4}{8m^3}
ight) \psi - rac{g_1}{4} (\psi^\dagger \psi)^2 - g_2 (\psi^\dagger \psi^\dagger)^2 \ &- g_3 ((\psi^\dagger \psi^\dagger) \, (\psi \overleftrightarrow^2 \psi) + \, \mathrm{h.c.}) \, - rac{\eta_3}{6} (\psi^\dagger \psi)^3, \end{aligned}$$

 $\nabla \nabla^2(\psi\psi)$

O Non-relativistic EFT in finite volume:

$$egin{aligned} \mathcal{L} &= \psi^\dagger \left(i \partial^0 - m + rac{
abla^2}{2m} + rac{
abla^4}{8m^3}
ight) \psi - rac{g_1}{4} (\psi^\dagger \psi)^2 - g_2 (\psi^\dagger \psi^\dagger) \ &- g_3 ((\psi^\dagger \psi^\dagger) \, (\psi \overleftrightarrow^2 \psi) + \, \mathrm{h.c.}) \, - rac{\eta_3}{6} (\psi^\dagger \psi)^3, \end{aligned}$$

O Compute energy shift in perturbation theory (1/L expansion)

$$\begin{split} \Delta E_0 &= \binom{N}{2} \frac{4\pi a_0}{mL^3} \bigg\{ 1 - \frac{a_0}{\pi L} \mathcal{I} + \left(\frac{a_0}{\pi L}\right)^2 \left[\mathcal{I}^2 + (2N-5)\mathcal{J} \right] \\ &- \left(\frac{a_0}{\pi L}\right)^3 \left[\mathcal{I}^3 + (2N-7)\mathcal{I}\mathcal{J} + (5N^2 - 41N + 63)\mathcal{K} + 8(N-2)(2\mathcal{Q} + (4N-9)\frac{\pi a_0}{m^2L^3} + (4N-6)\frac{\pi a_0^2 r_0}{L^3} \right] \\ &+ \binom{N}{3} \bigg\{ \frac{32\pi a_0^4}{mL^6} \left(3\sqrt{3} - 4\pi \right) (2\ln(mL) - \Gamma'(1) - \ln 4\pi) - \frac{\bar{\mathcal{T}}}{6L^6} \bigg\} \,. \end{split}$$

 $(\nabla^2(\psi\psi))$

 $(2+\mathcal{R})$

Non-relativistic EFT in finite volume:

$$\mathcal{L} = \psi^{\dagger} \left(i\partial^{0} - m + \frac{
abla^{2}}{2m} + \frac{
abla^{4}}{8m^{3}}
ight) \psi - \frac{g_{1}}{4} (\psi^{\dagger}\psi)^{2} - g_{2} (\psi^{\dagger}\psi^{\dagger})^{4}$$

 $- g_{3} ((\psi^{\dagger}\psi^{\dagger}) (\psi\stackrel{\leftrightarrow}{
abla}^{2}\psi) + \text{ h.c.}) - \frac{\eta_{3}}{6} (\psi^{\dagger}\psi)^{3},$

Compute energy shift in perturbation theory (1/L expansion)

 $\Delta E_0 = \binom{N}{2} \frac{4\pi a_0}{mL^3} \left[1 - \frac{a_0}{\pi L} \mathcal{I} + \left(\frac{a_0}{\pi L}\right)^2 \left[\mathcal{I}^2 + (2N - 5)\mathcal{J} \right] \right]$ $= \left(\frac{a_0}{\pi L}\right) \left[\mathcal{I}^3 + (2N-7)\mathcal{I}\mathcal{J} + (5N^2 - 41N + 63)\mathcal{K} + 8(N-2)(2\mathcal{Q} + \mathcal{R})\right]$ **two-particle** $+ (4N-9)\frac{\pi a_0}{m^2 L^3} + (4N-6)\frac{\pi a_0^2 r_0}{L^3}$ **interactions** $+\binom{N}{3}\left\{\frac{32\pi a_0^4}{mL^6}\left(3\sqrt{3}-4\pi\right)\left(2\ln(mL)-\Gamma'(1)-\ln 4\pi-\frac{\bar{\tau}}{6L^6}\right\}\right\}.$

> **Three-particle** scattering amplitude

 $(\nabla^2(\psi\psi))$

Perturbative expansions

Non-relativistic EFT in finite volume:

$$\mathcal{L} = \psi^{\dagger} \left(i\partial^{0} - m + rac{
abla^{2}}{2m} + rac{
abla^{4}}{8m^{3}}
ight) \psi - rac{g_{1}}{4} (\psi^{\dagger}\psi)^{2} - g_{2}(\psi^{\dagger}\psi^{\dagger})
abla^{2}(\psi\psi)$$

- $g_{3}((\psi^{\dagger}\psi^{\dagger}) (\psi \overleftrightarrow{\nabla}^{2}\psi) + ext{ h.c.}) - rac{\eta_{3}}{6} (\psi^{\dagger}\psi)^{3},$

Compute energy shift in perturbation theory (1/L expansion)

 $\Delta E_0 = \binom{N}{2} \frac{4\pi a_0}{mL^3} \left[1 - \frac{a_0}{\pi L} \mathcal{I} + \left(\frac{a_0}{\pi L}\right)^2 \left[\mathcal{I}^2 + (2N - 5)\mathcal{J} \right] \right]$ $\left(\frac{a_0}{\pi L}\right) \left[\mathcal{I}^3 + (2N-7)\mathcal{I}\mathcal{J} + (5N^2 - 41N + 63)\mathcal{K} + 8(N-2)(2\mathcal{Q} + \mathcal{R})\right]$ **two-particle** $+(4N-9)\frac{\pi a_0}{m^2 L^3} + (4N-6)\frac{\pi a_0^2 r_0}{L^3}$ interactions $+\binom{N}{3}\left\{\frac{32\pi a_0^4}{mL^6}\left(3\sqrt{3}-4\pi\right)\left(2\ln(mL)-\Gamma'(1)-\ln 4\pi-\frac{\bar{\mathcal{T}}}{6L^6}\right\}\right\}$

> **Three-particle** scattering amplitude

14/12

Perturbative expansions

Non-relativistic EFT in finite volume:

$$\mathcal{L} = \psi^{\dagger} \left(i\partial^{0} - m + rac{
abla^{2}}{2m} + rac{
abla^{4}}{8m^{3}}
ight) \psi - rac{g_{1}}{4} (\psi^{\dagger}\psi)^{2} - g_{2}(\psi^{\dagger}\psi^{\dagger})
abla^{2}(\psi\psi)$$

- $g_{3}((\psi^{\dagger}\psi^{\dagger}) (\psi \overleftrightarrow{\nabla}^{2}\psi) + ext{ h.c.}) - rac{\eta_{3}}{6} (\psi^{\dagger}\psi)^{3},$

Compute energy shift in perturbation theory (1/L expansion)

 $\Delta E_0 = \binom{N}{2} \frac{4\pi a_0}{mL^3} \left[1 - \frac{a_0}{\pi L} \mathcal{I} + \left(\frac{a_0}{\pi L}\right)^2 \left[\mathcal{I}^2 + (2N - 5)\mathcal{J} \right] \right]$ $\left(\frac{a_0}{\pi L}\right) \left[\mathcal{I}^3 + (2N-7)\mathcal{I}\mathcal{J} + (5N^2 - 41N + 63)\mathcal{K} + 8(N-2)(2\mathcal{Q} + \mathcal{R})\right]$ **two-particle** $+(4N-9)\frac{\pi a_0}{m^2 L^3} + (4N-6)\frac{\pi a_0^2 r_0}{L^3}$ interactions $+\binom{N}{3}\left\{\frac{32\pi a_0^4}{mL^6}\left(3\sqrt{3}-4\pi\right)\left(2\ln(mL)-\Gamma'(1)-\ln 4\pi-\frac{\bar{\mathcal{T}}}{6L^6}\right\}\right\}$

> **Three-particle** scattering amplitude

15

20

10

5

Non-relativistic EFT in finite volume:

$$\mathcal{L} = \psi^{\dagger} \left(i\partial^{0} - m + \frac{\nabla^{2}}{2m} + \frac{\nabla^{4}}{8m^{3}} \right) \psi - \frac{g_{1}}{4} (\psi^{\dagger}\psi)^{2} - g_{2} (\psi^{\dagger}\psi^{\dagger})$$
$$- g_{3} ((\psi^{\dagger}\psi^{\dagger}) (\psi \overleftrightarrow{\nabla}^{2}\psi) + \text{ h.c.}) - \frac{\eta_{3}}{6} (\psi^{\dagger}\psi)^{3},$$

Compute energy shift in perturba

 $\Delta E_0 = \binom{N}{2} \frac{4\pi a_0}{mL^3} \left(1 - \frac{a_0}{\pi L} \mathcal{I} + \left(\frac{a_0}{\pi L}\right)^2 \left[\mathcal{I}^2 + (2N - 5) \right] \right)^2 \left[\mathcal{I}^2 + (2N - 5) \right]$ $\left(\frac{a_0}{\pi L}\right) \left[\mathcal{I}^3 + (2N-7)\mathcal{I}\mathcal{J} + (5N^2 - 41N + 63)\mathcal{K} + \mathcal{O}(N-2)(2\mathcal{Q} + \mathcal{R}) \right]$ **two-particle** $+(4N-9)\frac{\pi a_0}{m^2 L^3} + (4N-6)\frac{\pi a_0^2 r_0}{L^3}$ interactions $+\binom{N}{3}\left\{\frac{32\pi a_0^4}{mL^6}\left(3\sqrt{3}-4\pi\right)\left(2\ln(mL)-\Gamma'(1)-\ln 4\pi-\frac{\bar{\mathcal{T}}}{6L^6}\right\}\right\}$

> **Three-particle** scattering amplitude

O A new field was opened by M. Lüscher in '86

finite-volume spectrum of two identical scalars

s-wave scattering amplitude

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

O A new field was opened by M. Lüscher in '86

finite-volume spectrum of two identical scalars

s-wave scattering amplitude

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

• A new field was opened by M. Lüscher in '86

- Fully general formalism exists up to date:
 - Multichannel, non-identical $2 \rightarrow 2$ scattering for particles with spin in all partial waves. Including for weak decays, such as $K \to \pi \pi$ (Lellouch-Lüscher)
 - Many people have contributed over the years:
 - **Rummukainen and Gottlieb**
 - Kim, Sachrajda and Sharpe
 - Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky, Schierholz, Zanotti
 - Briceño

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

Citations per year

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

 $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle \right| =$

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\underbrace{\mathcal{O}}_{++} \underbrace{\mathcal{O}}_{+} \underbrace{\mathcal$

[à la Kim, Sachrajda, Sharpe]

 $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} + \mathcal{O} + \mathcal{O} + \mathcal{O} \right) \right|$

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} \right) + \left(\mathcal{$

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} \right) + \left(\mathcal{$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} + \mathcal{O} + \mathcal{O} + \mathcal{O} \right) \right|$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

Finite-volume sums

$C_L(E, \overrightarrow{P}) = \int e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\underbrace{\mathcal{O}(x)}_{i=1}^{i=1} \mathcal{O}(x) + \underbrace{\mathcal{O}(x)}_{$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

1. Separation of finite-volume effects

2. Resumation of diagrams

Skeleton expansion

 $= + + + \cdots$

Finite-volume sums

$C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} \right) + \left(\mathcal{$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

Separation of finite-volume effects

2. Resumation of diagrams

 $C_L(E, \overrightarrow{P}) = \text{some algebra } \dots = C_{\infty}(E, \overrightarrow{P}) + A^{\dagger} \frac{1}{\mathscr{K}_2 + F^{-1}} A + O(e^{-mL})$

has a pole

$$\underline{E_n} + F^{-1}(\underline{E_n}, \overrightarrow{P}, L) = 0$$

Two-particle Quantization Condition $\det\left[\mathscr{K}_{2}(E_{n})+F^{-1}(E_{n},\overrightarrow{P},L)\right]=0$ Known kinematic Scattering function K-matrix

Quantization Condition(III)

Quantization
Two-particle Quantization Condition

$$det \left[\mathscr{H}_2(E_n) + F^{-1}(E_n, \overrightarrow{P}, L) \right] = 0$$

Scattering
K-matrix
Known Kinematic
function

O Matrix indices are angular momentum:

rotation invariance in infinite volume

finite-volume mixes partial waves

lm

Quantization
Two-particle Quantization Condition

$$det \left[\mathscr{H}_2(E_n) + F^{-1}(E_n, \overrightarrow{P}, L) \right] = 0$$

Scattering
K-matrix
Known Kinematic
function

O Matrix indices are angular momentum:

rotation invariance in infinite volume

$$F_{00}(q^2) \sim \left[\frac{1}{L^3} \sum_{\vec{k}} -\int \frac{d^3k}{(2\pi)^3}\right] \frac{1}{k^2 - q^2}$$

lm

$$F_{00}(q^2) \sim \left[\frac{1}{L^3} \sum_{\vec{k}} -\int \frac{d^3k}{(2\pi)^3}\right] \frac{1}{k^2 - q^2}$$

Two pions in s-wave $\mathscr{K}_{2}^{s-wave}(E_{n}) = \frac{-1}{F_{00}(E_{n}, \overrightarrow{P}, L)}$

Two pions in s-wave $\mathscr{K}_{2}^{s-wave}(E_{n}) =$ $F_{00}(E_n, \overrightarrow{P}, L)$ [Hörz, Hanlon (PRL)] _____ $\frac{E_{\rm cm}}{m_{\pi}}$ 4.0 ······ 4 3.5÷ ------3.0€ -----₽----• 2.52.0 -----

Swave

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

)		ππ	••

	TANK		

Most resonances have decay modes 0 with more than two-particles

 $h_1(1170) \rightarrow \rho \pi \rightarrow 3\pi$ $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

23/43

Most resonances have decay modes 0 with more than two-particles

 $h_1(1170) \rightarrow \rho \pi \rightarrow 3\pi$ $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

Resonance	$I_{\pi\pi\pi}$	J^P	
$\omega(782)$	0	1-	
$h_1(1170)$	0	1+	
$\omega_3(1670)$	0	3-	
$\pi(1300)$	1	0-	
$a_1(1260)$	1	1+	
$\pi_1(1400)$	1	1-	
$\pi_2(1670)$	1	2^{-}	
$a_2(1320)$	1	2^{+}	
$a_4(1970)$	1	4^{+}	
(with 3T			
decay modes)			

Most resonances have decay modes 0 with more than two-particles

 $h_1(1170) \rightarrow \rho \pi \rightarrow 3\pi$ $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

O Three-neutron force (neutron stars)

Resonance	$I_{\pi\pi\pi}$	J^P	
$\omega(782)$	0	1-	
$h_1(1170)$	0	1+	
$\omega_3(1670)$	0	3-	
$\pi(1300)$	1	0-	
$a_1(1260)$	1	1+	
$\pi_1(1400)$	1	1-	
$\pi_2(1670)$	1	2^{-}	
$a_2(1320)$	1	2^{+}	
$a_4(1970)$	1	4^{+}	
(with 3r			
decay modes)			

Most resonances have decay modes 0 with more than two-particles

 $h_1(1170) \rightarrow \rho \pi \rightarrow 3\pi$ $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

O Three-neutron force (neutron stars)

• A necessary step for four or more particles: Many-body nuclear physics • CP violation in $D \rightarrow 4\pi/2\pi$

Resonance	$I_{\pi\pi\pi}$	J^P	
$\omega(782)$	0	1-	
$h_1(1170)$	0	1+	
$\omega_3(1670)$	0	3-	
$\pi(1300)$	1	0-	
$a_1(1260)$	1	1+	
$\pi_1(1400)$	1	1-	
$\pi_2(1670)$	1	2^{-}	
$a_2(1320)$	1	2^{+}	
$a_4(1970)$	1	4^{+}	
(with 3T			
decay modes)			

Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen^{1, *} and Stephen R. Sharpe^{1, †}

¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA

24/43

Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen^{1, *} and Stephen R. Sharpe^{1, †}

¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA

24/43

Relativistic, model-independent, three-particle quantization condition O Currently, three approaches to the formalism

Maxwell T. Hansen^{1, *} and Stephen R. Sharpe^{1, †}

¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA

Generic Relativistic Field Theory (RFT)

- Hansen, Sharpe
- Also: Blanton, Briceño, Jackura, <u>FRL,</u> Szczepaniak

Non-Relativistic EFT (NREFT)

- Hammer, Pang, Rusetsky
- Also: Döring, Geng, Mai, Meißner, Pang, Wu

Finite-Volume Unitarity (FVU)

Döring, Mai

Equivalence of FVU and RFT Blanton, Sharpe [arXiv:2007.16190]

Recent review: Hansen, Sharpe [arXiv:1901.00483]

Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen^{1, *} and Stephen R. Sharpe^{1, †}

¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA

O Currently, three approaches to the formalism

Generic Relativistic Field Theory (RFT)

- Hansen, Sharpe
- Also: Blanton, Briceño, Jackura, <u>FRL,</u> Szczepaniak

Non-Relativistic EFT (NREFT)

- Hammer, Pang, Rusetsky
- Also: Döring, Geng, Mai, Meißner, Pang, Wu

Finite-Volume Unitarity (FVU)

Döring, Mai

Equivalence of FVU and RFT Blanton, Sharpe [arXiv:2007.16190]

Recent review: Hansen, Sharpe [arXiv:1901.00483]

Qualitatively more complicated than the two-particle case!

Qualitatively more complicated than the two-particle case!

Three-particle scattering amplitudes can be divergent for specific kinematics. 0

Qualitatively more complicated than the two-particle case!

Three-particle scattering amplitudes can be divergent for specific kinematics. 0

They depend also on two-to-two interactions.

But any separation between "two-particle" and "three-particle" effects is not well-defined

Easier derivation: Blanton, Sharpe [2007.16188]

$= C_{\infty}(P) + A_3 \frac{1}{\mathcal{K}_{df,3} + F_3^{-1}} A'_3 + O(e^{-mL})$

Easier derivation: Blanton, Sharpe [2007.16188]

Separation of finite and infinite volume terms:

 $= C_{\infty}(P) + A_3 \frac{1}{\mathcal{K}_{df,3} + F_3^{-1}} A'_3 + O(e^{-mL})$

Easier derivation: Blanton, Sharpe [2007.16188]

Separation of finite and infinite volume terms:

$$= C_{\infty}(P) + A_{3} \frac{1}{\mathscr{K}_{df,3} + F_{3}^{-1}} A_{3}' + O(e^{-mL})$$

Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L)| = 0$

Easier derivation: Blanton, Sharpe [2007.16188]

Separation of finite and infinite volume terms:

$$= C_{\infty}(P) + A_3 \frac{1}{\mathscr{K}_{df,3} + F_3^{-1}} A'_3 + O(e^{-mI})$$

Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L)| = 0$

"Formally" similar to the two-particle case

Easier derivation: Blanton, Sharpe [2007.16188]

Separation of finite and infinite volume terms:

$$= C_{\infty}(P) + A_{3} \frac{1}{\mathscr{K}_{df,3} + F_{3}^{-1}} A_{3}' + O(e^{-mI})$$

Three-particle Quantization Condition for identical scalars with G-parity det $\left| \mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L) \right| = 0$

"Formally" similar to the two-particle case

Three-particle Quantization Condition for identical scalars with G-parity

det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)| = 0$

27/43

Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)| = 0$

Three-particle Quantization Condition for identical scalars with G-parity $\det\left[\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)\right] = 0$

Truncation: neglect higher ℓ + cutoff function

27/43

Three-particle Quantization Condition for identical scalars with G-parity det $\left[\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L) \right] = 0$

• $\mathcal{K}_{df,3}$ is real, divergence-free. It is an intermediate cutoff-dependent quantity with the symmetries of the physical amplitude

Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)| = 0$

• $\mathcal{K}_{df,3}$ is real, divergence-free. It is an intermediate cutoff-dependent quantity with the symmetries of the physical amplitude

 F_3 depends on kinematical functions and on the two-to-two scattering amplitude

Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L)| = 0$

• $\mathscr{K}_{df,3}$ is real, divergence-free. It is an intermediate cutoff-dependent quantity with the symmetries of the physical amplitude

F₃ depends on kinematical functions and on the two-to-two scattering amplitude

Recovering the physical amplitude requires a further step

Truncation: neglect higher ℓ + cutoff function

27/43

2. Solve integral equations to obtain The physical three-to-three amplitude

Hansen, Sharpe [arXiv:1504.04248]

Determine \mathscr{K}_2 and $\mathscr{K}_{df,3}$ from the two and three-pion spectrum

Physical 3->3 amplitude $\mathcal{K}_2, \mathcal{K}_{df.3}$ Integral equations

2. Solve integral equations to obtain The physical three-to-three amplitude

Hansen, Sharpe [arXiv:1504.04248]

Determine \mathscr{K}_2 and $\mathscr{K}_{df,3}$ from the two and three-pion spectrum

This formalism provides a unitary parametrization of scattering amplitudes! (independent of lattice QCD)

 $K_{2}, K_{df.3}$

Physical 3->3 amplitude

1408.5933]

Integral equations

Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz* Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon[†] Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany (Dated: October 8, 2019)

Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz^{*} Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon[†] Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany (Dated: October 8, 2019)

two-Tt energies

three-Tt energies

I = 3 three-pion scattering amplitude from lattice QCD

Tyler D. Blanton,¹, * Fernando Romero-López,², \dagger and Stephen R. Sharpe¹, \ddagger ¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA (Dated: February 4, 2020)

²Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain

I = 3 three-pion scattering amplitude from lattice QCD

Tyler D. Blanton,¹, * Fernando Romero-López,², \dagger and Stephen R. Sharpe¹, \ddagger ¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA ²Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain (Dated: February 4, 2020)

- O
- Include only s-wave interactions
- **Compare to Chiral Perturbation Theory** 0

First analysis of the full finite-volume spectrum of $2\pi^+$ and $3\pi^+$

I = 3 three-pion scattering amplitude from lattice QCD

Tyler D. Blanton,¹, * Fernando Romero-López,², \dagger and Stephen R. Sharpe¹, \ddagger ¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA ²Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain (Dated: February 4, 2020)

- 0
- Include only s-wave interactions
- **Compare to Chiral Perturbation Theory** 0

fit

First analysis of the full finite-volume spectrum of $2\pi^+$ and $3\pi^+$

parametrize

predict

0 Model 2: parametrization that incorporates Adler-zero:

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z^2} \left(B_0 + B_1 q^2 + \cdots\right)$

Adler-zero fit does much better! $\chi^2_{Adler}/dof = 1.3 \ll \chi^2_{ERE}/dof = 3.3$

O Model 1: standard Effective Range Expansion (ERE)

0 Model 2: parametrization that incorporates Adler-zero:

 $\frac{q}{M}\cot\delta_0 = -\frac{1}{Ma_0} + \frac{1}{2}Mr_0\frac{q^2}{M^2} + \cdots$

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - \tau^2} \left(B_0 + B_1 q^2 + \cdots \right)$

Adler-zero fit does much better! $\chi^2_{Adler}/dof = 1.3 \ll \chi^2_{ERE}/dof = 3.3$

ChPT predictions

$$Ma_0 = 0.0938(12)$$

 $M^2r_0a_0 = 3$

Adler-zero fik

$$Ma_0 = 0.089(6)$$

 $M^2 r_0 a_0 = 2.63(8)$

O Model 1: standard Effective Range Expansion (ERE)

0 Model 2: parametrization that incorporates Adler-zero:

 $\frac{q}{M}\cot\delta_0 = -\frac{1}{Ma_0} + \frac{1}{2}Mr_0\frac{q^2}{M^2} + \cdots$

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - \tau^2} \left(B_0 + B_1 q^2 + \cdots \right)$

Adler-zero fit does much better! $\chi^2_{Adler}/dof = 1.3 \ll \chi^2_{ERE}/dof = 3.3$

ChPT predictions

$$Ma_0 = 0.0938(12)$$

 $M^2r_0a_0 = 3$

Adler-zero fik

$$Ma_0 = 0.089(6)$$

 $M^2 r_0 a_0 = 2.63(8)$

O Model 1: standard Effective Range Expansion (ERE)

0 Model 2: parametrization that incorporates Adler-zero:

 $\frac{q}{M}\cot\delta_0 = -\frac{1}{Ma_0} + \frac{1}{2}Mr_0\frac{q^2}{M^2} + \cdots$

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - \tau^2} \left(B_0 + B_1 q^2 + \cdots \right)$

Adler-zero fit does much better! $\chi^2_{Adler}/dof = 1.3 \ll \chi^2_{ERE}/dof = 3.3$

ChPT predictions

$$Ma_0 = 0.0938(12)$$

 $M^2r_0a_0 = 3$

Adler-zero fik

$$Ma_0 = 0.089(6)$$

 $M^2 r_0 a_0 = 2.63(8)$

O Parametrize $\mathscr{K}_{df,3}$ including only s-wave interactions:

Fit results: three-pion sector $\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2} \right)$

1. 2σ evidence for $\mathcal{K}_{df,3} \neq 0$.

- **1.** 2σ evidence for $\mathcal{K}_{df,3} \neq 0$.
- 2. **Constant and linear terms are** highly correlated.

- **1.** 2σ evidence for $\mathcal{K}_{df,3} \neq 0$.
- 2. **Constant and linear terms are** highly correlated.
- Some tension with ChPT.

- **1.** 2σ evidence for $\mathcal{K}_{df,3} \neq 0$.
- 2. **Constant and linear terms are** highly correlated.
- Some tension with ChPT.

0 [Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

On a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathscr{K}_{df,3} = \mathscr{K}_{df,3}^{iso,0} + \mathscr{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

0 [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

On a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathscr{K}_{df,3} = \mathscr{K}_{df,3}^{iso,0} + \mathscr{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

Chiral d

0 [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

On a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathscr{K}_{df,3} = \mathscr{K}^{iso,0}_{df,3} + \mathscr{K}^{iso,1}_{df,3} \left(\frac{s - 9M^2}{9M^2}\right)$$

Chiral du

[Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

old O On a later article, the chiral dependence of $\mathscr{K}_{df.3}$ has been studied, including physical pions.

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

Final step Physical 3->3 amplitude M_{z} $\mathcal{K}_2, \mathcal{K}_{df,3}$ Integral equations

Solving the integral equations

Solving the integral equations Dalitz plots from lattice QCD $(3\pi^+)$ Final step Physical 3->3 amplitude 7.5^{-1} M_=391 MeV 7.0^{-1} $\mathscr{K}_2, \mathscr{K}_{df,3}$ M2 6.5Integral $/m_{\pi}^{2}$ equations $m_{13/}^{2}$ 5.5°

0

Hansen, FRL, Sharpe [arXiv:2003.10974]

The formalism has been recently generalized to include all three-pion isospin channels

0

Hansen, FRL, Sharpe [arXiv:2003.10974]

The formalism has been recently generalized to include all three-pion isospin channels

Hansen, FRL, Sharpe [arXiv:2003.10974]

The formalism has been recently generalized to include all three-pion isospin channels

"All ingredients are now available for lattice studies of resonances with three-particle decay channels, such as the $\omega(782)$ and the $h_1(1170)$ "

(a) ω channel.

 $I=0, J^P=1^-$ [Hanse

/// **

(b) h_1 channel.

[Hansen, FRL, Sharpe]

I=0, JP=1+

O Recent extension of RFT for nondegenerate particles [Blanton, Sharpe]

O Recent extension of RFT for nondegenerate particles [Blanton, Sharpe]

det QC3 becomes a 3x3 matrix.

Each entry corresponds to a choice for the spectator

• Applicable to $D_s^+ D_0 D^+$ and $D_s^+ D_0 \pi^-$

$$(1+\widehat{F}_3\widehat{\widetilde{\mathcal{K}}}_{\mathrm{df},3})=0.$$

• Recent extension of RFT for nondegenerate particles [Blanton, Sharpe]

det QC3 becomes a 3x3 matrix.

Each entry corresponds to a choice for the spectator

• Applicable to $D_s^+ D_0 D^+$ and $D_s^+ D_0 \pi^-$

• NREFT formalism for $D^+D^+K^+$ systems [Pang et al.]

$$(1+\widehat{F}_3\widehat{\widetilde{\mathcal{K}}}_{\mathrm{df},3})=0.$$

• Recent extension of RFT for nondegenerate particles [Blanton, Sharpe]

det QC3 becomes a 3x3 matrix.

Each entry corresponds to a choice for the spectator

• Applicable to $D_s^+ D_0 D^+$ and $D_s^+ D_0 \pi^-$

• NREFT formalism for $D^+D^+K^+$ systems [Pang et al.]

• Towards the Roper resonance! $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

$$(1+\widehat{F}_3\widehat{\widetilde{\mathcal{K}}}_{\mathrm{df},3})=0.$$

Two-particle lattice studies are achieving high accuracy in the meson sector. 0 Well-controlled calculations even at the physical point (isospin-2, rho)

Baryon-Baryon scattering is the present frontier

Two-particle lattice studies are achieving high accuracy in the meson sector. 0 Well-controlled calculations even at the physical point (isospin-2, rho)

Baryon-Baryon scattering is the present frontier

Two-particle lattice studies are achieving high accuracy in the meson sector. 0 Well-controlled calculations even at the physical point (isospin-2, rho) **Baryon-Baryon** scattering is the present frontier

We are entering a new era of three-particle scattering studies. 0

- Finite-volume formalism for identical particles.
- A tool for solving relativistic integral equations for three body systems
- Some lattice studies of three charged pions (and kaons)
- The formalism for generic three-pion resonances is ready!
- **Progress in QC3 for nondegenerate scalar particles.**

1 Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons)

1 Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons)

2. Formalism for three-particle weak decays $K \rightarrow 3\pi$

1 Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons)

2. Formalism for three-particle weak decays $K \rightarrow 3\pi$

1 Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons)

- 2. Formalism for three-particle weak decays $K \rightarrow 3\pi$
- **Beyond three particles!**

43/43

1 Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons)

- 2. Formalism for three-particle weak decays $K \rightarrow 3\pi$
- **Beyond three particles!**

- 1 Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons)
- 2. Formalism for three-particle weak decays $K \rightarrow 3\pi$
- **Beyond three particles!**

