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K → ππ K → πππ D → ππ, KK̄, (ππππ), . . .

There are still many puzzling hadrons out there 

• XYZ, charmonium, bottomonium  

• Roper resonance, N(1440) → Δπ → Nππ

First-principles nuclear interactions: 

•   interactions: Input for neutron stars and larger nuclei EFT treatment2N & 3N
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• Formalism for 2  2 scattering 

• Three-particle scattering on the lattice 
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→
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Lattice QCD is the state-of-the-art treatment of  the strong interaction at hadronic energies

• Euclidean time: action has statistical meaning

𝒵 = ∫ DψDψ̄DAe−SE(ψ,ψ̄,Aμ)

lattice spacing

a

Uμ = eiaAμ
gauge 
links

• Discretize gauge fields and fermion fields: 

Under control but technical  

(e.g., discretization effects and continuum limit)

→

• Compute correlation functions

⟨𝒪(t)𝒪(0)⟩ =
1
𝒵 ∫ DψDψ̄DA 𝒪(t)𝒪(0)e−SE(ψ,ψ̄,Aμ)
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In Lattice QCD, we measure energy levels and matrix elements: “Spectral decomposition”
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[Fig. by J. Baeza-Ballesteros]

Periodic BC: 
 exp → coshA0e−E0tt → ∞

𝒪(t) = ∑⃗
x

(d̄γ5u)( ⃗x , t)

Multiple operators to obtain several energy levels  

The Spectrum

E0

E1

E2

E3

Hörz, Hanlon [arXiv:1905.04277]

𝒪 ∼ π+π+

Mπ=200 MeV
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with periodic BC

⃗p =
2π
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(nx, ny, nz)

Two particles: E = 2 m2 +
4π2

L2
⃗n 2

Interactions change the spectrum: 
it can be treated as a perturbation

The energy shift of  the two-particle ground state  
is related to the  scattering amplitude2 → 2

Ground state to leading order

E2 − 2m = ⟨ϕ( ⃗0 )ϕ( ⃗0 ) |HI |ϕ( ⃗0 )ϕ( ⃗0 )⟩

ΔE2 =
ℳ2(E = 2m)

8m2L3
+ O(L−4)

[Huang, Yang, 1958]

In general a problem of  

Quantum Field Theory  

in finite volume
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Threshold expansion
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(in preparation) 

isospin-2 ππ scattering length as  
a function of the number of colors 

one-to-one relation between scattering length  
and ground state energy!

Extensions: 
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 [Pang et al.], [FRL et al.], [Müller et al.] 
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N-particle 
ground state in 

φ4 theory
Compute energy shift in perturbation theory (1/L expansion)Suitable for weakly 
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The Lüscher Formalism 

16

A new field was opened by M. Lüscher in ‘86

finite-volume  
spectrum of  
two identical  

scalars

s-wave 
scattering  
amplitude

Hot topic in  
lattice QCD

Fully general formalism exists up to date:

• Multichannel, non-identical  scattering for  
  particles with spin in all partial waves. Including 
  for weak decays, such as  (Lellouch-Lüscher)

2 → 2

K → ππ

• Many people have contributed over the years:

Rummukainen and Gottlieb 
Kim, Sachrajda and Sharpe                 
Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky, Schierholz, Zanotti 
Briceño
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⟶ ∫ d3k + ∑⃗
k

− ∫ d3k

In order to derive the full relation, consider the finite-volume correlator:

[à la Kim, Sachrajda, Sharpe] 

CL(E, ⃗P ) = ∫ eiPx⟨𝒪(x) |𝒪(0)⟩ = 𝒪 𝒪 𝒪 𝒪+ B2 𝒪 𝒪B2+ B2 + ⋯

Skeleton expansion

Bethe-Salpeter Kernels

B2 + + + ⋯=

Only exponentially  
small effects in L

∑⃗
k

Finite-volume 
sums

CL(E, ⃗P ) = C∞(E, ⃗P ) + A† 1
𝒦2 + F−1

A + O(e−mL)

ℳ−1
2 = 𝒦−1

2 − i s − 2m2

Known kinematic 
function

1. Separation of  finite-volume effects 

2.  Resumation of  diagrams
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CL(E, ⃗P ) = = C∞(E, ⃗P ) + A† 1
𝒦2 + F−1

A + O(e−mL)some algebra …

det [𝒦2(En) + F−1(En, ⃗P , L)] = 0
Scattering  
K-Matrix

Known kinematic 
function

Two-particle Quantization Condition

“QC2”! It holds below Ecm < 4m

Finite-volume states appear  
when the correlation function 

 has a pole
𝒦ℓ

2 =
16π s

q2ℓ+1 cot δℓ

K-matrix parametrized  
in terms of  phase shift
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det [𝒦2(En) + F−1(En, ⃗P , L)] = 0
Scattering  
K-matrix

Known kinematic 
function

Two-particle Quantization Condition

𝒦s−wave
2 (En) =

−1

F00(En, ⃗P , L)

Infinite dimensional, need truncation! 

Two pions in s-wave

𝒦2 = ( )ℓ = 0

F = ( )
ℓ = 1

ℓ = 2

rotation invariance in infinite volume

finite-volume mixes partial waves

Matrix indices are angular momentum:  ℓm F00

F00(q2) ∼
1
L3 ∑⃗

k

− ∫
d3k

(2π)3

1
k2 − q2
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Isospin-2 ππ scattering

20

𝒦s−wave
2 (En) =
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F00(En, ⃗P , L)

Two pions in s-wave one 
energy  
level

a phase 
shift  
point
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Isospin-2 ππ scattering

21

s-wave d-wave

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC) ] 

Mπ=139 MeV

fit to experiment

Very prolific field! 

 ρ, coupled channels…
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Three particles  
in finite volume
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ππ

ππ

ππππ
πππ

πππ
…

…
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23

Most resonances have decay modes  
  with more than two-particles

h1(1170) → ρπ → 3π

(with 3π  
decay modes)

N(1440) → Δπ → Nππ
Three-neutron force (neutron stars)

A necessary step for four or more particles: 

• Many-body nuclear physics 

• CP violation in D → 4π/2π
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• Finite-Volume Unitarity (FVU)
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Recent review:  
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They depend also on two-to-two interactions.

• But any separation between “two-particle” and “three-particle” effects is not well-defined

Three-particle scattering amplitudes can be divergent for specific kinematics.

can go 
on-shell

Qualitatively more complicated than the two-particle case!

ℳ3 = + + +⋯
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det [𝒦df,3(E) + F−1
3 (E, ⃗P , L)] = 0

Three-particle Quantization Condition 
for identical scalars with G-parity

“QC3”

Unfortunately, it 
is  

not so simple!

“Formally” similar to the two-particle case

= C∞(P) + A3
1

𝒦df,3 + F−1
3

A′ 3 + O(e−mL)

Easier derivation: Blanton, Sharpe [2007.16188]

Separation of  finite and infinite volume terms:
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Quantization Condition (II)

27

det [𝒦df,3(E) + F−1
3 (E, ⃗P , L)] = 0

Three-particle Quantization Condition 
for identical scalars with G-parity

Matrix indices are more complicated: 

[  of  the spectator] x [  of  the “pair”]⃗k ℓm

                 is real, divergence-free. It is an  

intermediate cutoff-dependent quantity with 

the symmetries of  the physical amplitude

𝒦df,3

            depends on  kinematical functions 

and on the two-to-two scattering amplitude

F3

Truncation: 
neglect higher   +  cutoff  functionℓ

Recovering the physical 
amplitude requires a further step 
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A two-step process

28

E0

E1

E2

E3

2π and 3π 
Spectrum 

1. Determine  and   from the 

two and three-pion spectrum

𝒦2 𝒦df,3

Hansen, Sharpe   [arXiv:1408.5933]

2. Solve integral equations to obtain 
The physical three-to-three amplitude

𝒦2, 𝒦df,3

Physical 3->3  
amplitude

ℳ3
Integral 
equations

Hansen, Sharpe   [arXiv:1504.04248]

det [𝒦2 + F−1
2 ] = 0

2π 

det [𝒦df,3 + F−1
3 ] = 0

3π 

This formalism provides a 
 unitary parametrization  

of  scattering amplitudes! 
(independent of  lattice QCD) 
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Three-pion 
scattering from 

the lattice 
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QCDπ
π

π

π
π

π
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two-π+ energies three-π+ energies

Mπ=200 MeV
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Fit results: two-pion sector

32

Model 1: standard Effective Range Expansion (ERE) 
q
M

cot δ0 = −
1

Ma0
+

1
2

Mr0
q2

M2
+ ⋯

Model 2: parametrization that incorporates Adler-zero: 
q
M

cot δ0 =
sM

s − z2 (B0 + B1q2 + ⋯)
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Trivial only to 
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Other simple systems can also be studied: 2K+ & 3K+

Many energy levels that allow for s- and d-wave interactions to be extracted! 

Study of  3K system 
[ Alexandru et al. ] 
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prediction from QC3[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe (in preparation)] 

Other simple systems can also be studied: 2K+ & 3K+

Many energy levels that allow for s- and d-wave interactions to be extracted! 

Study of  3K system 
[ Alexandru et al. ] 
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Solving the integral equations

36

𝒦2, 𝒦df,3

Physical 3->3  
amplitude

ℳ3
Integral 
equations

Final step
Dalitz plots from lattice QCD

M4
π |ℳ3 |2

[Hansen et al. (HadSpec) ] 

(3π+)

Mπ=391 MeV

Particle-Dimer phase shift [Jackura et al.] 
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Generic 3π system

38

The formalism has been recently generalized to include all three-pion isospin channels 

Hansen, FRL, Sharpe [arXiv:2003.10974] 

Multiple 2π  
subchannels

“All ingredients are now available for 
 lattice studies of resonances with  

three-particle decay channels,  
 such as the ω(782) and the h1(1170)”
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Toy example: “h1” and “ω”

39

ρπ

“h1” 

“ω”

ρπ

I=0, JP=1+I=0, JP=1- [Hansen, FRL, Sharpe]

3π



/43

Nondegenerate particles

40

Recent extension of  RFT for nondegenerate particles [Blanton, Sharpe] 
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D+
s D0 D+

• QC3 becomes a 3x3 matrix. 

• Each entry corresponds to a choice for the spectator

• Applicable to                                and D+
s D0 π−

Nondegenerate particles

40

Recent extension of  RFT for nondegenerate particles [Blanton, Sharpe] 

NREFT formalism for  systems [Pang et al.] D+ D+ K+

Towards the Roper resonance!  N(1440) → Δπ → Nππ
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Summary

42

Two-particle lattice studies are achieving high accuracy in the meson sector. 

• Well-controlled calculations even at the physical point (isospin-2, rho) 

• Baryon-Baryon scattering is the present frontier

 We are entering a new era of  three-particle scattering studies. 

• Finite-volume formalism for identical particles. 

• A tool for solving relativistic integral equations for three body systems 

• Some lattice studies of  three charged pions (and kaons) 

• The formalism for generic three-pion resonances is ready! 

• Progress in QC3 for nondegenerate scalar particles.
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ππ
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πππ
π

πππ
π

Incoming

O
ut

go
in

g

G-Parity

1. Generalizing the formalism for 
   generic two- and three- particle systems, 
   (e.g. nucleons) 

2. Formalism for three-particle weak decays 
K → 3π

3. Beyond three particles!

Thanks! 


