REVISITING THE DISCOVERY POTENTIAL OF THE ISOBAR RUN AT RHIC

Alba Soto-Ontoso

[Jan Hammelmann, ASO, Massimiliano Alvioli, Hannah Elfner, Mark Strikman, arXiv:1908.10231]

JLAB Theory Seminar

Remote, 22nd June, 2020

The Chiral Magnetic Effect in a nutshell

QCD axial anomaly in the massless limit

Ingredients

Chiral fermions **2)** $F\tilde{F} \neq 0$ **3)** Strong magnetic field

 \mathbf{M} Chiral symmetry restoration in the QGP phase $T_c \sim 156$ MeV

[HotQCD Collab. PLB795 (2019) 15-21]

Chiral symmetry restoration in the QGP phase

3

Chiral symmetry restoration in the QGP phase

\mathbf{M} Sources of $F\tilde{F} \neq 0$

Axial charge fluctuations in the Glasma

[T. Lappi, S. Schlichting, PRD 97, 034034 (2018)] [P. Guerrero-Rodriguez, JHEP 1908 (2019) 026]

3

Chiral symmetry restoration in the QGP phase

 \mathbf{M} Several sources of $F\tilde{F} \neq 0$

Skokov et al. Int.J.Mod.Phys. A24 (2009) 5925-5932

$$\vec{j} \propto \mu_5 \overrightarrow{B}$$

Experimental determination of the CME

Charge-dependent azimuthal correlations

$$\gamma_{\alpha\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\rm RP}) \rangle, \alpha, \beta \in \{+, -\}$$

[S.Voloshin PRC 70, 057901 (2004)]

CME prediction: $\gamma_{++,--} < 0, \gamma_{+-} > 0$

Experimental determination of the CME

Charge-dependent azimuthal correlations

$$\gamma_{\alpha\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\rm RP}) \rangle, \alpha, \beta \in \{+, -\}$$

[S.Voloshin PRC 70, 057901 (2004)]

CME prediction: $\gamma_{++,--} < 0$, $\gamma_{+-} > 0$

Experimental determination of the CME

Contributions to the experimental measurement:

Local charge conservation, momentum conservation, resonance decays...

e.g.[S.Schlichting, S.Pratt PRC 83 (2011) 014913] STAR'09 data explained without CME

Two ways out

• New observables beyond $\gamma_{\alpha\beta}$ have been proposed.

e.g. [M. Magdy et al. PRC 97, 061901 (2018)]

Isobar run at RHIC

"We have specifically investigated the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission."

> - Chiral Magnetic Effect Task Force Report [Chin.Phys. C41 (2017) no.7, 072001]

 $_{44}$ Ru⁹⁶ + $_{44}$ Ru⁹⁶ vs. $_{40}$ Zr⁹⁶ + $_{40}$ Zr⁹⁶ @200GeV Change signal (B), keeping background (v₂) fixed Check the impact of ${}_{44}$ Ru⁹⁶ and ${}_{40}$ Zr⁹⁶ nuclear structure on the hypothesis "Change signal (B), keeping background (v₂) fixed"

Woods-Saxon parameters for isobars

Traditionally nucleons sampled from a Woods-Saxon distribution

 $\rho(r,\theta) = \frac{\rho_0}{e^{(r-R'(\theta,\phi))/d} + 1}$

where
$$R'(\theta) = R_0(1 + \beta_2 Y_2^0(\theta))$$

44**Ru**⁹⁶

 $R_0 = 5.08 \text{ fm}$

d = 0.46 fm

<u>Option 1</u>: $\beta_2 = 0.158$

[Prytichenko et al. Atom Data Nucl. Data Tabl. 107 1, (2016)]

Option 2: $\beta_2 \sim 0$

[Moller et al. Atom Data Nucl. Data Tabl. 59 185, (1995)]

Beyond Woods-Saxon distribution

X No distinction between protons and neutrons

X Nucleons are considered independent of each other

Neutron skin within the liquid drop model

 $B(Z,N) = a_v A - a_s A^{2/3} - a_c Z^2 / A^{1/3} - a_A (N-Z)^2 / A + \dots$ [Wikipedia] Surface Coulomb Volume Asymmetry

Neutron-rich nuclei: where to locate extra-neutrons? Surface or core?

Neutron-skin thickness: surface tension vs stiffness of the symmetry energy (L) Δr_{np}

[X. Roca-Maza et al. PRL106 (2011), 252501]

Neutron skin: experimental data

[LEAR Collab. Int Jour of Mod Phys E 13 (2004) 343]

Neutron skin: experimental data

Neutron skin: implementation for ₄₀Zr⁹⁶

Neutron-halo type i.e. Δr_{np} translates into $d_n > d_p$

Short-range nucleon-nucleon correlations

Short-range nucleon-nucleon correlations

Metropolis Monte Carlo generator of nuclear configurations using [Alvioli et al. PLB 680 (2009]

Other studies in heavy-ion collisions: [http://inspirehep.net/author/profile/M.Alvioli.1]

Nuclear configurations for isobar run

[Jan Hammelmann, ASO, Massimiliano Alvioli, Hannah Elfner, Mark Strikman, arXiv:1908.10231]

To be compared with "default" Woods-Saxon distribution

Role of deformation and neutron-skin on eccentricity and magnetic field strength

SMASH as a tool [Weil et al. PRC 94 (2016) no.5, 054905]

Relativistic hadronic transport approach available at

https://smash-transport.github.io

Binary hadron-hadron interactions proceed via string excitation and decay à la PYTHIA 8 [Mohs et al. arXiv:1909.05586]

Eccentricity as a proxy for v_2

Participant eccentricity at the maximum overlap time $t = R/\sqrt{\gamma^2 - 1}$

Up to 10% difference on background contribution among the isobars in ultra-central collisions

Eccentricity probability distribution

Normalized such that the integral is one

Neat enhancement in ultra-central collisions due to deformation

"..., keeping background (v₂) fixed"

Same background from mid-to-peripheral collisions

Check with the literature

Our result is in agreement with other models

Not sufficient to select the same centrality bin in both event samples to ensure identical background

Magnetic field

Event-by-event calculation via Lienard-Wiechert retarded potentials

$$e\vec{B}(t,\vec{r}) = \alpha_{\text{EM}} \sum_{n} \frac{(1-v_n^2)(\vec{v}_n \otimes \vec{R}_n)}{R_n^3 [1-(\vec{R}_n \otimes \vec{v}_n)/R_n^3]^{3/2}}$$

• $\vec{R}_n(t) = \vec{r} - \vec{r}_n(t)$: observation point

Magnetic field strength

Magnetic field strength computed at the center of the collision

Concentration of protons in the nucleus core leads to a higher magnetic field in peripheral collisions

Origin of the enhancement

$$B^2 = \langle B \rangle^2 + \sigma^2$$

Not an effect of a larger degree of fluctuations

"Change signal (B), keeping background (v₂) fixed"

