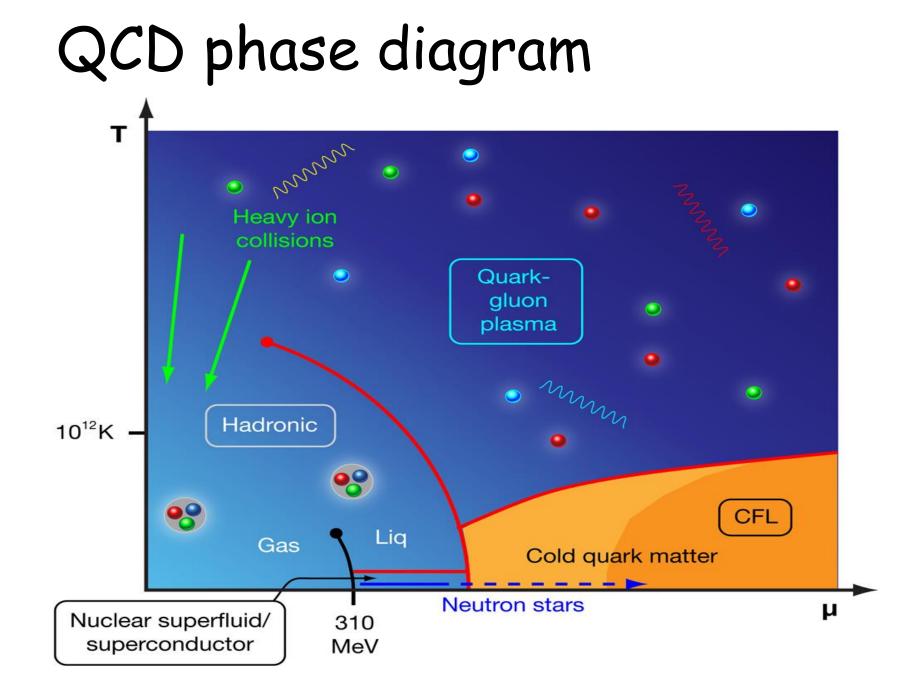


Particle-vortex statistics and dense QCD

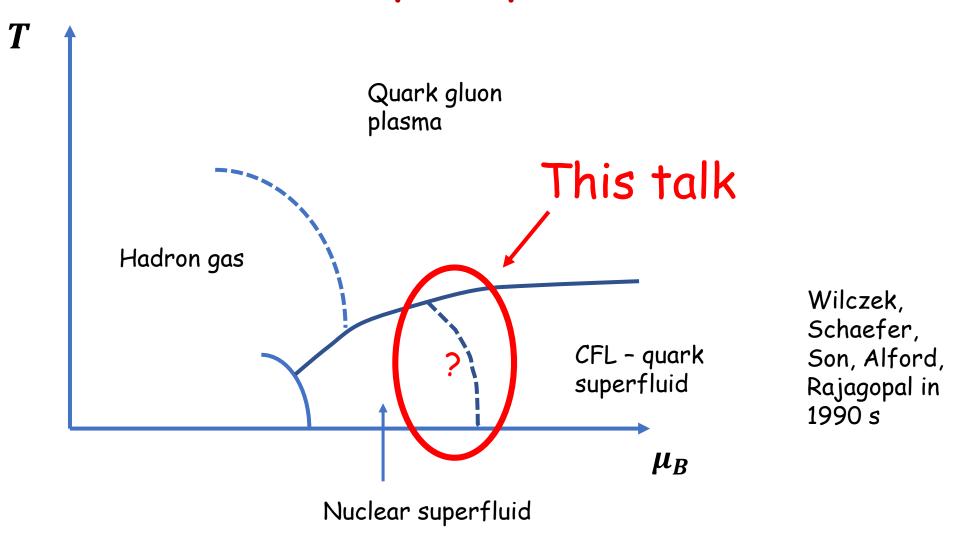
Srimoyee Sen,

Institute for Nuclear Theory, University of Washington

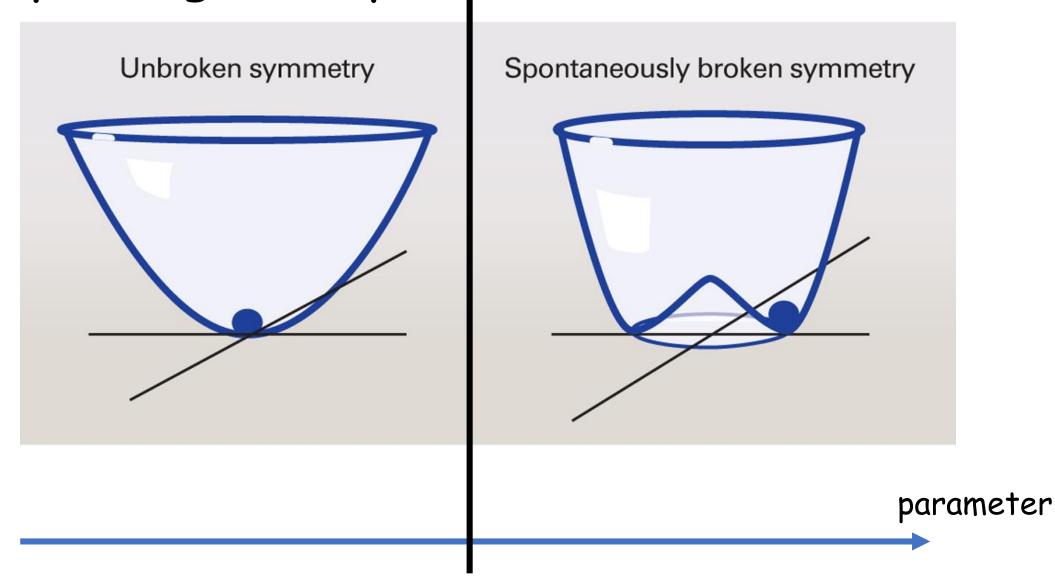
In collaboration with Aleksey Cherman and Laurence Yaffe



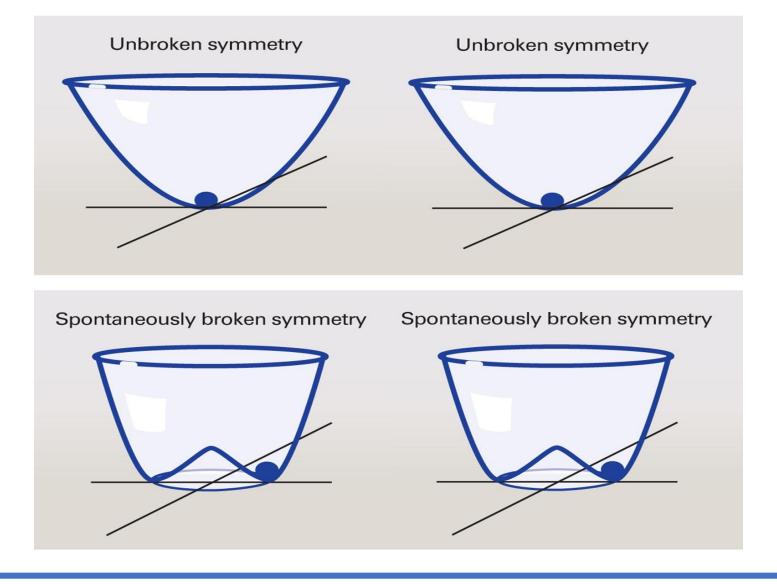
An idealization pretty close to nature (?) : 3color 3-flavor QCD : equal quark masses.



Standard approach : symmetry/Landau paradigm for phase transition

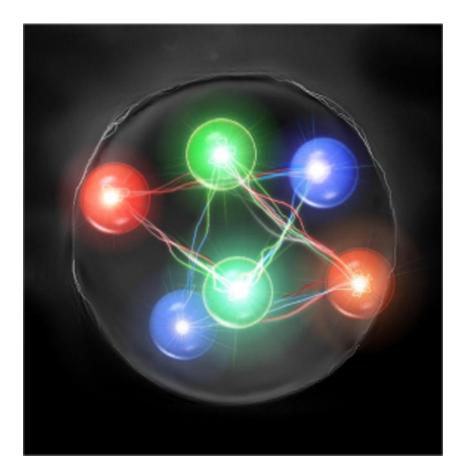


Standard approach : symmetry/Landau paradigm for continuity



Nuclear matter (low density):

- Condensation of H dibaryons.
- Breaks $U(1)_B$ baryon number spontaneously : superfluidity.
- In the chiral limit : spontaneous breaking of chiral symmetry : $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$.



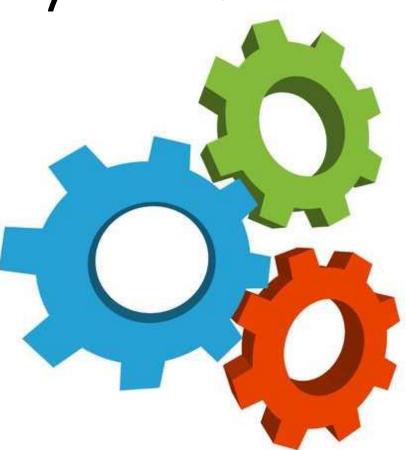
Asymptotically high density

- Fermi sphere of quarks.
- BCS instability at the Fermi surface.
- Cooper pairs of quarks.



Asymptotically high density : colorflavor locking

- The form of the condensate $\left\langle q_{c}^{i} C q_{b}^{j} \right\rangle \propto \Delta \epsilon^{ijk} \epsilon_{abk} \equiv \Phi_{ab}^{ij}$. *i*, *j* color and *a*, *b* flavor indices.

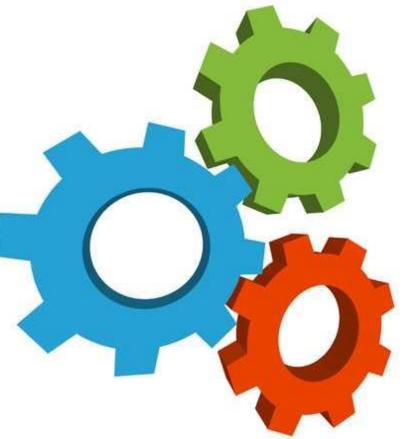


Asymptotically high density : colorflavor locking

Write the condensate as a color antifundamental

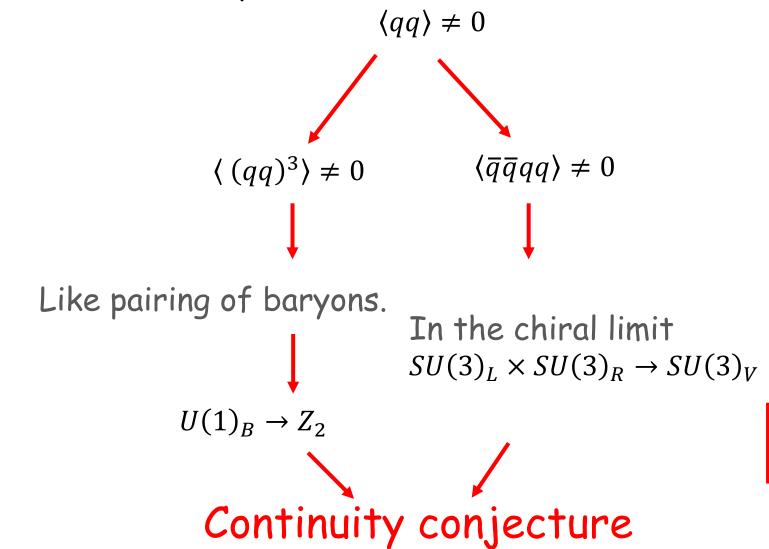
$$\epsilon^{ijl}\epsilon_{abm}\Phi^{ij}_{ab} \equiv \phi^l_m$$

 $\psi = -i \log(\det(\phi))$ is the Nambu-Goldstone (NG) mode for baryon number breaking.



Gauge invariant order parameter => Continuity

v.e.v for the diquark condensate (schematic)



Schaefer-Wilczek, 1999

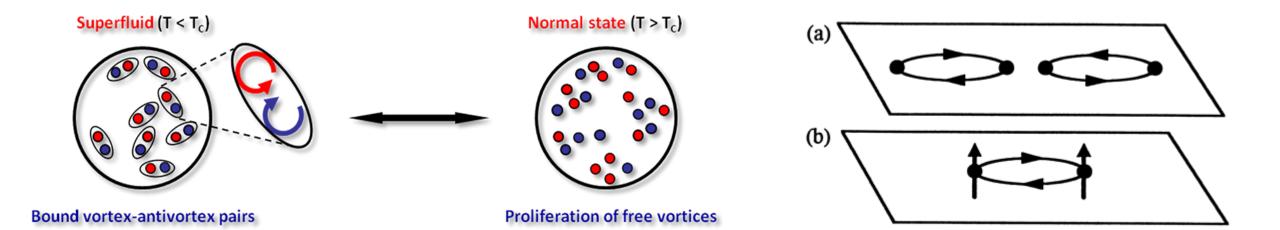
Low energy EFT

$$S_{U(1)} = \int d^4x \, \left(\frac{1}{2} 6 \frac{\mu^2}{\pi^2} ((\partial_t \psi)^2 + \frac{1}{3} (\partial_i \psi)^2) \right) + \dots$$

In the limit of $m_q = 0$, there are extra NGB s coming from chiral symmetry breaking.

This is conventional wisdom, but is incomplete as we will see.

Phase transition = change in symmetry? Not necessarily..

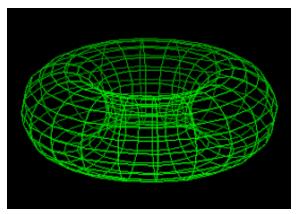


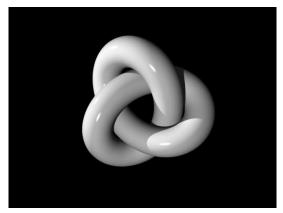
B-K-T transition

Fractional quantum hall effect

Credit: http://www-amop.phy.cam.ac.uk/amop-zh/Research3.html, http://www.pnas.org/content/96/16/8821

Phase transition detected by probing topology Analyze theory on spatially compact manifolds





Or equivalently

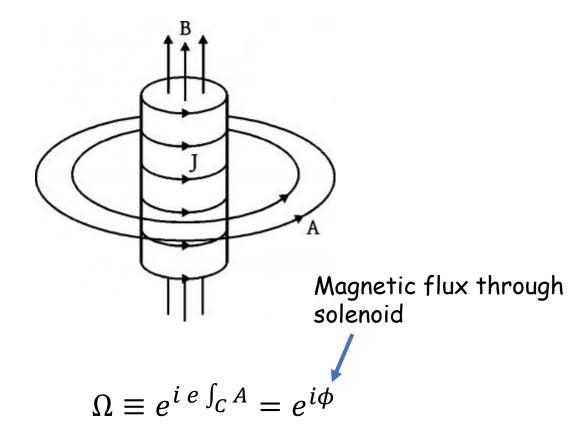
Look into topological field configurations in ordinary spacetime : like <u>vortices, flux tubes</u> etc.

 $\begin{array}{c}
V_P \\
\mathbb{R}^3 \\
\overline{u_\theta} \\
\Omega[C]
\end{array}$

<u>We'll take</u> <u>this route</u> <u>for this</u> <u>talk.</u>

Check <u>Aharonov-Bohm</u> phases.

Standard Aharonov-Bohm (to become the topological order parameter)

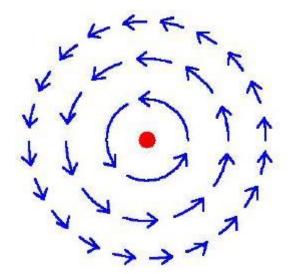


What other than a solenoid has a "confined" flux tube?

Ans: superconductors.

To understand superconducting flux tubes first remember superfluid vortices.

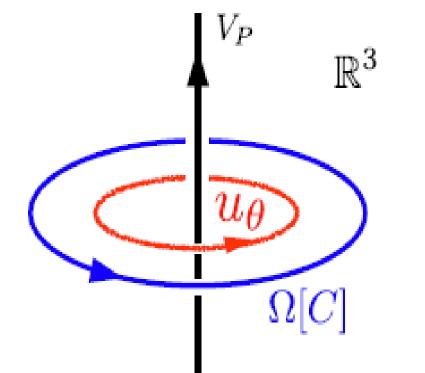
Toy example ordinary single component superfluid vortex.



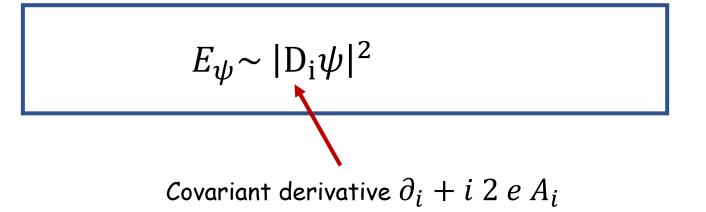
Phase of order parameter ψ winds around the vortex axis by one ~ $e^{i\theta}$, θ = azimuthal angle, r = distance from the core.

$$E_{\psi} \sim |\nabla \psi|^2 \sim \frac{1}{r^2}$$

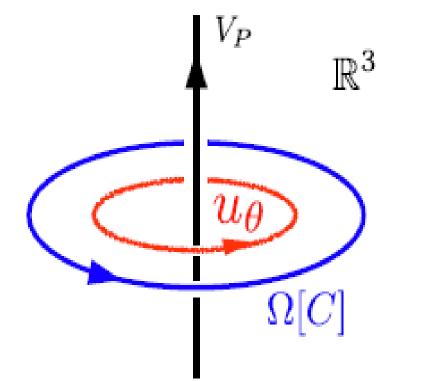
Toy example ordinary superconducting flux-tube/vortex.



Two electron Cooper pair : $\langle ee \rangle = \psi$ winds around the vortex axis by one unit: $\psi \sim e^{i\theta}$.



Toy example ordinary superconducting flux-tube.



Minimize energy density with the gauge field ansatz $A = \frac{b}{r}\hat{\theta}$. Result : $b = \frac{1}{2}$.

 $E_{\psi} \sim 0$

Aharonov - Bohm phase of $e^{i e \int A} = e^{i\pi} = -1.$

Quark matter ... color Aharonov-Bohm (AB)

• Color Aharonov-Bohm phase is a gauge invariant quantity.

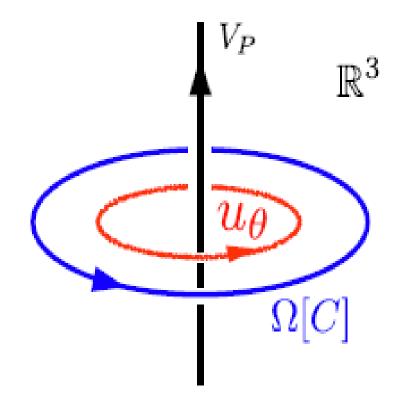
$$\Omega \equiv \mathrm{Tr}[e^{i g \int_{\mathcal{C}} A}]$$

• This phase around vortices is going to serve as a new tool for detecting new phases.

Vortices

- Solve for vortex profiles in CFL phase.
- The energy density

$$E_{\phi} \sim \mathrm{Tr} |D_i \phi|^2$$
, $D_i = \partial_i + i A_i$

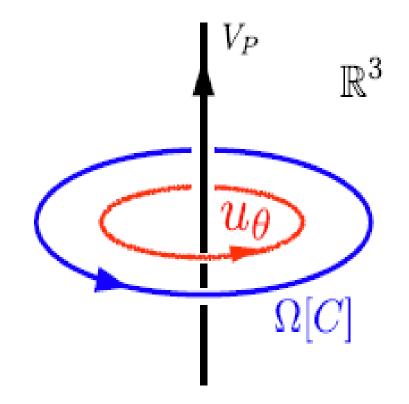


Vortices

• Minimal circulation (cheapest) vortices

$$\frac{\phi}{\Delta} = \operatorname{diag}\left[e^{i\theta}f(r), g(r), g(r)\right].$$

$$A_{\theta} = \frac{h(r)}{r} \operatorname{diag}\left[-2a, a, a\right]$$



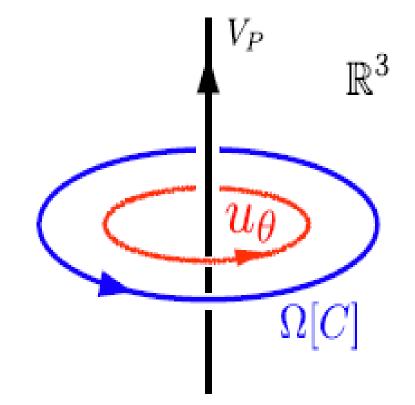
 $f(r), g(r), h(r) \rightarrow 1$ with $r \rightarrow \infty$.

Far away from the core

•
$$E \sim \frac{1}{r^2} \operatorname{Tr} \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} -2a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \right)$$

• Minimizing the energy density

$$\sim \frac{1}{r^2} \left((1 - 2a)^2 + 2a^2 \right)$$
$$a = \frac{1}{3}.$$

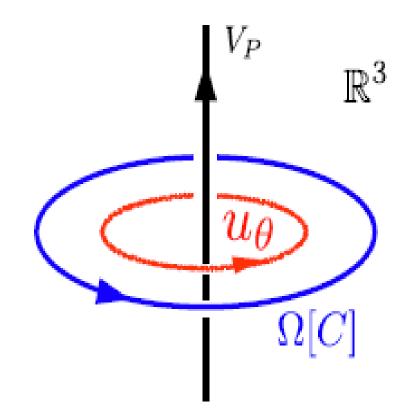


Points to note (contrast with ordinary superconducting and superfluid vortex)

• Det
$$\left(\frac{\phi}{\Delta}\right) \to e^{i\theta}$$
 for $r \to \infty$

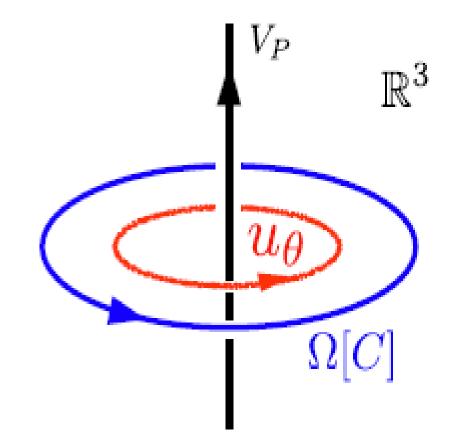
 \rightarrow superfluid vortex with minimal nontrivial $U(1)_B$ winding.

• Global vortices.



Necessarily present in rotating neutron star for example.

Aharonov - Bohm around vortices :



AB phase along a path (P) encircling the vortex C

$$\Omega \equiv e^{i \int_C A} = e^{\frac{2\pi i}{3}}$$

In other words

 $\Omega = e^{\frac{2\pi i}{3}l(C,P)}$

where l is the linking number of paths C and P.

Screening and ** fractionalization ** :

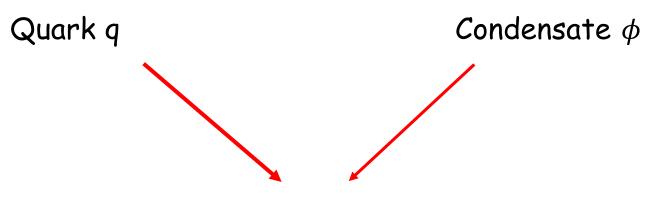
 How do nontrivial AB phase affect *physical* gauge invariant quasiparticle excitations ?

• How does this relate to color screening in color superconductor?

The nontrivial Z_3 phases correspond to the Aharonov-Bohm phase acquired by a quark going around a minimal vortex.

Dressing and ** fractionalization ** :

Remember : CFL condensate ϕ is a colorantifundamental.



 $q \phi$ color singlet : "baryon"

Orbital angular momentum : $L_z \equiv \hat{z}. \bar{r} \times (\bar{p} - \bar{A})$ shifted by 1/3 with respect to \mathbb{Z} in the presence of a vortex.

Dressing and ** fractionalization ** :

• The angular velocity $\frac{d\theta}{dt} = \frac{L_z}{m r^2}$ is shifted by the presence of the AB phases.

• A $q\phi$ excitation in the presence of a vortex (far from its core) moves as a free particle with fractional orbital angular momentum $L_z \in \mathbb{Z} + 1/3$.

Quasiparticle excitations:

ΔL_z	0	$+\hbar/3$	$-\hbar/3$
bosons	q ar q	$ar{q}ar{q}\phi$	$qq\phi^*$
fermions	$qqq, \ ar{q}ar{q}ar{q}$	$q\phi$	$ar{q}\phi^*$

 $q(\overline{q})$ is quark (hole) quasiparticle excited above the fermi surface. ϕ is the condensate v.e.v.

- Conventional low energy EFT of CFL (high density quark matter) incomplete.
- EFT for the $U(1)_B$ NGB needs to be coupled to a topological QFT to produce the right particle-vortex statistics.
- Coupling to TQFT can be made explicit using BF formulation of Z_3 discrete gauge theory.

Implications part 2: low density nuclear matter (Expectation)

- In hadronic regime gauge field fluctuates strongly no perturbative control.
- No coherent di-quark condensate over macroscopic length scales.
- Trivial AB phase : $\Omega=1$ around vortices. Although not calculable, this is the most likely scenario.

Quark-hadron discontinuity

• If the AB phase around minimal nontrivial vortices in superfluid nuclear matter is trivial :

Phase transition between quark and hadronic matter.

Continuity ?

- If there is no phase transition between the two regimes, the vortices in nuclear matter have to exhibit the same AB phase as in quark matter.
- The low energy EFT of Goldstone mode then couples to a TQFT in nuclear matter just as in quark matter.
- Orbital angular momentum in the presence of $U(1)_B$ superfluid vortices would be fractionalized in nuclear matter.

Hard to believe.

Work in progress

- Look for simpler models that produce the same low energy EFT.. Terrestrial superfluids ? Lattice models ?
- Move away from the flavor degenerate limit and repeat the analysis.
- Implications for neutron star physics, nuclear experiments
 ?

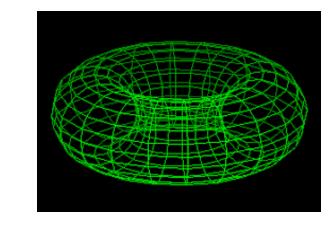
The EFT:
This 3 is important to produce the holonomy or AB phase.
•
$$S_{eff} = \int_{M_4} \frac{f^2}{2} (\partial_\mu \psi)^2 + \frac{i}{2\pi} \int_{M_5} \epsilon^{\mu\nu\sigma\lambda} b^3_{\mu\nu} (3\partial_\sigma a_\lambda - \partial_\sigma \partial_\lambda \psi)$$

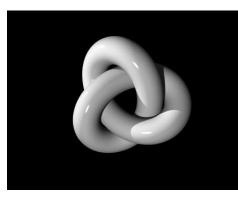
The goldstone mode : phonon

The discrete gauge field

Probing topology

- The results obtained with vortices obtainable on a compact manifold.
- Helps make connection with standard techniques of detecting topological order / ground state degeneracy.



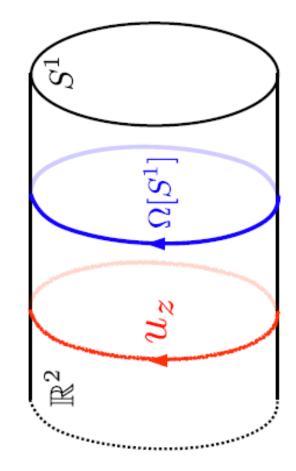


Imagine QCD of nontrivial manifold.

- Compactify one spatial dimension.
- length L : Larger than all other length scales in the problem.

• Use periodic boundary conditions (b.c.) for all fields.

Goal : To compute :
$$\Omega \equiv e^{i \oint A}$$
 along S_1 .



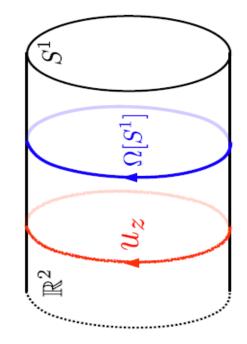
• Without loss of generality write the condensate as a 3×3 diagonal color-flavor matrix with windings along the compact direction given by k_1, k_2, k_3 .

- The gradient term then generates an effective potential for $\boldsymbol{\Omega}$ given by

.......................

$$V_{eff}(\Omega) = \kappa \frac{\Delta^2 v_s^2}{L^2} \min_{k \in Z^3} \sum_{i=1,2,3} (2\pi k_i + \theta_i)^2 + \dots$$

with $\Omega = \begin{pmatrix} e^{i\theta_1} & 0 & 0 \\ 0 & e^{i\theta_2} & 0 \\ 0 & 0 & e^{i\theta_3} \end{pmatrix}$: $\theta_3 = -\theta_1 - \theta_2$



Minimize the effective potential.

Results :

One global minimum at $\theta = \{0,0,0\}$ with $k = \{0,0,0\}$. $\longrightarrow \Omega = 1$.

Two local minima at
$$\theta = \{\frac{2\pi}{3}, \frac{2\pi}{3}, -\frac{4\pi}{3}\}, k = \{0, 0, 1\} \longrightarrow \Omega = e^{\frac{2\pi i}{3}}.$$

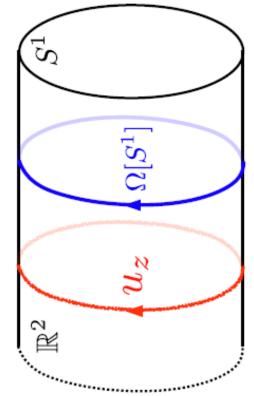
and $\theta = \{\frac{4\pi}{3}, -\frac{2\pi}{3}, -\frac{2\pi}{3}\}, k = \{-1, 0, 0\}. \longrightarrow \Omega = e^{-\frac{2\pi i}{3}}.$

Interpretation of the minima

- superfluid flow velocity along S_1 : $u_{\mu} = \frac{1}{2\mu_B} \operatorname{tr} (\phi^{-1} D_{\mu} \phi).$
- superflow exists along S_1

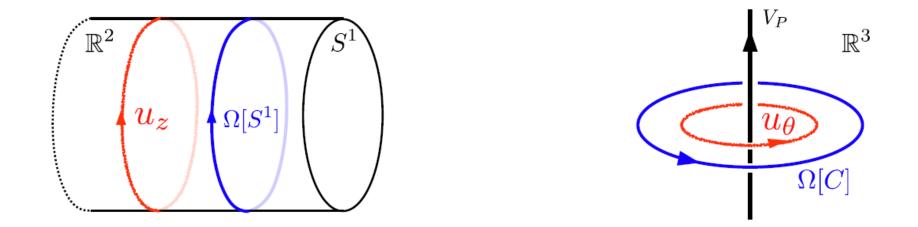
$$u_z = \frac{\pi}{\mu_{BL}} (k_1 + k_2 + k_3) \,.$$

- For the global minimum, $u_z = 0$.
- But, for the local minima : $\sum_i k_i = \pm 1$. So, nonzero superfluid flow (and minimal circulation) along compact direction for the local minima.



Interpretation:

• The circle compactified theory is mimicking an annular region surrounding a superfluid vortex on R_4 .



• Fundamental rep quarks have Z_3 statistics with minimal vortices in high density quark matter.

Comment on Higgs-confinement :

- Our story not in conflict with Higgs-confinement continuity proved in Fradkin-Shenker.
- The example in Fradkin-Shenker involves no $U(1)_B$ global symmetry.
- Over generalizations of the theorem may fail.
- Our results may well be one of the many scenarios where Higgsconfinement continuity fails.