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An idealization pretty close to nature (?) : 3-
color 3-flavor QCD : equal quark masses.
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Standard approach : symmetry/Landau
paradigm for phase transition
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Standard approach : symmetry/Landau
paradigm for continuity
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Nuclear matter (low density):

« Condensation of H dibaryons.

* Breaks U(1)p baryon number spontaneously :
superfluidity.

* In the chiral limit : spontaneous breaking of
chiral symmetry : SU(3), X SU(3)g = SU(3)y.




Asymptotically high density
« Fermi sphere of quarks.

« BCS instability at the Fermi surface.

« Cooper pairs of quarks.




Asymptotically high density : color-
flavor locking

* Color-Meissner effect —— weakly
coupled at all length scales.

* The form of the condensate
<q§ C q,ﬁ> o< A eUReyp = @i, color
and a, b flavor indices.




Asymptotically high density : color-
flavor locking

Write the condensate as a
color antifundamental

ijl j — 4l
et €EabmPgp = bm

Y = —ilog(det(¢)) is the
Nambu-Goldstone (NG) mode
for baryon number breaking.




Gauge invariant order parameter =
Continuity

v.e.v for the diquark condensate (schematic)
(qq) # 0

((qq)°) # 0 (qqqq) # 0

| |

Like pairing of baryons.

In the chiral limit
l SU3), x SUR)r = SU3)y

Ul)p > Z
(s 2\‘ / Schaefer-Wilczek, 1999

Continuity conjecture



Low energy EFT

Svw=J d*x (565 (@) +3 @) ).

In the limit of m, = 0, there are extra NGB s coming
from chiral symmetry breaking.

This is conventional wisdom, but
is incomplete as we will see.




Phase transition = change in
symmetry ? Not necessarily..

Superfluid (T < T) Normal state (T >T,)
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% (b) \ ‘ ' \
Bound vortex-antivortex pairs Proliferation of free vortices

B-K-T transition Fractional quantum hall effect

Credit: http://www-amop.phy.cam.ac.uk/amop-zh/Research3.html, http://www.pnas.org/content/96/16/8821
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Phase transition detected by probing topology

Analyze theory on spatially compact manifolds

Or equivalently

Look into topological field

: : : : R
configurations in ordinary space- ,
time : like vortices, flux tubes Well take
' : Uy this route
etc. I for this

| QIC] talk.
Check Aharonov-Bohm phases.




Standard Aharonov-Bohm (to become
the topological order parameter)

/I"I‘J\ What other than a solenoid
has a “"confined"” flux tube ?

-
I Ans: superconductors.
Mo o

A To understand

m Magnetic flux through superconducting flux tubes
solenoid first remember superfluid
/ vortices.

Q=plelcA_ pit



Toy example ordinary single
component superfluid vortex.

¥ e P Phase of order parameter i winds
v : _ ,i0
A around the vortex axis by one ~ e'?,
v (:\ T 4 6 = azimuthal angle, r = distance
*K,L i F ¥ from the core.
N ~ wy ;|7|
Gy AT

Ey~ [VY|*~—

Credit: ucdavis



Toy example ordinary
superconducting flux-tube/vortex.

Vi | Two electron Cooper pair : {ee) = 1
RS winds around the vortex axis by
ohe unit: P ~ e?.

Eyy~ |Djp|?

\

Covariant derivative 0; + 1 2 e A;




Toy example ordinary
superconducting flux-tube.

Vip . Minimize energy densu‘ry with the
R? gauge field ansa’rz A=- 9
Result: b ==

U
Q/C]
Aharonov - Bohm phase of

plef A = gim — _1



Quark matter ... color Aharonov-Bohm
(AB)

* Color Aharonov-Bohm phase is a gauge invariant quantity.
Q = Trfe!9Jc4]

» This phase around vortices is going to serve as a new tool
for detecting new phases.



Vortices

« Solve for vortex profiles in CFL phase.

* The energy density

E¢ ~ TrlDi¢|2, Di — ai + lAl




Vortices

 Minimal circulation (cheapest) vortices

% — dlag [eief(r), 9(7”)» g(T)]

h(r
Ag = %diag |—2a,a,al

f(r),g(r),h(r) > 1 with r — oo,



Far away from the core

. 1 0 O —2a 0 O
. E~r—2Tr 0 0 0]+ 0 a O
0 0 O 0 0 a

* Minimizing the energy density
~ Tiz ((1 - 2a)? + 2a?)
) g=-

3

)



Points to note (contrast with ordinary
superconducting and superfluid vortex)

e Det (%) — e forr - o R3

—— superfluid vortex with
minimal nontrivial U(1)g winding.

* Global vortices.

Necessarily present in rotating neutron star for
example.



Aharonov - Bohm around vortices

AB phase along a path (P)
encircling the vortex C

In other words

27Tl

Q= 3 lCP

where [ is the linking number of
paths C and P.




Screening and **fractionalization™* :

 How do nontrivial AB phase affect *physical* gauge invariant
quasiparticle excitations ?

* How does this relate to color screening in color superconductor ?

The nontrivial Z; phases correspond to the Aharonov-Bohm
phase acquired by a quark going around a minimal vortex.



Dressing and **fractionalization™* :

Remember : CFL condensate ¢ is a color-
antifundamental.

Quark g Condensate ¢

NS

color singlet : "baryon”

Orbital angular momentum : L, = 2.7 X (p — A) shifted
by 1/3 with respect to Z in the presence of a vortex.



Dressing and **fractionalization™* :

 The angular velocity C;z = mL; is shifted by

the presence of the AB phases.

* A q¢ excitation in the presence of a vortex
(far from its core) moves as a free particle
with fractional orbital angular momentum
L,€Z+1/3.



Quasiparticle excitations :

AL. 0 +h/3 | —h/3
bosons qq qq9 qq9"
fermions| qqq, 337 | qo o

q (@) is quark (hole)
quasiparticle
excited above the
fermi surface.

¢ is the condensate

V.e.v.
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Takeaways : Wiy

» Conventional low energy EFT of CFL (high density quark
matter) incomplete.

« EFT for the U(1); NGB needs to be coupled to a topological
QFT to produce the right particle-vortex statistics.

* Coupling to TQFT can be made explicit using BF
formulation of Z; discrete
gauge theory.



Implications part 2:
low density nuclear matter (Expectation)

* In hadronic regime gauge field fluctuates strongly — no
perturbative control.

* No coherent di-quark condensate over macroscopic length
scales.

* Trivial AB phase : Q = 1 around vortices.

Although not calculable, this is the most likely
scenario.



Quark-hadron discontinuity

* If the AB phase around minimal nontrivial vortices in superfluid
nuclear matter is trivial :

Phase transition between quark and hadronic matter.



Continuity ?

 If there is no phase transition between the two regimes, the vortices
in huclear matter have to exhibit the same AB phase as in quark
matter.

* The low energy EFT of Goldstone mode then couples to a TQFT in
nuclear matter just as in quark matter.

 Orbital angular momentum in the presence of U(1)y superfluid vortices
would be fractionalized in nuclear matter.

—) Hard to believe.



Work in progress

* Look for simpler models that produce the same low energy
EFT.. Terrestrial superfluids ? Lattice models ?

* Move away from the flavor degenerate limit and repeat the
analysis.

« Implications for neutron star physics, nuclear experiments
?



This 3 is important to produce
the holonomy or AB phase.

2 2 :
[0 5 (0,0)" + 5=,y €4V72b2, (30505 — 503)

|

The discrete gauge
field

The goldstone mode :
phonon



Probing topology

* The results obtained with
vortices obtainable on a compact
manifold.

* Helps make connection with
standard techniques of detecting
topological order / ground state
degeneracy.




Imagine QCD of nontrivial manifold.

« Compactify one spatial dimension.

* length L : Larger than all other length scales in
the problem.

« Use periodic boundary conditions (b.c.)
for all fields.

Goal : To compute: Q= el94 along S;.

E
.
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* Without loss of generality write the condensate as a 3 x 3 diagonal
color-flavor matrix with windings along the compact direction given
by kq, k», k3.

 The gradient term then generates an effective potential for Q
given by

A%v?

Veff('Q‘) — K 12

Y .
S min Yi—1232mk; + 6,)°+..
NS et 0 0
X RS WITh (1 = 0 eigz 0 : 93 — _91 _ 92
\\.:__d_/f 0 0 ei93

&
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Minimize the effective potential.

Results :

=
----
________
......................

One global minimum at 6 = {0,0,0} with k ={0,0,0}. — Q=1.

27T

Two local minima at 6 = {2?“?” —4?”}, k=1{001} — Q=c3.
2TTi

and 6 = (-, -, -, k= {-1,00}. — Q=e 3.



Interpretation of the minima

» superfluid flow velocity along S; @ wu, = ﬁ tr (71D, ).

» superflow exists along S;
u, =ﬁ(k1 +k2 +k3)

* For the global minimum, u, = 0.

 But, for the local minima : Y, k; = +1. So, honzero
superfluid flow (and minimal circulation) along compact
direction for the local minima.

.
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Interpretation:

* The circle compactified theory is mimicking an annular region
surrounding a superfluid vortex on R,.

| Q[C]

* Fundamental rep quarks have Z; statistics with minimal vortices
in high density quark matter.



Comment on Higgs-confinement :

* Our story not in conflict with Higgs-confinement continuity proved in
Fradkin-Shenker.

« The example in Fradkin-Shenker involves no U(1)5 global symmetry.
* Over generalizations of the theorem may fail.

* Our results may well be one of the many scenarios where Higgs-
confinement continuity fails.



