Impact of combining lattice QCD and experiment

Joe Karpie (JLab) part of the HadStruc Collaboration

Lattice data can be powerful

- Lattice QCD can calculate matrix elements of many hadrons with numerical methods
 Gamberg et al Phys Rev D 106 (2022) 3,
- Lattice QCD have cost of theoretical and statistical errors
- Individual local matrix elements added to global analyses already have dramatic impact on final results

Non local matrix elements can

Parton Distributions and the Lattice

 Parton Distributions are defined by operators with light-like separations

 $M(p,z) = \langle p \, | \, \bar{\psi}(z) \gamma^{\alpha} W(z;0) \psi(0) \, | \, p \rangle$

Use space-like separations

X. Ji Phys Rev Lett 110 (2013) 262002

- Wilson line operators $z^2 \neq 0$
- Fourier transformations of matrix elements give PDF in certain limits
- Factorizable matrix elements analogous to cross sections

- In quasi-PDF/LaMET and pseudo-PDF/Short distance, separation and momentum swap roles
 - Matrix element $M(p,z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} W(z;0) \psi(0) | p \rangle$

$$= 2p^{\alpha} \mathcal{M}(\nu, z^2) + 2z^{\alpha} \mathcal{N}(\nu, z^2)$$

 $\nu = p \cdot z$ $z^2 \neq 0$

- In quasi-PDF/LaMET and pseudo-PDF/Short distance, separation and momentum swap roles
 - Matrix element $M(p,z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} W(z;0) \psi(0) | p \rangle$

 $\nu = p \cdot z$ $z^2 \neq 0$

Quasi-PDF:
$$\mathcal{M}(z, p_z) = \int_{-\infty}^{\infty} \frac{p_z dy}{2\pi} e^{-iyp_z z} \tilde{q}(y, p_z^2)$$

• Large Momentum Effective Theory: X. Ji Phys. Rev. Lett. 110 (2013) 262002

$$\tilde{q}(y, p_z^2) = \int \frac{dx}{|x|} K\left(\frac{y}{x}, \frac{\mu^2}{(xp_z)^2}\right) q(x, \mu^2) + O\left(\frac{\Lambda_{\text{QCD}}^2}{(xp_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)p_z)^2}\right)$$

 $= 2p^{\alpha} \mathcal{M}(\nu, z^2) + 2z^{\alpha} \mathcal{N}(\nu, z^2)$

- In quasi-PDF/LaMET and pseudo-PDF/Short distance, separation and momentum swap roles
 - Matrix element $M(p,z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} W(z;0) \psi(0) | p \rangle$

 $\nu = p \cdot z$ $z^2 \neq 0$

• Quasi-PDF:
$$\mathcal{M}(z, p_z) = \int_{-\infty}^{\infty} \frac{p_z dy}{2\pi} e^{-iyp_z z} \tilde{q}(y, p_z^2)$$

• Large Momentum Effective Theory: X. Ji Phys. Rev. Lett. 110 (2013) 262002

$$\tilde{q}(y, p_z^2) = \int \frac{dx}{|x|} K\left(\frac{y}{x}, \frac{\mu^2}{(xp_z)^2}\right) q(x, \mu^2) + O\left(\frac{\Lambda_{\text{QCD}}^2}{(xp_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)p_z)^2}\right)$$

 $= 2p^{\alpha} \mathcal{M}(\nu, z^2) + 2z^{\alpha} \mathcal{N}(\nu, z^2)$

• Pseudo-ITD:

$$\mathcal{M}(\nu, z^2) = \int dx \, C(x\nu, \mu^2 z^2) q(x, \mu^2) + O(\Lambda_{\text{QCD}}^2 z^2)$$

A. Radyushkin *Phys. Rev. D* 96 (2017) 3, 034025

- In quasi-PDF/LaMET and pseudo-PDF/Short distance, separation and momentum swap roles
 - Matrix element $M(p,z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} W(z;0) \psi(0) | p \rangle$

 $\nu = p \cdot z$ $z^2 \neq 0$

• Quasi-PDF:
$$\mathcal{M}(z, p_z) = \int_{-\infty}^{\infty} \frac{p_z dy}{2\pi} e^{-iyp_z z} \tilde{q}(y, p_z^2)$$

• Large Momentum Effective Theory: X. Ji Phys. Rev. Lett. 110 (2013) 262002

$$\tilde{q}(y, p_z^2) = \int \frac{dx}{|x|} K\left(\frac{y}{x}, \frac{\mu^2}{(xp_z)^2}\right) q(x, \mu^2) + O\left(\frac{\Lambda_{\text{QCD}}^2}{(xp_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)p_z)^2}\right)$$

 $= 2p^{\alpha} \mathcal{M}(\nu, z^2) + 2z^{\alpha} \mathcal{N}(\nu, z^2)$

• Pseudo-ITD: Integral inverse problem like global analysis

$$\mathcal{M}(\nu, z^{2}) = \int dx C(x\nu, \mu^{2} z^{2}) q(x, \mu^{2}) + O(\Lambda_{\text{QCD}}^{2} z^{2})$$

A. Radyushkin *Phys. Rev. D* 96 (2017) 3, 034025

If PDFs are universal, then....

If the same universal PDFs are factorizable from lattice and experiment, and if power corrections can be controlled for both

Why not analyze both simultaneously?

 Factorization of hadronic cross sections

 Factorization of Lattice observables

 $d\sigma_h = d\sigma_q \otimes f_{h/q} + P \cdot C \cdot M_h = M_q \otimes f_{h/q} + P \cdot C \cdot$

Consider Lattice as a theoretical prior to the experimental Global Fit

The Comparison to DIS

 In DIS and pseudo-PDF/Short distance the two variables are analogous

Factorization Scale:

 Q^2 / z^2

- Describes scale in hard part
- Scale for factorization to PDF
- Scale in power expansion
- ${\scriptstyle \bullet}\, {\rm Keep}$ away from Λ^2_{QCD}
- Technically only requires
 single value

NEED!

Dynamical variable:

- x_B / ν
- Describes interesting partonic structure
- Variable for integration/inverse problems of *x*
- Can take large or small value
- Want as many as are available
- Wider range improves the inverse problem if you really want *x*-space

Complementarity in Lattice and Experiment

LATTICE

- Lattice limited to low ν , sensitive to $x > \sim 0.2$, but high sensitivity to large x
- Lattice matching relation is integral over all *x*
- Low p_z data can reach high signal-to-noise compared to experiment
- Lattice can evaluate independently each spin, flavor, and even hadron

EXPERIMENT

- Cross Sections limited to specific max but can reach very low x_B
- Cross Section matching is integral from x_B to 1
 - Creates sensitively to hard kernel in large *x* region
- Wealth of decades of experimental data outweigh modern lattice

First combined lattice PDF and experiment global analysis (unpol)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)

• First study by ETMC and JAM collaborations

Lattice data provide independent measurements of PDFs

Can study discrepancies to understand systematic errors

First combined lattice and experiment global analysis (unpol)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)

First combined lattice and experiment global analysis (heli)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)

Lattice matrix elements can give direct independent information on different spins without major modifications

Some datapoints can be more precise than experiment and give constraining power

First combined lattice and experiment global analysis (heli)

J. Bringewatt et al Phys Rev D 103, 016003 (2021)

Strange quark distributions

- Lattice can directly access individual quark flavors independently
- Flavor decomposed matrix elements have noisy "disconnected" contributions
- Studies of strange and charm PDFs have begun and give promising precision

11

Complementarity in pion PDF

- Lattice can directly access different hadrons
- Lattice lacks sensitivity to threshold logs and can be used to test theoretical kernels
- Improves precision in large x where experimental data does not exist
- Low momentum pion data are extremely precise

P. Barry et al, Phys. Rev. D 105 (2022) 11, 114051

Complementarity in pion PDF

- Lattice can directly access different hadrons
- Lattice lacks sensitivity to threshold logs and can be used to test theoretical kernels
- Improves precision in large x where experimental data does not exist
- Low momentum pion data are extremely precise

R. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990)

- SU(3)

Spinning gluons

$$J = \frac{1}{2}\Delta\Sigma + L_q + L_G + \Delta G$$
$$\Delta G = \int dx \,\Delta g(x)$$

- SU(3)+pos

Positivity constraints are invalid

 $|\Delta g| \le g$

J. Collins, T. Rogers, N. Sato, Phys Rev D 105 (2022) 7,076010

- Removal reveals new band of solutions
- With constraint: $\Delta G = 0.39(9)^{-0.2}$
- Without constraint: $\Delta G = 0.3(5)$
- Local Lattice: $\Delta G = 0.251(47)(16)$

Y-B. Yang et al (χ-QCD) Phys. Rev. Lett. 118, 102001 (2017) K-F. Liu arXiv: 2112.08416

SU(2)

0.4

Helicity Gluon matrix element

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Gluon matrix elements are typically far noiser than quarks
- Lorentz decomposition has >10 invariant terms.

•

• Useful Combination
$$\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$$

- Gives two amplitudes, one has no leading twist contribution
- Undesired term dominates and must be removed

Helicity Gluon Matrix Element

• Large contamination from
$$\frac{m^2}{p_z^2} \nu \widetilde{\mathcal{M}}_{pp}$$
 will need to be removed
 $\widetilde{\mathfrak{M}}(z,p) = M_{\Delta g} - \frac{m^2}{p_z^2} \nu \widetilde{\mathcal{M}}_{pp}$

Model both terms

Subtract rest frame

Model with Neural Network

T. Khan, T. Liu, R. Sufian arXiv:2211.15587

Helicity Gluon PDF with LQCD

Conclusions

- Many PDFs lack the amount of data and the precision which unpolarized quark PDFs obtain
- Lattice data is sensitive to higher x while experiment is sensitive to lower x
- Combined analysis give better results than either alone
- Even imprecise lattice data can impact the gluon helicity of the nucleon
 - Though, negative Δg is compatible with modern lattice results
- Future work will need to study lattice systematic errors

Thank you and the organizers!