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C H R I S T I A N  S Z E G E D Y  E T.  A L .  G O I N G  D E E P E R  W I T H  C O N V O L U T I O N S .

 “GoogLeNet network with all the bells and whistles” 
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Input Filter Feature Map

D I S C R E T E  C O N V O L U T I O N
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max pool with 2x2 filters 
and stride 2
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Can we use machine learning to accurately 
classify proton events from the AT-TPC?

Metrics



99% Accuracy

Detect Lung Cancer
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precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2 ⋅ precision ⋅ recall
precision + recall

accuracy =
TP + TN

TP + FN + FP + TN
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E X P E R I M E N TA L  D ATA



V G G 1 6  A R C H I T E C T U R E

P R E - T R A I N E D  O N  I M A G E N E T  D ATA !



Experiment Precision Recall F1

Experimental → Experimental 0.96 0.90 0.93



S I M U L AT E D  D ATA



Experiment Precision Recall F1

Experimental → Experimental 0.96 0.90 0.93

Simulated → Simulated 1.00 1.00 1.00





Experiment Precision Recall F1

Experimental → Experimental 0.96 0.90 0.93

Simulated → Simulated 1.00 1.00 1.00

Simulated → Experimental 0.90 0.60 0.72





G E N E R AT I V E  A D V E R S A R I A L  
N E T W O R K S  ( G A N S )

  
S I M U L AT I O N



• Goal: learn to add realistic noise to 
a clean, simulated event 

• allow realistic simulation 

• transfer learn with higher 
accuracy



GENERATOR

D I SCR IM INATOR

Generated Images

Real and Fake Images

Update Generator

P H O T O S  F R O M  K AT R I N A  S ;  A N D R E W  B  E T.  A L . ,  B I G G A N .

maximize D(G(z))

minimize D(G(z))



GAN 
(DCGAN)

WGAN



Real Generated



GAN Problems
• Vanishing gradients 

• If the discriminator behaves badly, the generator does not have accurate feedback and the 
loss function cannot represent the reality.


• If the discriminator does a great job, the gradient of the loss function drops too close to zero 
and the learning becomes super slow or even jammed.


• Mode collapse 

• During the training, the generator may collapse to a setting where it always produces same 
the outputs.


• Even though the generator might be able to trick the corresponding discriminator, it fails to 
learn to represent the real-world data and gets stuck in a small space with extremely low 
variety.



Heuristic Tricks
• Normalize the images between -1 and 1.


• Use tanh as the last activation in the generator, instead of sigmoid.


• Sample points from the latent space using a normal distribution, not a uniform distribution.

• Because GAN training results in a dynamic equilibrium, GANs are likely to get stuck in all sorts of ways. Introducing randomness during 

training helps prevent this.


• Use dropout in the discriminator.

• Add random noise to the labels for the discriminator.

• Add gaussian noise to every layer of generator.


• Use dropout in generator in both train and test phase.

• Avoid sparse gradients.


• Instead of max pooling, use strided convolutions for downsampling.


• Use a LeakyReLU layer instead of a ReLU activation (allows small negative values).


• Use a kernel size that’s divisible by the stride size whenever using a strided Conv2DTranspose or Conv2D in both the generator and the 
discriminator.


• Use batch norm in both generator and discriminator.

• Remove fully-connected hidden layers for deeper architectures.

• Use SGD for discriminator and ADAM for generator.



• CycleGAN: translate images from 
one domain to another 

• Can both clean real data AND 
generate noisy data!

C Y C L E G A N



Original -> Translated -> Reconstructed





VA L I D AT I O N

• Are all generated data 
physical? 

• Does charge distribution of 
generator match 
experimental data?
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Experimental 
learning task

Precision Recall F1

Logistic Regression 0.77 0.67 0.72

FC Neural Network 0.83 0.62 0.71

Transfer learning 
task

Precision Recall F1

Logistic Regression 0.44 0.03 0.05
FC Neural Network 0.78 0.44 0.57

Experimental task: 
accuracy: 0.98

Precision Recall F1

Proton 0.97 0.88 0.93
Non-proton 0.96 0.99 0.98

Transfer task: 
accuracy: 0.95

Precision Recall F1

Proton 0.94 0.71 0.81
Non-proton 0.92 0.99 0.95

C N N S


