MACHINE LEARNING FOR EVENT SIMULATION AND CLASSIFICATION IN THE ACTIVE-TARGET TIME PROJECTION CHAMBER

MICHELLE KUCHERA DAVIDSON COLLEGE JEFFERSON LAB SEMINAR 8 JANUARY 19

JLAB THEORY TALK???

UMCEG EIC

CHALLENGES IN DATA ANALYSIS

WITH THE ACTIVE-TARGET TIME PROJECTION CHAMBER (AT-TPC)

ACTIVE TARGET - TIME PROJECTION CHAMBER (AT-TP

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE ERIN O'DONNELL, NSCL

ACTIVE TARGET - TIME PROJECTION CHAMBER (AT-TPC)

J. BRADT ET. AL., *NUCLEAR INSTRUMENTS AND METHODS*, 2017.

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE **Subset of the Set of**

Time Bucket

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

10 TB /WEEK

BACKGROUND OF NEURAL NETWORK METHODS

NETWORK GRAPH

SUPERVISED LEARNING

Loss function

 $J(w) = f - \hat{f}$

LOGISTIC REGRESSION

$$
\frac{1}{1 + e^{-(x_1w_1 + x_2w_2)}}
$$

+ Nonlinearity Output

CHRISTIAN SZEGEDY ET. AL. GOING DEEPER WITH CONVOLUTIONS.

"GoogLeNet network with all the bells and whistles"

APPLYING DEEP LEARNING TO SOLVE AT-TPC CHALLENGES

CLASSIFICATION SIMULATION

CONVOLUTIONAL NEURAL NETWORKS

CLASSIFICATION

Feature Extraction

Classification

DISCRETE CONVOLUTION

ADAPTED FROM *DEEP LEARNING,* ADAM GIBSON & JOSH PATTERSON

Feature Extraction

Classification

RECTIFIED LINEAR UNIT (ReLU)

الإركانيا أوته المتفهيكية بمميز وداءك المعيد معجاله السلا

五千

 \sim \sim \sim \sim \sim \sim

 \sim 750 \sim 75

المساويس والمتحصور والتكفيك بالمستقلة والمستنبي

Feature Extraction

Classification

MAX POOLING

max pool with 2x2 filters and stride 2

Feature Extraction

Classification

J. TAYLOR, *ML METHODS FOR EVENT CLASSIFICATION,* 2018.

Can we use machine learning to accurately classify proton events from the AT-TPC?

Metrics

99% Accuracy

Detect Lung Cancer

Proton Not Proton

TRUE POSITIVE (TP)

FALSE POSITIVE (FP)

Not Proton Not Proton

PREDICTED

TRUE

Proton

Not Proton

Proton

FALSE POSITIVE (FP)

TRUE NEGATIVE (TN)

Not Proton

PREDICTED

TRUE POSITIVE (TP)

Proton

FALSE NEGATIVE (FN)

PERFECT MODEL

EXPERIMENTAL DATA

VGG16 ARCHITECTURE

PRE-TRAINED ON IMAGENET DATA!

SIMULATED DATA

GENERATIVE ADVERSARIAL NETWORKS (GANS)

SIMULATION

- Goal: learn to add realistic noise to a clean, simulated event
	- allow realistic simulation
	- transfer learn with higher accuracy

GENERATOR

DISCRIMINATOR

Generated Images

Real and Fake Images

Update Generator

maximize D(G(z))

minimize D(G(z))

GAN (DCGAN)

WGAN

Real Generated

GAN Problems

- **• Vanishing gradients**
	- If the discriminator behaves badly, the generator does not have accurate feedback and the loss function cannot represent the reality.
	- If the discriminator does a great job, the gradient of the loss function drops too close to zero and the learning becomes super slow or even jammed.
- **• Mode collapse**
	- During the training, the generator may collapse to a setting where it always produces same the outputs.
	- Even though the generator might be able to trick the corresponding discriminator, it fails to learn to represent the real-world data and gets stuck in a small space with extremely low variety.

Heuristic Tricks

• Because GAN training results in a dynamic equilibrium, GANs are likely to get stuck in all sorts of ways. Introducing randomness during

• Use a kernel size that's divisible by the stride size whenever using a strided Conv2DTranspose or Conv2D in both the generator and the

- Normalize the images between -1 and 1.
- Use tanh as the last activation in the generator, instead of sigmoid.
- Sample points from the latent space using a normal distribution, not a uniform distribution.
- training helps prevent this.
	- Use dropout in the discriminator.
	- Add random noise to the labels for the discriminator.
	- Add gaussian noise to every layer of generator.
	- Use dropout in generator in both train and test phase.
- Avoid sparse gradients.
	- Instead of max pooling, use strided convolutions for downsampling.
	- Use a LeakyReLU layer instead of a ReLU activation (allows small negative values).
- discriminator.
- Use batch norm in both generator and discriminator.
- Remove fully-connected hidden layers for deeper architectures.
- Use SGD for discriminator and ADAM for generator.

- CycleGAN: translate images from one domain to another
- Can both clean real data AND generate noisy data!

CYCLEGAN

Original -> Translated -> Reconstructed

VALIDATION

- Are all generated data physical?
- Does charge distribution of generator match experimental data?

ACKNOWLEDGMENTS

- Raghu Ramanujan
- Ryan Strauss, Jack Taylor, Christina Chen
- ATTPC Group
	- Daniel Bazin, Wolfi Mittig
- NSCL/FRIB

٠

CNNS