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Machine learning:  “the study of computer algorithms that 
improve automatically through experience”

Supervised learning:  computer is presented with example 
inputs and their desired outputs, given by a “teacher”, and 
the goal is to learn a general rule that maps inputs to outputs
—      minimization is an example of ML�2

—  JAM (and all other global QCD analyses) = supervised learning

Unsupervised learning:  allow computer to find structure in 
its input on its own
—  examples include k-means clustering, GANs, auto-encoders, …

�2

—  slowly making its way into global QCD analysis…

https://en.wikipedia.org/wiki/Map_(mathematics)


Goal of JAM (Jefferson Lab Angular Momentum) Collaboration
— learn about the nucleon’s internal 3-D quark and gluon
     structure — “femtography”

Quarks & gluons confined inside
hadrons, never observed directly
— must infer information about

 structure indirectly
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— structure information parameterized in terms of
 quantum correlation functions (QCFs), 
 e.g. parton distribution functions (PDFs), fragmentation functions (FFs),
      transverse momentum dependent distributions (TMDs), 
      generalized parton distributions (GPDs), …
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Motivations
hadrons as emergent phenomena of QCD

quarks and gluonsnucleon structure hadronization



Problem requires theory (QCD factorization) and global QCD 
analysis tools to provide map between observables and QCFs
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Goal of JAM (Jefferson Lab Angular Momentum) Collaboration
— learn about the nucleon’s internal 3-D quark and gluon
     structure — “femtography”
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Factorization of inclusive particle-production cross sections

QCD factorization:  separation of hard (perturbative, calculable)
from soft (nonperturbative, parameterized) physics

Collins, Soper, Sterman (1980s)
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In practice, analytical solutions for the inverse function
for QCFs do not exist

Supervised learning is on cross sections   ,  not on QCFs�
— goal is not to mimic cross sections, but to infer QCFs 
— QCFs are not supervisable       inverse problem
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The inverse mapper for global analysis
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Can we use Machine
Learning?

— can we use machine learning tools to find approximate
 numerical solutions for the inverse function?
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Shortcomings of existing global QCD analysis paradigms 
— need to understand quantitatively correlations between
    QCFs and cross sections across a range of kinematics

— requires changing training data to explore all possibilities… 
 but combinations grow factorially — not practical!

— what is impact of specific data sets (current & future) on
 particular QCFs?

�7

Yiyu Zhou (2020)
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Universality of PDFs allows data from many different processes 
(DIS, SIDIS, weak boson/jet production in pp, Drell-Yan …) to be analyzed 
simultaneously

Global QCD analysis

need to avoid fit getting stuck in a local minimum,
or parameter ranges too restrictive 

Extraction of PDFs is challenging because usually there exist 
multiple solutions
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Analysis of data requires estimating expectation values E
and variances V  of  “observables”     (functions of PDFs) 
which are functions of parameters 

O

E[O] =

Z
dnaP(~a|data)O(~a)

V [O] =

Z
dnaP(~a|data) ⇥O(~a)� E[O]

⇤2

P(~a|data) = 1

Z
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Using Bayes’ theorem,  probability distribution      given byP

“Bayesian master formulas"
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in terms of the likelihood function      and priors L ⇡

Global QCD analysis
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Likelihood function 
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is a Gaussian form in the data, with      function�2

with priors          and  evidence⇡(~a) Z

Z =

Z
dnaL(data|~a)⇡(~a)

Z tests if e.g. an n-parameter fit is statistically different
from (n+1)-parameter fit
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Global QCD analysis



maximize probability distribution

P(~a|data) ! ~a0

E[O(~a)] = O(~a0) V [O(~a)] ! Hessian

if     is linear in parameters, and if probability is
symmetric in all parameters
O

need more robust (Monte Carlo) approach
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Standard method for evaluating E, V  via maximum likelihood

In practice, since in general                           , maximum 
likelihood method sometimes fails

E[f(~a)] = f(E[~a])
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Global QCD analysis



JAM — iterative, multi-step Monte Carlo
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f(x) = N x

↵(1� x)� P (x)

traditional functional form for distributions

sampler

priors

fit

fit

fit

posteriors

robust determination of
PDF uncertainties

sequentially include new types
of observables to bootstrap
way into relevant corner of
parameter space

polynomial, neural net*, …

Global QCD analysis

+ HERA DIS

+ DIS (no HERA)

+ DY

+ SIA

+ SIDIS
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posterior 
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PDFs flat 
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FFs 4

FFs flat 
priors

final PDFs final FFs

posterior
FFs 5

selection selection

6=* neural net      unbiased fit

but sample large parameter space



Global QCD analysis
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Global QCD analysis in a nutshell
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First global analysis that fits both unpolarized PDFs and FFs 
simultaneously

fixed-target DIS on p, d (SLAC, BCDMS, NMC), 
    HERA collider data (runs I & II)

such an analysis never attempted before…

52 shape parameters + 41 “nuisance” parameters for systematic
uncertainties (data normalizations)

Drell-Yan (Fermilab E866), jet production (CDF, D0)

SIDIS pion & kaon multiplicities for deuteron (COMPASS)

e  e   annihilation (DESY, LEP/CERN, SLAC, KEK)+ -

953 fits to 4366 data points (2680 DIS,  992 SIDIS,  250 DY,  444 SIA)

PDFs

FFs

JAM 2019 analysis



JAM 2019 analysis

valence & light sea quark broadly in agreement with other groups

mean reduced   
            
for all data
�2 = 1.3

suppression of strange PDF compared to other extraction

Sato, Andres, Ethier, WM (2019)

�15

0

0.2

0.4

0.6

0.8 xuv

xdv

JAM19

CSKK

CJ15

0

1

2

3

4

xg

MMHT14

ABMP16

NNPDF3.1

0

0.2

0.4

0.6 x(d̄+ū)
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JAM 2019 analysis

SIDIS + SIA data force strange to kaon FF to be larger

�16



0.5
1

1.5
2

2.5
Q2 = M 2

ZSLD

0.5

1

1.5 Q2 = M 2
ZALEPH

0.5
1

1.5 Q2 = 2.8 � 4.3COMPASS

0.5
1

1.5 Q2 = 2.1 � 3.1

0.5
1

1.5

d
a
ta

/
th

eo
ry

Q2 = 1.7 � 2.0

0.5
1

1.5 Q2 = 18.4 � 20.5

0.5
1

1.5 Q2 = 11.0 � 15.2

0.5
1

1.5 Q2 = 8.4 � 9.7

0.5
1

1.5 Q2 = 6.0 � 6.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
zh

0.5
1

1.5 Q2 = 4.3 � 5.1

x
=

0
.1

2
x

=
0
.0

2
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fully constrained solutions

solutions with large s(x)
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SIA data at large z
strongly disfavor
small strange     K  FF

fully constrained solutions

solutions with large s(x)
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JAM 2019 analysis

vital role played by SIDIS + SIA data in constraining strange PDF
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Sato, Andres, Ethier, WM (2019)
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JAM - EIC analysis
Current interest in impact of future EIC data on PDFs
and their uncertainties (EIC Yellow Report, early 2021)

what is the impact of
high-precision EIC data
for various observables
on specific PDFs?

can we understand tension
in gluon PDF between NC 
fixed-target & HERA DIS data?

Delcarro et al. (2020)
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JAM - EIC analysis
Current interest in impact of future EIC data on PDFs
and their uncertainties (EIC Yellow Report, early 2021)

impact of parity-violating DIS data (      interference)
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enhanced sensitivity to strange quark PDF

Cocuzza et al. (2020)
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Shortcomings of existing global QCD analysis paradigms 

inverse
mapper

prototypes

New AI tools

— would like to be able to answers these questions “on the fly”

Need  “inverse mapping” from observables       parameter space

— what is impact of specific data sets (current & future) on
 particular QCFs?

Manal Almaeen, Yaohang Li,
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Partnership with computer scientists

M. Almaeen (ODU)
Y. Awadh Alanazi (ODU)
M. Houck (Davidson College)
M. P. Kuchera (Davidson College)
Y. Li (ODU)
W. Melnitchouk (JLab)
R. Ramanujan (Davidson College)
NS (JLab)
E. Tsitinidi (Davidson College)
N. Sato (JLab)

Collaboration between nuclear theorists and computer scientists

New AI tools
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New AI tools
Inverse mapper prototypes tested on toy models
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Application to
unpolarized DIS
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First application to real global
data analysis — inclusive DIS
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Application to
unpolarized DIS
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how to make inverse mapper even 
closer to JAM (with multiple solutions)?
explore different ML architectures
e.g. variational auto-encoders
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ū+d̄

0.4 0.6 0.8x

New AI tools
Inverse mapper prototypes tested on toy models

First application to real global
data analysis — inclusive DIS
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Eleni Tsitinidi, Michelle Kuchera
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New AI tools
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Application to unpolarized DIS
Proton DIS
kinematics
Blobs Ã ‰2
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Npts
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Npts
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First application to real global
data analysis — inclusive DIS

Inverse mapper prototypes tested on toy models
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demonstration that it is
indeed possible to build an 
inverse mapper using ML!
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Better definitions for likelihood, e.g. non-Gaussian distributions,
for incompatible data sets?
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Open questions & challenges

How to efficiently perform MC sampling in high dimensions
(~ 25 for unpolarized DIS,  ~ 100 for all collinear PDF/FFs, ~ 200 for TMDs)

data resampling, nested sampling, HMC MC, 
Gaussian optimization, …

In the near future will have more data, more parameters
need for more computer resources
(      per point in parameter space takes ~ 1 minute)�2
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Thank you!


