The Axial Form Factor Extracted from Elementary Targets

Aaron S. Meyer

as meyer. physics @gmail.com meyer 54 @llnl.gov

October 23, 2023

JLab Theory Group Seminar

This work is supported in part by: Lawrence Livermore National Security, LLC #DE-AC52-07NA27344, Neutrino Theory Network Program Grant #DE-AC02-07CHI11359, U.S. Department of Energy Award #DE-SC0020250.

Outline

- Neutrino Oscillation Introduction
- Neutrino Cross Sections
- ▶ Quasielastic Scattering from Experiment
 - Constraints from Deuterium Scattering
 - Preliminary Hydrogen Scattering
- ► LQCD Results
 - Introduction
 - Preliminary CalLat Calculation
- ▶ LQCD Survey of $F_A(Q^2)$
 - Summary of $F_A(Q^2)$ Calculations
 - T2K/DUNE Implications
- ► Future Prospects

Neutrino Oscillation

Neutrino Oscillation (in a slide)

Neutrinos created during fusion reactions in sun, nuclear beta decay

"Flavor" defined by associated charged lepton during weak interaction Flavor changes spontaneously during near light-speed propagation: $\nu_{\mu} \rightarrow \nu_{e}$

Aaron S. Meyer

Section: Neutrino Oscillation

Discovery of Neutrino Oscillation

Difference between upward vs downward ν at Super-Kamiokande (1998) \implies Neutrinos have mass and oscillate!

2015 Nobel prize to Arthur McDonald, Takaaki Kajita

Discovery of Neutrino Oscillation

Difference between upward vs downward ν at Super-Kamiokande (1998) \implies Neutrinos have mass and oscillate!

2015 Nobel prize to Arthur McDonald, Takaaki Kajita

Neutrino Oscillation (with math)

Oscillation probability is function of L/E_{ν} at fixed L

Neutrino Physics Goals

Flagship long baseline oscillation experiments

DUNE: USA, HyperK: Japan

Answer fundamental questions about neutrinos:

- mass ordering $(\Delta m_{32}^2 > 0?)$
- octant $(\sin^2 \theta_{23} = 0.5?)$
- CP violation ($\delta_{CP} = ?$)

- PMNS unitarity?
- 3 ν flavors?
- precision constraints

Measurements of solar, supernova ν

Data collection starts 2028–2029 \implies need support from theory!

Neutrino Cross Sections

Measuring Oscillation Probability

Broad flux & distribution of event E_{ν}

Measuring Oscillation Probability

Broad flux & distribution of event E_{ν}

far/near \implies oscillation probability, but picture too simplified...

Neutrino Cross Sections

 E_{ν} spans several kinematic regimes

Different interaction channels contributing to event rates

Need precise, theoretically robust cross sections for multiple event topologies

Neutrino Event Topologies

Reinteractions within nucleus change kinematics Only particles that escape are detectable

Neutrino Event Topologies

Reinteractions within nucleus change kinematics Only particles that escape are detectable

Mismatch between *nucleon* amplitudes & *nuclear* cross sections...

- \implies Event-by-event E_{ν} measurements are not possible
- \implies Reconstruct E_{ν} distributions from measured event rates

Neutrino Oscillation and Quasielastic

Compute *nucleon* amplitudes, ingredients for *nuclear* models Quasielastic is lowest E_{ν} , simplest

Question:

How well do we know nucleon quasielastic cross section from elementary target sources?

- ▶ Hydrogen/Deuterium scattering
- ▶ Lattice QCD

QE Experimental Constraints

Quasielastic Form Factors

Quasi-free nucleon inside nucleus —

- ▶ F_1, F_2 : constrained by eN scattering
- ► F_P : subleading in cross section, $\propto F_A$ from pion pole dominance constraint

Leading contribution to nucleon cross section uncertainty is axial form factor F_A

Form Factor Parameterizations

Dipole ansatz —
$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by both experimental and LQCD data (revisit later)
- ▶ Inconsistent with QCD, requirements from unitarity bounds
- \blacktriangleright Motivated by $Q^2 \rightarrow \infty$ limit, data restricted to low Q^2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- Rapidly converging expansion
- Controlled procedure for introducing new parameters

Deuterium Constraints on F_A

- Outdated bubble chamber experiments:
 - Total $O(10^3) \nu_{\mu} QE$ events
 - Digitized event distributions only
 - Unknown corrections to data
 - Deficient deuterium correction
- Dipole overconstrained by data underestimated uncertainty ×O(10)

 Prediction discrepancies could be from nucleon and/or nuclear origins

Coming soon:

Updated joint fit with MINER $\nu A \ \bar{\nu}_{\mu} p \rightarrow \mu^+ n$ dataset

Free Nucleon Axial Form Factor

- We have ~5800 such events on a background of ~12500.
- Shape is not a great fit to a dipole at high Q^2 .
- LQCD prediction at high Q^2 is close to this result, but maybe not at moderate Q^2 .

0.01

3

0.05 0.1

- Hydrogen Fit

0.5

10

See also [Nature 614 (2023)]

Compatible with D₂ Data? Mmmmmaybe?

- We have some progress on joint fits with neutrino-deuterium analysis (*Phys.Rev.D* 93 (2016) 11, 113015), including comprehensive analysis of compatibility.
 - Note that compatibility depends on the choice of vector form factors, since vector-axial vector interference flips sign.
 - We see that compatibility also depends strongly on how low in Q² we use the D₂ data, which might suggest low Q² nuclear effects?
- With BBBA05 vector form factors and Q²>0.2 GeV², $\delta \chi^{2}$ ~5.5, or p-value of ~2%.

28 September 2023

K. McFarland, Measuring Protons with Neutrinos

63

See also [Nature 614 (2023)]

LQCD as Disruptive Technology

How can we improve precision?

Ideal: Modern high stats ν -D₂ scattering bubble chamber experiment

 \implies LQCD as a complement to experiment

Build from the ground up:

Nucleon amplitudes from first principles

Robust uncertainty quantification

Well motivated theory inputs to nuclear models/EFTs

Matrix Elements from LQCD

Lattice QCD Formalism

Numerical evaluation of path integral Quark, gluon DOFs —

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\psi \, \mathcal{D}\overline{\psi} \, \mathcal{D}U \, \exp(-S) \, \mathcal{O}_{\psi} \, [U]$$

Parameters: $am_{(u,d),\text{bare}}$ $am_{s,\text{bare}}$ $\beta = 6/g_{\text{bare}}^2$

Matching: e.g. $\frac{M_{\pi}}{M_{\Omega}}$, $\frac{M_K}{M_{\Omega}}$, M_{Ω} 1 per parameter

"Complete" error budget \implies extrapolation in a, L, M_{π} guided by EFT, FV χ PT

- $a \to 0$ (continuum limit)
- $L \to \infty$ (infinite volume limit)
- $M_{\pi} \to M_{\pi}^{\text{phys}}$ (chiral limit)

Fit Setup

Fit exponential dependence of axial "3-point" functions:

$$C_{\mathcal{A}_{z}}^{3\text{pt}}(t,\tau,\mathbf{q}) = \langle \mathcal{N}(\mathbf{0},t)\mathcal{A}_{z}(\mathbf{q},\tau)\overline{\mathcal{N}}(-\mathbf{q},0)\rangle$$
$$\sim \sum_{mn} z_{n}^{\mathbf{0}} A_{nm}^{\mathbf{q}} z_{m}^{\mathbf{q}\dagger} e^{-E_{n}^{\mathbf{0}}(t-\tau)} e^{-E_{m}^{\mathbf{q}}\tau}$$

Towers of excited states m, n depend on momenta injected Current \mathcal{A}_z couples to axial, induced pseudoscalar form factors

Overlaps, energies constrained by "2-point" functions

$$C^{\rm 2pt}(t,\mathbf{q}) = \langle \mathcal{N}(\mathbf{q},t)\overline{\mathcal{N}}(-\mathbf{q},0)\rangle \sim \sum_{m} z_{m}^{\mathbf{q}} z_{m}^{\mathbf{q}\dagger} e^{-E_{m}^{\mathbf{q}}t}$$

Fit Setup

Plot ratio correlator:

$$\mathcal{R}_{\mathcal{A}_{z}}(t,\tau,\mathbf{q}) = \frac{C_{\mathcal{A}_{z}}^{3\mathrm{pt}}(t,\tau,\mathbf{q})}{\sqrt{C^{2\mathrm{pt}}(t-\tau,\mathbf{0})C^{2\mathrm{pt}}(\tau,\mathbf{q})}} \sqrt{\frac{C^{2\mathrm{pt}}(\tau,\mathbf{0})}{C^{2\mathrm{pt}}(t,\mathbf{0})}} \frac{C^{2\mathrm{pt}}(t-\tau,\mathbf{q})}{C^{2\mathrm{pt}}(t,\mathbf{q})}$$

$$\xrightarrow[t-\tau,\tau\to\infty]{} \frac{1}{\sqrt{2E_0^{\mathbf{q}}(E_0^{\mathbf{q}}+M)}} \left[-\frac{q_z^2}{2M} \mathring{F}_P(Q^2) + (E_0^{\mathbf{q}}+M) \mathring{F}_A(Q^2) \right]$$

 $Q^2 = |{\bf q}|^2 - (E_0^{{\bf q}} - M)^2$

$$\mathcal{A}_z \text{ with } q_z = 0 \implies \mathcal{R}_{\mathcal{A}_z}(t,\tau,\mathbf{q}) \to \sqrt{\frac{E_0^{\mathbf{q}} + M}{2E_0^{\mathbf{q}}}} \mathring{g}_A(Q^2)$$

- \implies No induced pseudoscalar
- \implies Simplified analysis of $\mathring{F}_A(Q^2) = \mathring{g}_A(Q^2)$
- \implies a12m130 ensemble only, $N_{state} = 3$ only

Correlation Function Ratio

sink side (p = 0)

- ▶ Horizontal: source-insertion time, centered about midpoint
- ▶ Vertical: correlator ratio \sim axial matrix element
- Color: source-sink separation time
- ▶ Colored bands: fit range ▶ Gray band: \mathring{g}_A posterior value

$\mathring{g}_A(Q^2)$ Correlators

Axial Form Factor Fit

Trend of high- Q^2 enhancement seen in other LQCD results 2–4% LQCD uncertainty vs 10% uncertainty on D₂ result

TODO list:

 $qL/2\pi = (1,0,0)$ matrix element larger than expectation Deep dive into excited states systematics, prior dependence More momenta, $q_z \neq 0$, full set of ensembles

LQCD Survey and Implications

JOURNALS A-Z

JOURNAL INFO

PRICING & SUBSCRIPTIONS

Home / Annual Review of Nuclear and Particle Science / Volume 72, 2022 / Meyer

Status of Lattice QCD Determination of Nucleon Form Factors and Their Relevance for the Few-GeV Neutrino Program

Annual Review of Nuclear and Particle Science

Vol. 72:- (Volume publication date September 2022) Review in Advance first posted online on July 8, 2022. (Changes may still occur before final publication.) https://doi.org/10.1146/annuver-vuid-100222/120608

Aaron S. Meyer, 1.2 André Walker-Loud, 2 and Callum Wilkinson3

¹Department of Physics, University of California, Berkeley, California, USA; email: asmeyer@berkeley.edu ?Nuclear Science Drivision, Lawrence Berkeley National Laboratory, Berkeley, California, USA "Physics Drivision, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Permissions | Reprints | Download Citation | Citation Alerts

Abstract

Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Nucleon Axial Form Factor

LQCD results maturing:

- ▶ Many results, all physical M_{π} : independent data & different methods
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \rightarrow 0$)
- Nontrivial consistency checks from PCAC

Evidence of slow Q^2 falloff, situation unlikely to change drastically

Free Nucleon Cross Section

- ▶ LQCD prefers 30-40% enhancement of ν_{μ} CCQE cross section
- recent Monte Carlo tunes require 20% enhancement of QE [Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]
 similar trend with continuum Schwinger function methods [Phys.Rev.D 105 (2022)] [2206.12518 [hep-ph]]
- With improved precision, sensitive to vector FF tension (black vs blue) [Phys.Rev.D 102 (2020)] vs [Nucl.Phys.B Proc.Suppl. 159 (2006)]

T2K Implications

• Dashed dark blue (GENIE nominal) vs solid magenta ($z \exp LQCD$ fit)

- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction
- Monte Carlo tuning invalidates more sophisticated comparisons

DUNE Implications

Solid dark blue (GENIE nominal) vs dashed magenta ($z \exp LQCD$ fit)

- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction
- Monte Carlo tuning invalidates more sophisticated comparisons

Future Directions

LQCD Excited States — Empirical

Compare fit to correlator data ratio Contamination dominated by "transition" states $(0 \rightarrow n, \text{ blue})$ Typically signal below $\lesssim 1 \text{ fm},$ contamination $\gtrsim 2 \text{ fm}$ Excited states present in

practically-achievable large time limit

NME collab:

 Q^2 contamination from $N \to N \pi$

Dominant contribution agrees with χPT expectation

 $N\pi$ is important for $F_A(Q^2)$

LQCD Excited States — χPT and $N\pi$

Contamination in $g_A(Q^2)$ primarily from enhanced $N\pi$, mostly from induced pseudoscalar

Correlator fits without axial current not sensitive to $N\pi$ [Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Alternate fit strategies:

- explicit $N\pi$ operators
- include \mathcal{A}_4 (strong $N\pi$ coupling)

Prediction from χ PT: [Phys.Rev.D 99 (2019)]

First demonstration of $N\pi$: [Phys.Rev.Lett. 124 (2020)]

 χ PT-inspired fit methods for fitting form factor data [Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]

Aaron S. Meyer

• Kinematic constraints $(F_P = 0)$

Energy Regimes

LQCD Target Calculations

Roadmap To Nuclear

Concluding Remarks

Outlook

- ▶ Nucleon form factor uncertainty significantly underestimated
- Mounting evidence that QE ν cross section underestimated ⇒ Attention needed to avoid biased results
- ▶ LQCD is a proxy for missing experimental data
- ▶ Nucleon-pion effects are the next frontier...
 - Transition form factors
 - Low-energy constants for meson exchange
 - Pion production
- Exciting results upcoming: hydrogen scattering, LQCD

Thank you for your attention!

Aaron S. Meyer

Backup

Axial FF - $N\pi$ Interpolating Operators

 2×2 operator basis, explicit 3- & 5-quark interpolating operators

Significantly flatter ratios, simplified analysis Will analysis with only 3-quark operators be consistent?