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Hadrons

P

Q

e

Q2 = �q2 = O(few GeV) ↵S(Q2) = O(0.1) Perturbative

�(eH ! eX) =
X

i

Z
dx fi(xP,Q

2) � {eqi(xP ) ! eqi(xP + q)}

Parton Distribution Functions

Parton model: 
At a high resolution Q2, 
hadron = ensemble of massless 
partons each carrying fraction x 
of hadron momentum.  

(Feynman ’69)



Valence PDF of ⇡+(ud)
We measure the valence PDF of charged pion: 

P. C. Barry et al, 2018

Flavor non-singlet           No mixing with glue             
and no disconnected fermion diagrams

fvalence(y, µ) = fu(x, µ)� fd(x, µ)



PDF as light-like separated quark-antiquark 
correlation

Field theoretic Gauge-invariant and Lorentz invariant construction:
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(Soper ’77)



PDF as light-like separated quark-antiquark 
correlation (aka problem for lattice)

lim
�t!1

e�HQCD�tÔh(t = 0,P)|⌦i / |h(P, E)i

Projecting to hadron state is easy on lattice, but requires t ! i t

But presence of unequal time separation between  (⇠�) (0) and
sandwiched between hadron states is a (sign) problem for Euclidean 
lattice.



Resolutions:

Compute moments of PDF which are related by OPE to local 
operators.  State of the art is 2nd moment. 

Quasi-PDF approach (this talk), pseudo-PDF and factorization 
of lattice cross-sections.

Martinelli and Sachrajda ’88, W. Detmold et al, d > ‘01

X. Ji ’13, A. Radyushkin ’17, Ma and Qiu ‘17 

PDF as light-like separated quark-antiquark 
correlation (aka problem for lattice)



quasi-PDF approach to obtain PDF using 
Euclidean lattice

Equal time correlation function that can be determined on lattice: 

t

z

q̃(x) =

Z
dz

4⇡
e�ixPzzhH(P

z

, E)| (0)�
µ

W
ẑ

(0, z)⌧ (z)|H(P
z

, E)i

for µ = z or t.

 (z)
Wẑ(0, z)
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quasi-PDF approach to obtain PDF using 
Euclidean lattice

Hadron rest frame:Rest frame of operator

Pz ⇡ E

z2 is Lorentz invariant. But the typical z contributing to Fourier transform 
at fixed x is ztyp ~ 1/Pz and so |ztyp| is power suppressed. 

Converse:  Small x at fixed Pz                     Larger | ztyp|         Effect of           , M, z2 ⇤QCD



Issue of limits

one has finite lattice spacing a 

At any finite a, q(x) has to be renormalized at a scale PR in a 
scheme that can be compared with experiments. 

Take a    0 first, then  Pz ! 1

In 3+1d, PDF operator already is on the light-cone before 
regularization and renormalization.

On 4d lattice… 



Perturbative matching

Not hopeless…

Perturbative matching between q(x,PR) in a regulator independent 
renormalization scheme at finite        to the infinite momentum MS-bar 
PDF f(x,   )

Pz

q(x;Pz, P
R) =

Z 1

�1

dy

|y|C
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x
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,
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,
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?
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z

,
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z

◆
f(x, µ)

with the matching coefficient  C(⇠) = �(1� ⇠) + ↵S(µ)C
(1)(⇠)

µ2

X. Ji ’13, Stewart and Zhao ‘17  



Perturbative matching

qquark(x) = fquark(x) + ↵S(µ)
⇣
q

(1)
quark(x)� f
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quark(x)

⌘
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Collinear 
sing. cancel

Due to the resemblance to a computation of corrections to EFT, 
the above matching is called “Large momentum effective theory”  
( LaMET).

Since C is perturbative, it is universal for PDF of all hadrons.  

So, it is computed using (gauge-fixed) quark PDF and qPDF 
with IR regulator               (in 3+1d).p2 < p2z
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Work-flow
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Work-flow
a ! pR

pR ! µ
for Pz >> ⇤QCD,m⇡

Compute bare qPDF operators 
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Computing the bare quasi-PDF



Simulation details

HISQ sea quark from HotQCD gauge field 
ensemble  
1-HYP smeared Wilson-Clover valence quark 
tuned to 300 MeV pion 
Lattice spacing a=0.06 fm  (=3.28 GeV) 
1-HYP smeared Wilson line 
Volume:  3.84 x 2.883 fm4   

Glossary: 
sea quark: (noun)  det(D) used in Monte Carlo. 
valence quark: (noun)   D-1 used in propagators. 
HYP : (Abbr.)  A procedure to suppress UV lattice-like gluons. 

M⇡L = 4.4



Set up of the ‘measurement’
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Choice of the creation operator           is important⇡̂(Pz)

log


h⇡̂†

(Pz, t+ a)⇡(Pz, 0)i
h⇡̂†

(Pz, t)⇡(Pz, 0)i

�

…choose quark sources   ⇡(x0) = u(x0)�5d(x0)  (x0, t) ⇠
Z

d

3
ke

ikx0
e

��

2 (k�⇣P )2

2
 ̃(0)

Bali et al ‘16



Lattice dispersion relation matches continuum for all Pz

Satisfy the hierarchy  Pz ⌧ UV lattice scalesPz � M⇡,⇤QCD &



Renormalization
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Renormalizability of bi-local quark bilinear
Real-space quasi-PDF operator can be multiplicatively 
renormalized with a factor Z(z)

Only a log(z) div.

Divergent self-interaction  
part of Wilson loop: 
              ~ e-c|z|

Quark field renorm.

new divergence 
in quark-Wilson-line 
vertex

(Ishikawa et al ’17)
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Renormalization conditions

The renormalizability means:

hR
�t
(z;Pz, P

R) = Z�t�t(z;P
R) · hb

�t
(z;Pz, a)

bare hadron qPDFrenormalized hadron qPDF



Renormalization conditions
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Renormalization conditions

Renormalization scheme independent conditions:

Z�t�t(z;P
R) · hb

quark(z;P = PR, a) = hfree(z;P
R)

  barequark qPDF in full 
QCD

Tree level value 

The renormalizability means:

hR
�t
(z;Pz, P

R) = Z�t�t(z;P
R) · hb

�t
(z;Pz, a)

bare hadron qPDFrenormalized hadron qPDF

Implementable in lattice as well as pert. theory with off shell 
quark with P2 >0 



Renormalization Constants Including Self-Energy
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Renormalization Constants Including Self-Energy

divergent  
self-energy

PR
z = 1.28 GeV, PR

? = 1.48 GeV
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Renormalization constants excluding self-energy 
is O(1)

PR
z = 1.28 GeV, PR

? = 1.48 GeV
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We compare the lattice and 1-loop running of quark PDF away 
from renormalization point:

Comparison between lattice and perturbative quark qPDF

hR
quark(z;P 6= PR, PR)

hR
quark(z;P = PR, PR)

= 1 + ↵SF (z, P, PR) + negligible NLO(?)

hR
quark(z;P = PR, PR) = hfree�quark(z;P = PR)

with the Renormalization condition fixing the value :



Comparison between lattice and perturbative quark qPDF
Pz = 1.28 GeV, P? = 1.48 GeV

PR
z = 1.28 GeV, PR

? = 2.22 GeV
A generic case:



Matching to pion PDF



Real-space pion qPDF

Pz = 1.28 GeV PR
z = 1.28 GeV, PR

? = 1.48 GeV
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Pion qPDF from real-space to Fourier

Fourier

Cubic spline from z=                       
to 

Quantify the unknown:

Vary
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Fourier

Shape seems to be robust under  
zmax variations
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In principle, PDF should not depend on renormalization 
point of qPDF… but there is some dependence
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Effect of excited states in pion channel
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Slight changes to long-distance part of h(z) has little effect

Preliminary
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An analysis of “experimental quasi-PDF”

Pion PDF data from expt 
(Barry et al,  
PRL 121, 152001)

RI-MOM qPDF at Pz
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Pion PDF data from expt 
(Barry et al,  
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Pion PDF from expt RI-MOM qPDF at Pz Artificial lattice qPDF data
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An analysis of “experimental quasi-PDF”

�4

�3

�2

�1

0

1

2

3

4

5

�1 �0.5 0 0.5 1 1.5 2

f
(
x
)

x

Pz =1.29 GeV

Pheno PDF; L = 20

Pheno PDF; L = 40

Pheno PDF; L = 60

Pheno PDF; L = 80

Pheno PDF; L = 100

Pheno PDF; L = 120

Pheno PDF; L = 200

Actual PDF

�2

�1

0

1

2

3

4

�1 �0.5 0 0.5 1 1.5 2

q
(
x
)

x

Pz =1.29 GeV

Pheno qPDF; L = 20

Pheno qPDF; L = 40

Pheno qPDF; L = 60

Pheno qPDF; L = 80

Pheno qPDF; L = 100

Pheno qPDF; L = 120

Pheno qPDF; L = 200

Increase the number of lattice 
sites L over which “pheno-lattice" 
data is determined on.

Preliminary



Conclusions
We studied valence pion quasi-PDF using HISQ sea quarks 
and Wilson-Clover valence quarks. 

We investigated the validity of 1-loop renormalization in 
describing NPR and found qualitative agreements between 
the two. 

We matched the pion qPDF to the PDF at mu=3.2 GeV. 
Though matching suppressed values above x>1, there is still 
discrepancy with phenomenological result (pion mass? long 
distance not well accounted for? Even larger Pz  is needed?) 

Under investigation: (being done) removing the effect of 
source-sink separation, generate data at larger z, (will be 
done) towards continuum including a=0.04 fm ensemble


