Machine learning for QCD global analysis PI meeting

Yaohang Li (**PI**)

Old Dominion University Research: Machine learning, Monte Carlo methods

Michelle Kuchera

Davidson College Research: Machine learning for nuclear physics applications.

Nobuo Sato (**co-PI**)

Jefferson Lab Theory Center Research: QCD global analysis (JAM) of hadron structure and hadronization

Wally Melnitchouk

Jefferson Lab Theory Center Research: QCD structure of hadrons and nuclei

Part 1: Why machine learning for femtography?

Part 2: Inverse mapper architectures

Part 3: Web frameworks

Part 1: Why machine learning for femtography?

The Bayesian inference

Experiments = theory + errors

$$d\sigma_{\text{DIS}} = \sum_{i} H_{i}^{\text{DIS}} \otimes f_{i}$$

$$d\sigma_{\text{DY}} = \sum_{ij} H_{ij}^{\text{DY}} \otimes f_{i} \otimes f_{j}$$

$$d\sigma_{\text{SIA}} = \sum_{ij} H_{ij}^{\text{SIA}} \otimes d_{i}$$

$$d\sigma_{\text{SIDIS}} = \sum_{ij} H_{ij}^{\text{SIDIS}} \otimes f_{i} \otimes d_{j}$$
Hadronization
$$f_{i}(\xi, \mu_{0}^{2}) = N_{i}\xi^{a_{i}}(1-\xi)^{b_{i}}(1+...)$$

$$d_{i}(\zeta, \mu_{0}^{2}) = N_{i}\zeta^{a_{i}}(1-\zeta)^{b_{i}}(1+...)$$

$$a = (N_{i}, a_{i}, b_{i}, ...)$$
Posterior
Prior
distribution
$$f_{i}(\xi, \mu^{2}) = \int d^{n}a \rho(a|\text{data}) f_{i}(\xi, \mu^{2}; \mathbf{a}) - E[f_{i}(\xi, \mu^{2})]^{2}$$

5

Training the inverse mapper

So why do we need **inverse mappers**?

2) Bayesian inference modeling

3) Towards cloud-based global analysis framework

The Materials project

FemtoAnalvzer Selection Andificatio **DIS Kinematics** Select DIS Data Refresh Ø x-axis : O Linear O Log v-axis : O Linear O Log Select Data : × -Select Plot Pair : X vs Q2 × -60 22 40 Relative Uncertainity 🕜 0.05 Uncertainty Rescaling Factor 🕜 0.5 20 **a** 1 | 0.4 Select Inverse AE-MDN X X Ŧ Function Submi Previous Next: Interactive FemtoAnalyzer

Accessible to a broad community

Part 2: Inverse mapper architectures

Ambiguity in inverse problems

Forward Mapper

Backward Mapper

Ambiguous

Grid-independent inverse mapper: Variational Autoencoder (VAE)

Developed in Phase II (5/1/2020 ~ 7/31/2020)

- Better than previous models
- Remove the grid dependence
- Highly accurate
- No Gaussian mixture assumption

Toy problems with multiple solutions

Two Solutions

Multiple Finite Solutions

Infinite Solutions

Does it work for DIS?

M. Almaeen et al. (in preparation, 2020)

Where do we go from here?

Part 3: Web frameworks

Status of web framework

FemtoAnalyzer

Where do we go from here?

Where can we host the web application \$\$\$?

