Global Fitting Paradigms Synergy Between Lattice And Phenomenology?

QCD Real-Time Dynamics and Inverse Problems

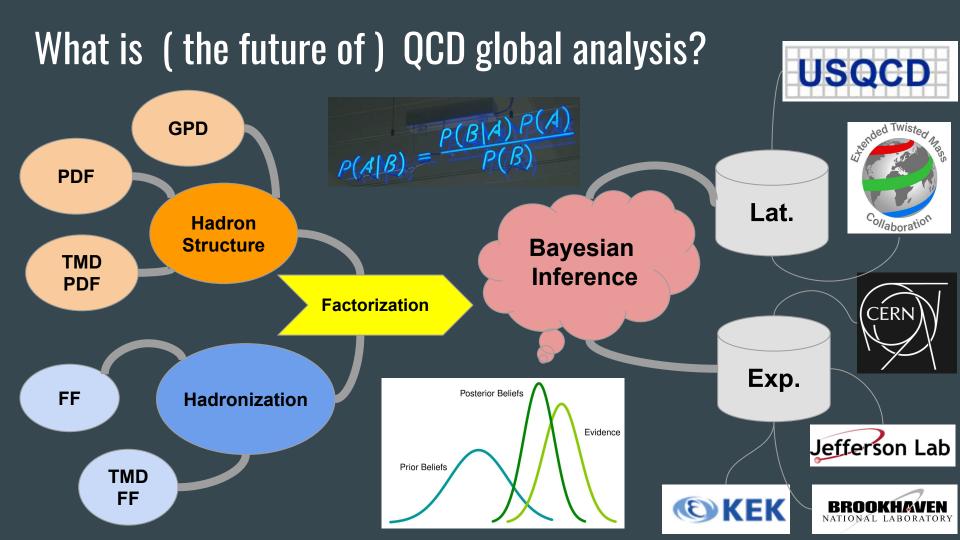
Date: Monday, October 19, 2020 - 8:20am to Thursday, October 22, 2020 - 12:30pm

Krzysztof Cichy

Adam Mickiewicz University Research: Partonic distributions from Lattice QCD

Nobuo Sato

Jefferson Lab Theory Center Research: QCD Global analysis (JAM) on hadron structure and hadronization


What we are going to discuss?

Global analysis (NS)

- > What is a QCD global analysis?
- > The **Bayesian inference** in a nutshell
- > Why lattice + experimental data?

Synergy between lattice and pheno (KC)

- > LQCD: exploratory vs. precision studies
- > Lattice approaches to partonic functions
- > Some state-of-the-art lattice results
- > Synergy: open problems/challenges

The Bayesian inference

$$f_{i}(\xi,\mu_{0}^{2}) = N_{i}\xi^{a_{i}}(1-\xi)^{b_{i}}(1+...)$$

$$d_{i}(\zeta,\mu_{0}^{2}) = N_{i}\zeta^{a_{i}}(1-\zeta)^{b_{i}}(1+...)$$

$$\mathbf{a} = (N_{i},a_{i},b_{i},...)$$

$$d\sigma_{\mathrm{DIS}} = \sum_{i} H_{i}^{\mathrm{DIS}} \otimes f_{i}$$

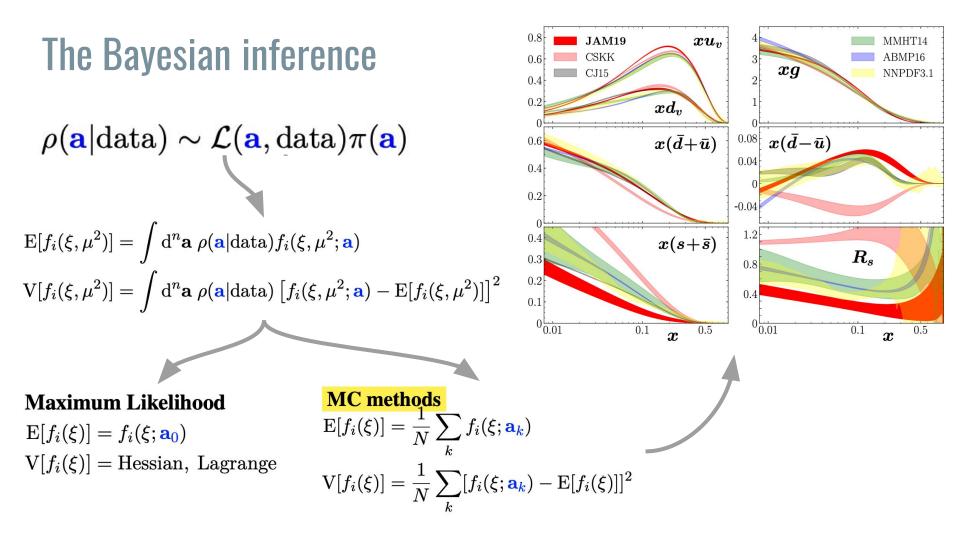
$$d\sigma_{\mathrm{DY}} = \sum_{ij} H_{ij}^{\mathrm{DY}} \otimes f_{i} \otimes f_{j}$$

$$d\sigma_{\mathrm{SIA}} = \sum_{i} H_{ij}^{\mathrm{SIA}} \otimes d_{i}$$

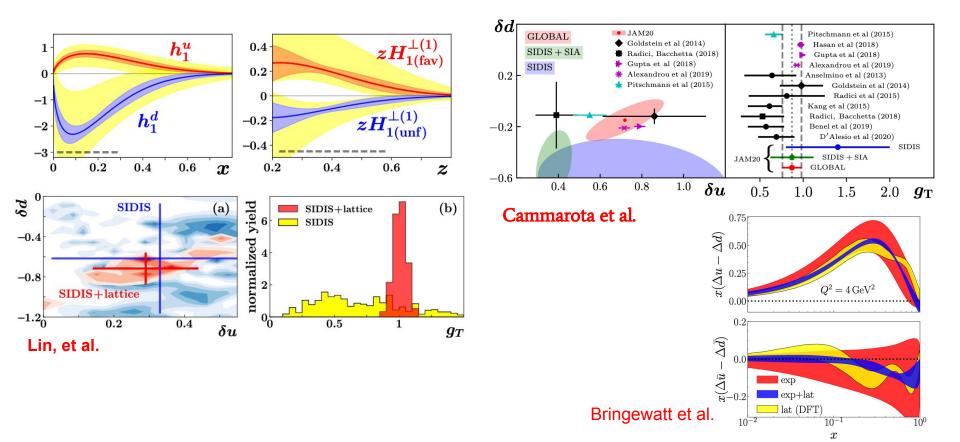
$$d\sigma_{\mathrm{SIDIS}} = \sum_{ij} H_{ij}^{\mathrm{SIDIS}} \otimes f_{i} \otimes d_{j}$$

$$F[f_{i}(\xi,\mu^{2})] = \int d^{n}\mathbf{a} \rho(\mathbf{a}|\mathrm{data}) \left[f_{i}(\xi,\mu^{2};\mathbf{a}) - \mathrm{E}[f_{i}(\xi,\mu^{2})]\right]^{2}$$

The Bayesian inference


$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left[-\frac{1}{2}\chi^2(\boldsymbol{a}, \text{data})\right]$$
$$\chi^2(\boldsymbol{a}, \text{data}) = \sum_{e,i} \left(\frac{d_{e,i} - \sum_k r_{e,k}\beta_{e,k,i} - t_{e,i}(\boldsymbol{a})/N_e}{\alpha_i}\right)^2$$

$$+\sum_{k} r_{e,k}^2 + \left(\frac{1-N_e}{\delta N_e}\right)^2$$


Combined measurement and QCD analysis of the inclusive $e^{\pm}p$ scattering cross sections at HERA

Source	Data Samples
H1 E'_e	δ_1 H1 NC [4] — δ_1 H1 NC HY [5] — δ_1 H1 NC [3] — δ_1 H1 NC [5]
H1 E_h	δ_2 H1 CC [3] — δ_2 H1 CC [5] — δ_2 H1 CC [4] — δ_3 H1 NC [4]
	δ_3 H1 NC HY [5] — δ_3 H1 NC [3] — δ_3 H1 NC [5]
H1 γp asymmetry	δ_6 H1 NC HY [5] — δ_6 H1 NC [5]
H1 γp background	δ_4 H1 CC [3] — δ_4 H1 CC [5] — δ_4 H1 CC [4] — δ_5 H1 NC [4]
	δ_5 H1 NC HY [5] — δ_5 H1 NC [3] — δ_5 H1 NC [5]
H1 θ_e	δ_2 H1 NC [4] — δ_2 H1 NC HY [5] — δ_2 H1 NC [5]
H1 CC cuts	δ_1 H1 CC [5] — δ_1 H1 CC [4]
H1 LAr Noise	δ_3 H1 CC [3] — δ_3 H1 CC [5] — δ_3 H1 CC [4] — δ_4 H1 NC [4]
	δ_4 H1 NC HY [5] — δ_4 H1 NC [3] — δ_4 H1 NC [5]
H1 Lumi 94 – 97	$\delta_5 \text{ H1 CC [3]} - \delta_6 \text{ H1 NC [3]}$
H1 Lumi 98 – 99	δ_5 H1 CC [4] — δ_6 H1 NC [4] — δ_7 H1 NC HY [5]
H1 Lumi 99 – 00	δ_5 H1 CC [5] — δ_7 H1 NC [5]
ZEUS E'_e	δ_1 ZEUS NC [11] — δ_1 ZEUS NC [13]
ZEUS E_h a	δ_1 ZEUS CC [12] — δ_1 ZEUS CC [14]
ZEUS E_h b	δ_2 ZEUS CC [12] — δ_2 ZEUS CC [14]
ZEUS E_h in BCAL	δ_2 ZEUS CC [10] — δ_6 ZEUS NC [9]
ZEUS E_h in FCAL	δ_1 ZEUS CC [10] — δ_5 ZEUS NC [9]
ZEUS δ cut	δ_8 ZEUS BPC [6] — δ_1 ZEUS BPT [7]
ZEUS γp background	δ_2 ZEUS NC [11] — δ_2 ZEUS NC [13]
ZEUS γp background	δ_9 ZEUS BPC [6] — δ_{14} ZEUS BPT [7] — δ_8 ZEUS SVX [8]
ZEUS y_h cut	δ_3 ZEUS BPC [6] — δ_2 ZEUS BPT [7]
ZEUS BPC linearity	δ_5 ZEUS BPC [6] — δ_9 ZEUS BPT [7]
ZEUS BPC shower	δ_4 ZEUS BPC [6] — δ_3 ZEUS BPT [7]
ZEUS CAL energy	δ_2 ZEUS BPC [6] — δ_{12} ZEUS BPT [7] — δ_9 ZEUS SVX [8]
ZEUS Cuts ₁	δ_3 ZEUS NC [11] — δ_3 ZEUS NC [13]
ZEUS Cuts ₂	δ_4 ZEUS NC [11] — δ_4 ZEUS NC [13]
ZEUS HFS model	δ_3 ZEUS CC [10] — δ_3 ZEUS CC [12] — δ_6 ZEUS NC [11]
	δ_6 ZEUS NC [13] — δ_3 ZEUS CC [14]
ZEUS Lumi 94 – 97	δ_4 ZEUS CC [10] — δ_{11} ZEUS NC [9]
ZEUS Lumi 98 – 99	δ_4 ZEUS CC [12] — δ_7 ZEUS NC [11]
ZEUS Lumi 99 – 00	δ_9 ZEUS NC [13] — δ_4 ZEUS CC [14]

Table 5. List of systematic sources that are correlated across the data samples. The type of the systematic uncertainty is given in the "source" column. The labels δ_i denote the sources according to the sequential ordering in the list of the correlated systematic uncertainties of the corresponding publication. An overall 0.5% normalisation uncertainty, common to all data sets, is not included in this list.

Why lattice and experimental data?

Complementarity

Experiment

> Huge amount of data to access hadron structure and hadronization

> Provides the testing platform for universality and QCD predictions

> Requires to separate reaction dependent parts from intrinsic properties

Lattice

> Provides constraints on hadron structures not accessible experimentally

> Universality of factorization can be tested within combined lattice observables and experimental data

> Direct access to intrinsic properties of hadron structure that can be compared with infrared structures from experiments

Challenges

Uncertainty quantification

- > Modeling the likelihood function ->
 treatment of systematic uncerties
- > Confidence levels in the presence of incompatible data
- > Bayesian posterior sampling on large
 dimensional space ~ O(100)

JLab 12 and EIC + (Lattice)

> New era of high luminosity experiments -> enormous amount of data

>New ideas emerging using machine learning models