

ML and QCD global analysis

Nobuo Sato

AI4NP Winter School JAN 2021

Outline

Lecture 1

- Motivations
- QCD carpentry setup
- Solving QCD's beta function

Lecture 2

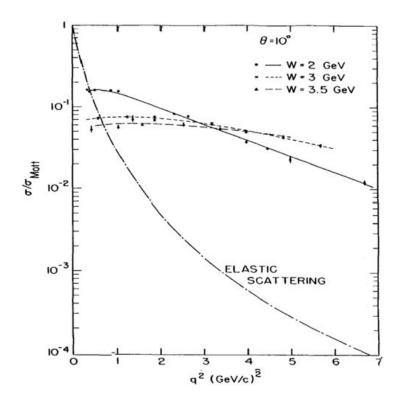
- Mellin transforms
- Solving DGLAP
- Modeling input scale PDFs

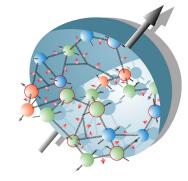
Lecture 3

- DIS theory
- World DIS data
- The chi2 function
- Global analysis

Lecture 4

- Bayesian inference
 - Maximum likelihood
 - MC methods
- JAM history
- Machine learning

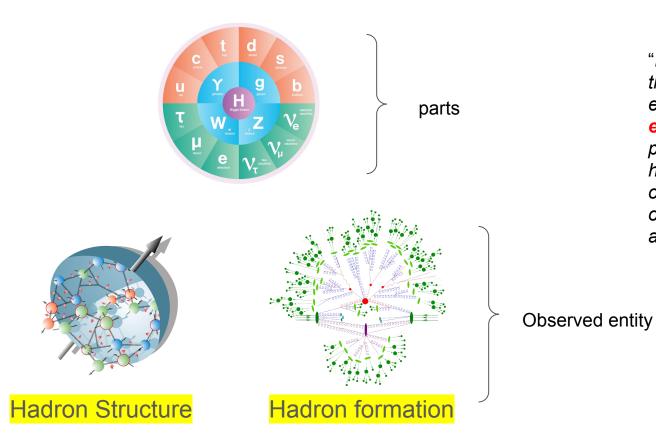




Discovery of point-like particles inside proton

Motivations

Understanding the emergent phenomena of QCD



"In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors which emerge only when the parts interact in a wider whole." Wiki

What do we mean by "hadron structure"? (1D)

 $\xi = \frac{k^+}{P^+} \quad \text{Parton momentum fraction relative to parent hadron}$ $f_i(\xi) = \int \frac{\mathrm{d}w^-}{4\pi} e^{-i\xi p^+ w^-} \left\langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \gamma^+ \psi_i(0) | N \right\rangle$

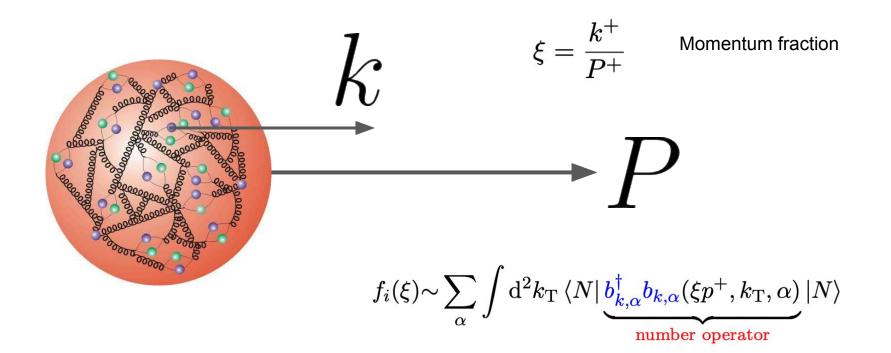
parton distribution function (PDF)

Interpretation in non-interacting QCD

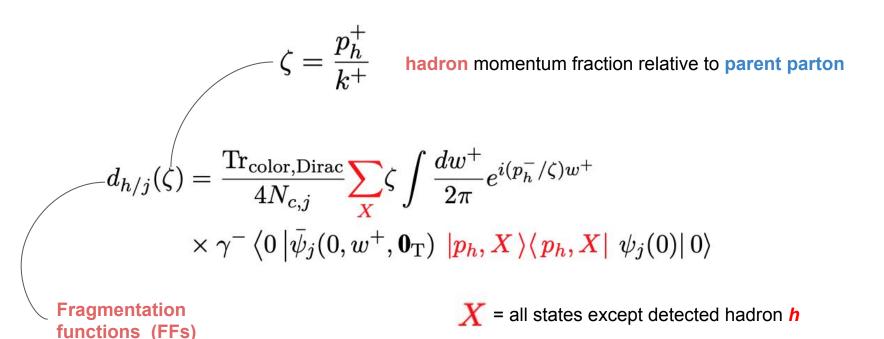
$$\psi_{i}(x) = \sum_{k,\alpha} b_{k,\alpha}(x^{+}) u_{k,\alpha} e^{-ik^{+}x^{-} + ik_{\mathrm{T}} \cdot x_{\mathrm{T}}} + d_{k,\alpha}^{\dagger}(x^{+}) u_{k,-\alpha} e^{ik^{+}x^{-} - ik_{\mathrm{T}} \cdot x_{\mathrm{T}}}$$
$$f_{i}(\xi) \sim \sum_{\alpha} \int \mathrm{d}^{2}k_{\mathrm{T}} \langle N | \underbrace{b_{k,\alpha}^{\dagger} b_{k,\alpha}(\xi p^{+}, k_{\mathrm{T}}, \alpha)}_{\text{number operator}} | N \rangle$$

5

How quarks and gluons are distributed?

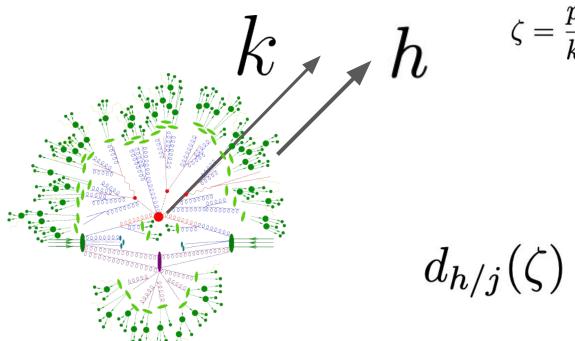


What do we mean by "hadronization"? (1D)



7

How quarks and gluons are distributed?



 $\zeta = \frac{p_h}{k^+}$

Number density of hadrons from parent parton

Hadron structure in interacting theory

Definition of PDFs in field theory requires renormalization

PDFs will depend on renormalization scale and its RGEs are the famous DGLAP equations UV singularity when the field separation is zero

$$f_i(\xi) \stackrel{!}{=} \int \frac{\mathrm{d}w^-}{4\pi} e^{-i\xi p^+ w^-} \left\langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \gamma^+ \psi_i(0) | N \right\rangle$$

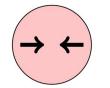
Renormalization

 $f = Z_F \otimes f_{\text{bare}}$ $f(\xi) \to f(\xi, \mu)$ Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

$$\frac{\mathrm{d}f_i(\xi,\mu^2)}{\mathrm{d}\ln\mu^2} = \sum_j \int_{\xi}^1 \frac{\mathrm{d}y}{y} P_{ij}(\xi,\mu^2) f_j\left(\frac{y}{\xi},\mu^2\right)$$

aka **DGLAP**

Spin structures



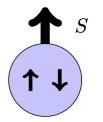
$$f = f_{
ightarrow} + f_{
ightarrow} \qquad \langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \mathbf{\gamma}^+ \psi_i(0) | N \rangle$$

$$\rightarrow \leftarrow \overset{S}{\rightarrow}$$

$$\Delta f = f_{\rightarrow} - f_{\leftarrow}$$

Helicity distribution

 $\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_5\psi_i(0)|N
angle$

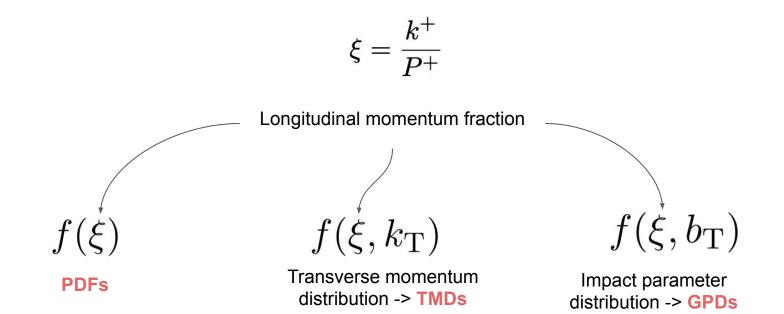


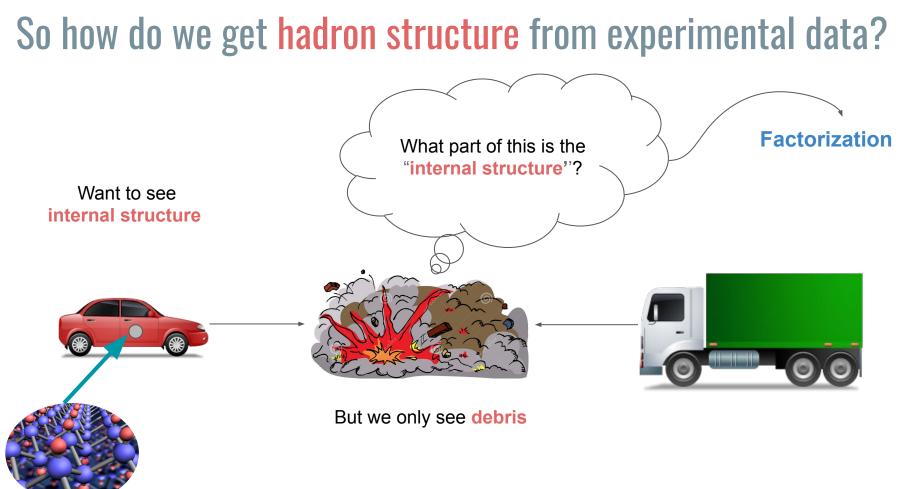
 $\delta_{\rm T} f = f_{\uparrow} - f_{\downarrow}$

Transversity

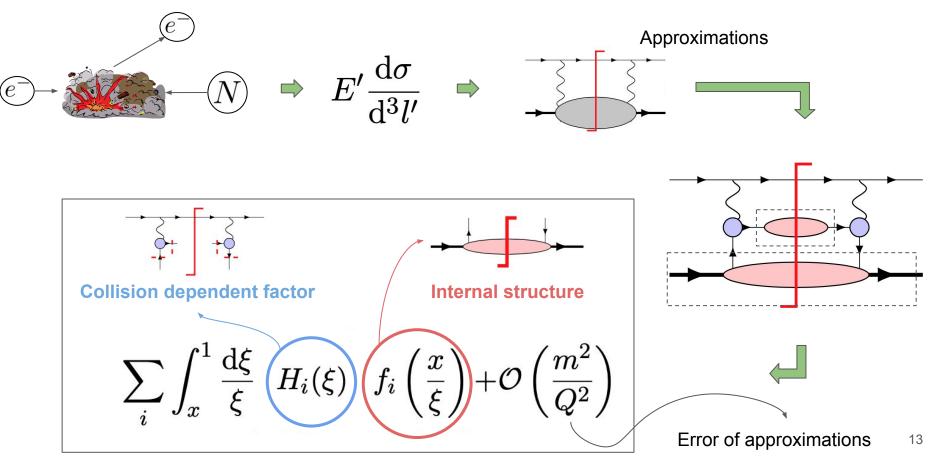
$$\left\langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \boldsymbol{\gamma}^+ \boldsymbol{\gamma}_\perp \boldsymbol{\gamma}_5 \psi_i(0) | N \right\rangle$$

Extensions to 3D

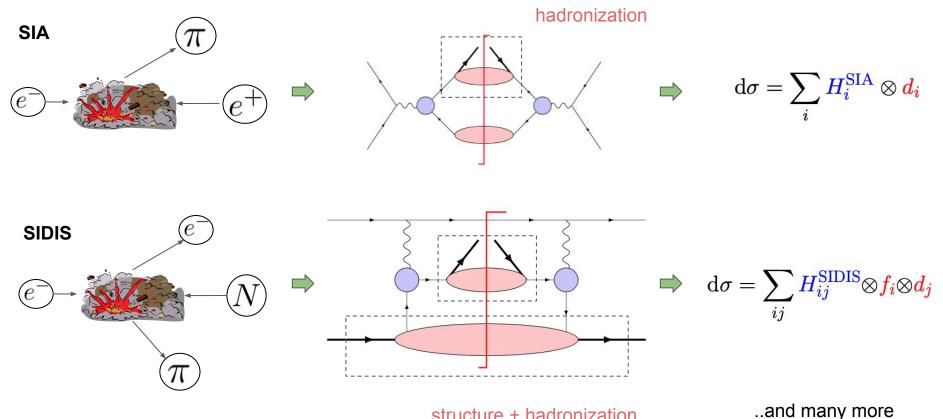




Factorization in deep-inelastic scattering (DIS)

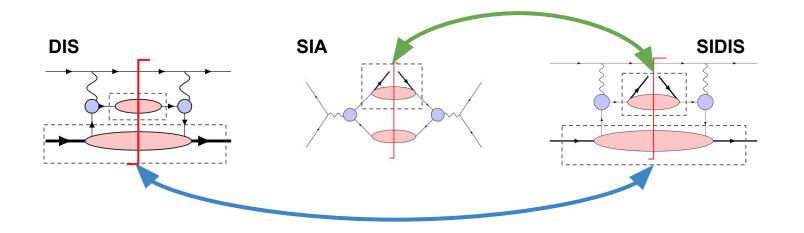


Factorization in other reactions



structure + hadronization

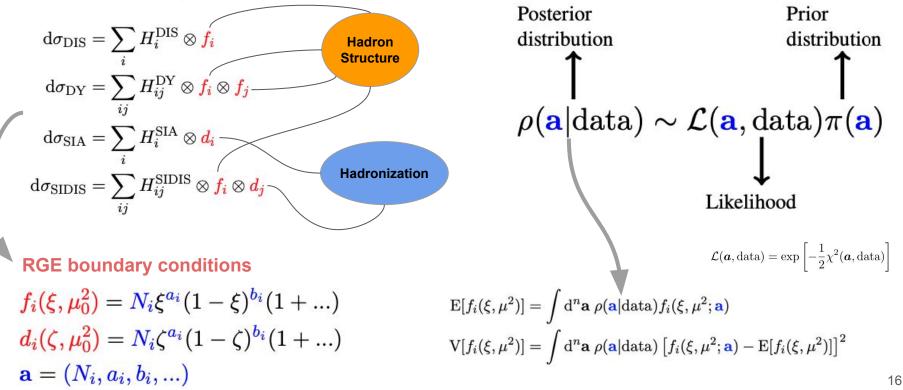
Universality



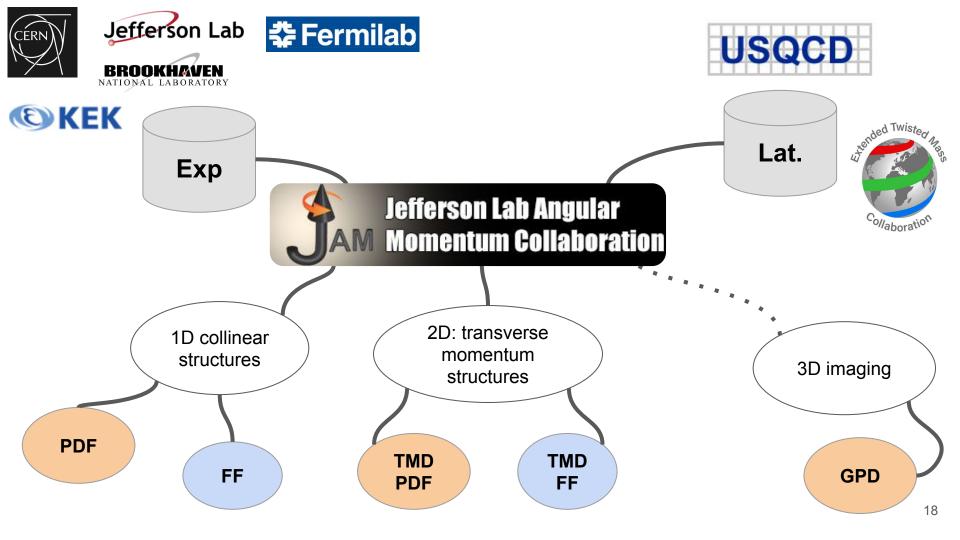
cross sections described by **universal non-perturbative** functions, e.g. PDFs, FFs

The Bayesian inference

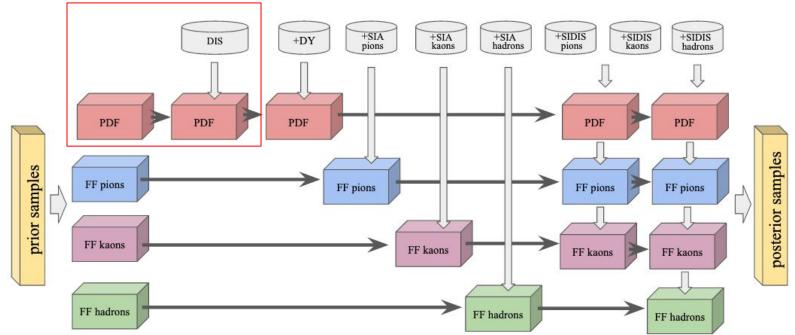
Experiments = theory + errors



The QCD global analysis paradigm USQCD $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ tended Twister **GPD PDF** Lat. Hadron ollaboration **Bayesian Structure** TMD Inference **PDF Factorization** CERN Exp. Posterior Beliefs FF **Hadronization** Evidence Jefferson Lab Prior Beliefs TMD FF **©KEK** NATIONAL LABOR

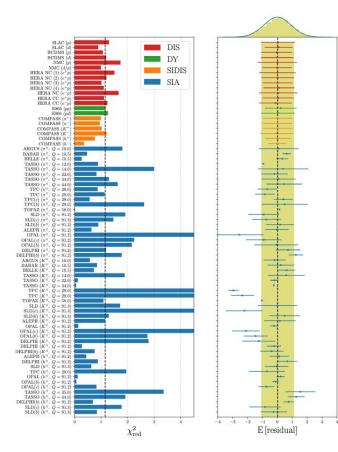


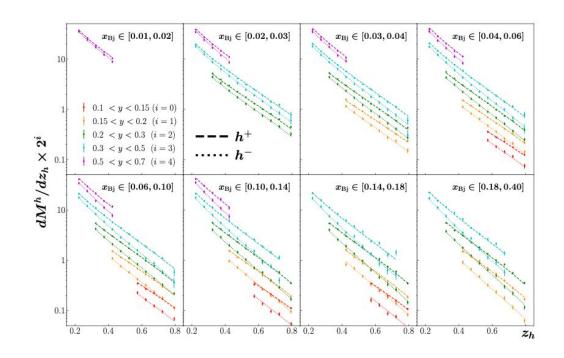
Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664



These lectures

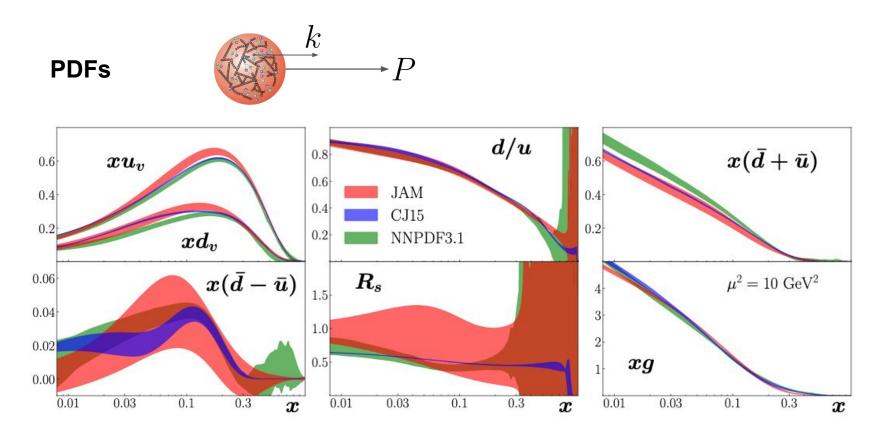
Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664





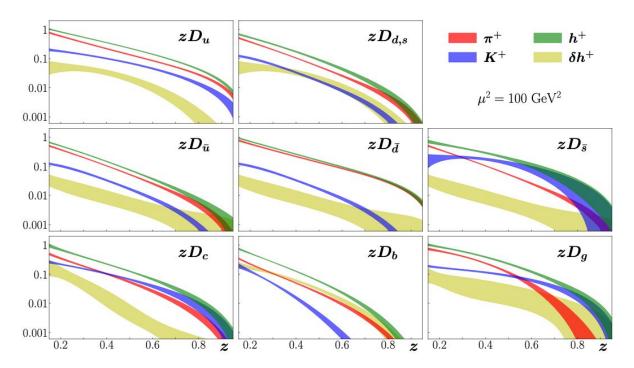
20

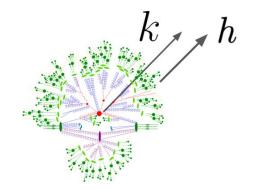
Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664



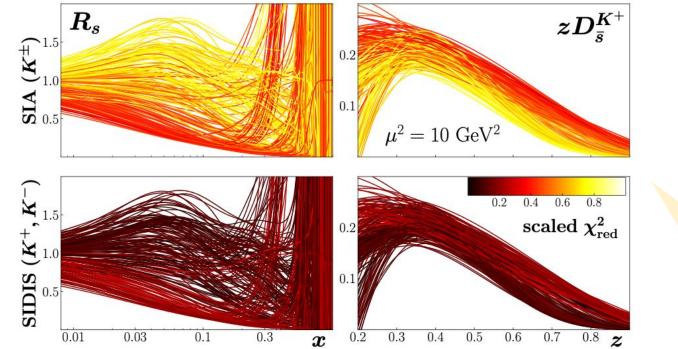
Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664

FFs





An example: JAM20-SIDIS Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664

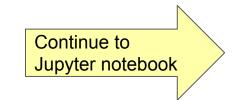


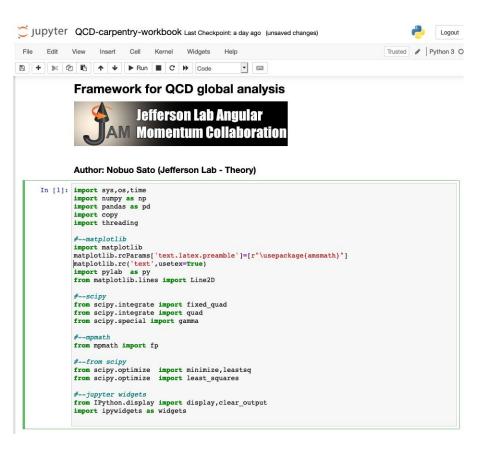
 $R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$

The simultaneous fit of PDFs and FFs provides new insights on nucleon strangeness

QCD carpentry in python

- We will use a jupyter-notebook available at <u>https://github.com/QCDHUB/qcdcarpentry</u>
- The lectures involves several exercises. I will give few minutes to work on them
- You need to have jupyter notebook available in your computer. All the required dependencies are listed. Use \$pip install xyz to get libraries you don't have.
- Ok, let's take a look the notebook

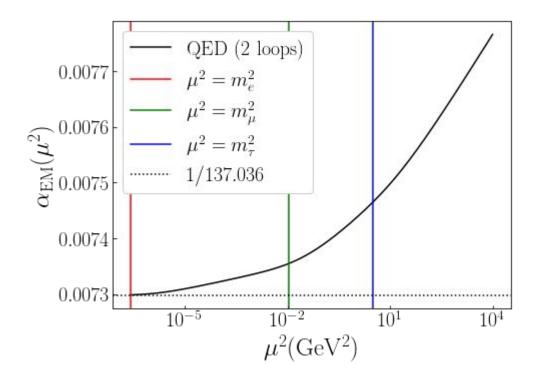


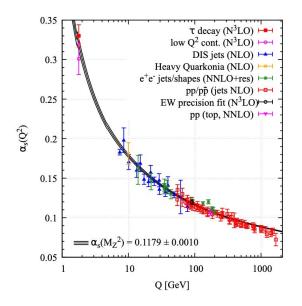


Exercise 1 (time: 5 mins)

• plot $\alpha_{\rm EM}$ as a function of $\mu^2 \in (m_e^2, 10^4)$

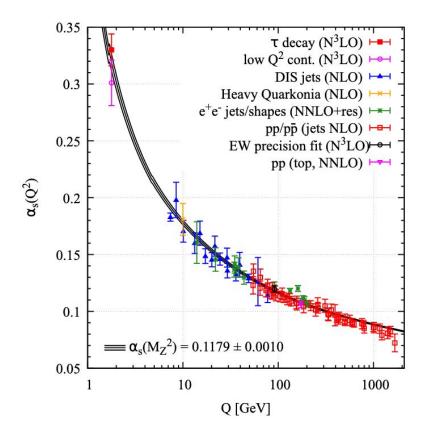
• include vertical lines indicating the mass thresholds m_e^2 , m_{μ}^2 , m_{τ}^2





Solving QCD's beta function

The running of the strong coupling



boundary condition
to solve the RGE
$$a_{S}(\mu^{2}) = \frac{\alpha_{S}(\mu^{2})}{4\pi}$$
$$\frac{da_{S}}{d\ln\mu^{2}} = \beta(a_{s}) = -\left(\beta_{0}a_{S}^{2} + \beta_{1}a_{S}^{3} + ...\right)$$
$$\beta_{0} = 11 - \frac{2}{3}N_{f} \qquad \beta_{1} = 102 - \frac{38}{3}N_{f}$$
The beta function is discontinuous

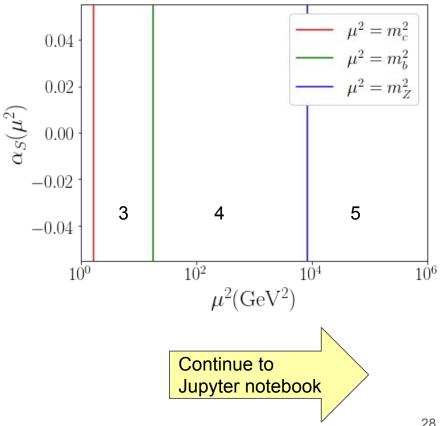
We need a

Solving the QCD beta function

scale	N_{f}	active flavors
$\mu < m_c$	3	u,d,s
$m_c \leq \mu < m_b$	4	u,d,s,c
$m_b \leq \mu$	5	u,d,s,c,b

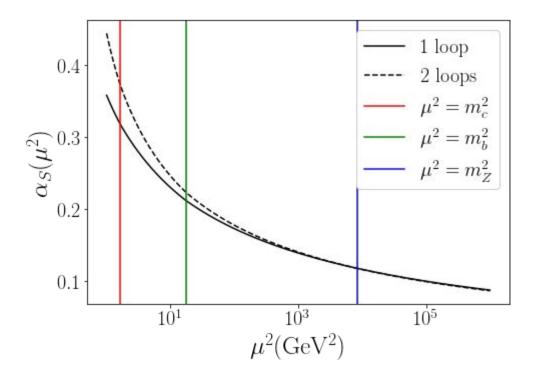
$$rac{da_S}{d\ln\mu^2} = eta(a_s) = -\left(eta_0 a_S^2 + eta_1 a_S^3 + ...
ight)$$

To solve the RGE at any scale we need boundary conditions for 3,4,5 flavors



Exercise 2.A (time: 5 mins)

- plot α_S as a function of $\mu^2 \in (1, 10^4)$
- · make the plot using 1-loop and 2-loops
- include vertical lines indicating the mass thresholds m_c^2 , m_b^2 and m_Z^2

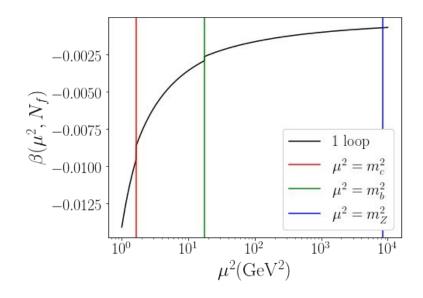


Exercise 2.B (time: 5 mins)

- plot $\beta(\mu^2)$ as a function of $\mu^2 \in (1, 10^4)$
- using 2-loops (order=1)
- include vertical lines indicating the mass thresholds m_c^2 , m_b^2 and m_Z^2

• Hint:

- for a given μ^2 , compute a via get_a and Nf via get_Nf
- use the function beta_func(a,Nf) to get the numerical value of the beta function



Outline

Lecture 1

- Motivations
- QCD carpentry setup
- Solving QCD's beta function

Lecture 2

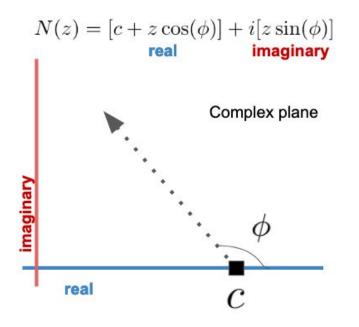
- Mellin transforms
- Solving DGLAP
- Modeling input scale PDFs

Lecture 3

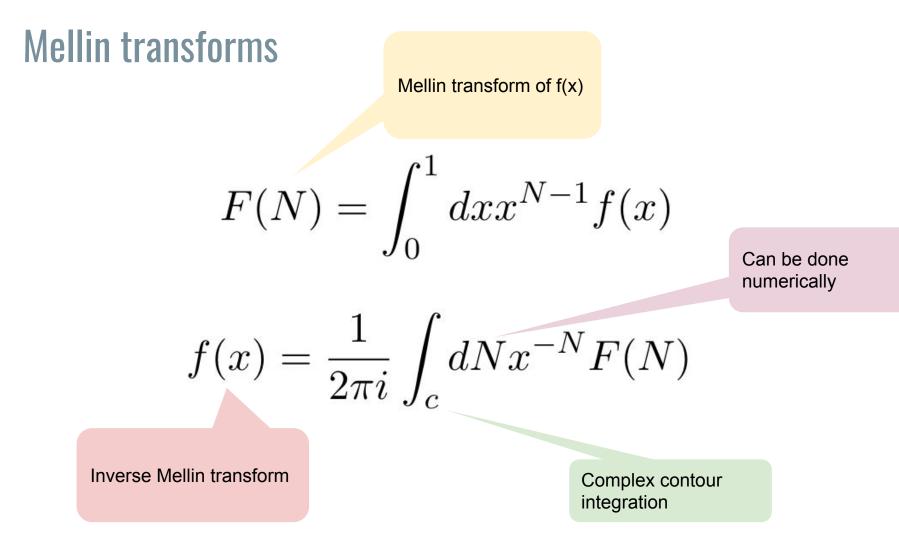
- DIS theory
- World DIS data
- The chi2 function
- Global analysis

Lecture 4

- Bayesian inference
 - Maximum likelihood
 - MC methods
- JAM history
- Machine learning



Mellin transforms



Numerical implementation

$$f(x) = \frac{1}{2\pi i} \int_{c} dNx^{-N} F(N)$$

$$N(z) = c + ze^{i\phi}$$

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} dz \operatorname{Im} \left[e^{i\phi} x^{-N(z)} F(N(z)) \right]$$

$$N(z) = c + ze^{i\phi}$$

$$\int_{0}^{\infty} dz \operatorname{Im} \left[e^{i\phi} x^{-N(z)} F(N(z)) \right]$$

Example
$$f(x) = x$$

$$F(N) = \int_{0}^{1} dx x^{N-1} f(x)$$

$$F(N) = \frac{1}{N+1} x^{N+1} \Big|_{0}^{1} = \frac{1}{N+1}$$

$$x = \frac{1}{\pi} \int_{0}^{\infty} dz \operatorname{Im} \left[e^{i\phi} x^{-N(z)} \frac{1}{N(z)+1} \right]$$

$$F(N) = x^{N(z)} = x^{N(z)} + \frac{1}{N(z)} + \frac{1}{N(z)$$

Gaussian Quadrature

Only for range -1 to 1

$$\int_{-1}^1 dx \; g(x) pprox \sum_{i=1}^n w_i g(x_i)$$

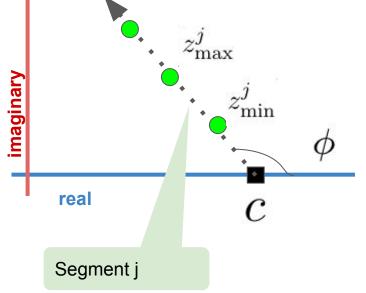
For arbitrary range

$$\int_{a}^{b} dz \ g(z) \approx \frac{b-a}{2} \sum_{i=1}^{n} w_i \ g\left(\frac{1}{2}(b-a)x_i + \frac{1}{2}(a+b)\right)$$

Inverse mellin transform with Gaussian Quadrature

$$f(x) = \frac{1}{\pi} \int_0^\infty dz \operatorname{Im} \left[e^{i\phi} x^{-N(z)} F(N(z)) \right]$$
$$\int_{I}^\infty f(x) \approx \frac{1}{\pi} \sum_{j=1}^k \frac{1}{2} \left(z_{\max}^j - z_{\min}^j \right) \sum_i w_i \operatorname{Im} \left[e^{i\phi} x^{-N(z_i^j)} F(N(z_i^j)) \right]$$
We only need to know F at the segment gaussian points

 $N(z) = [c + z\cos(\phi)] + i[z\sin(\phi)]$ real imaginary



Mellin convolutions

Definition of a convolution of two functions

$$\sigma(z) = \int_{z}^{1} \frac{d\xi}{\xi} h(\xi) f\left(\frac{z}{\xi}\right) \qquad \Longrightarrow \qquad \Sigma(N) = \int_{0}^{1} dz \ z^{N-1} \sigma(z)$$

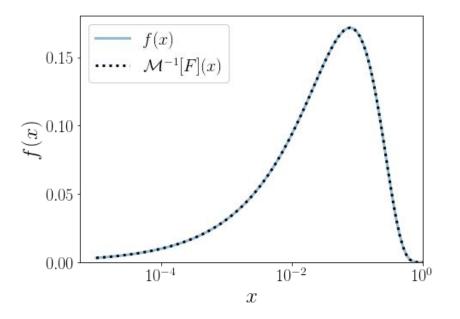
$$\Sigma(N) = H(N) F(N) \bullet$$
$$H(N) = \int_0^1 dy \ y^{N-1}h(y)$$
$$F(N) = \int_0^1 dy \ y^{N-1}f(y)$$

Mellin transform makes a convolution an ordinary product

Why Mellin transforms? The kernels are known Continue to analytically. They are Jupyter notebook called "splitting functions" PDFs obeys a system of integro differential equations (DGLAP) This is a "mellin convolution" $\frac{\partial}{\partial \ln \mu^2} f_{j/H}(\xi,\mu) = \sum_{j'} \int_{\xi}^1 \frac{dz}{z} P_{jj'}(z,g) f_{j'/H}(\xi/z,\mu)$ This is a matrix equation $\frac{\partial}{\partial \ln \mu^2} F_{j/H}(N,\mu) = \sum_{j'} P_{jj'}(N,\mu) F_{j'/H}(N,\mu)$

Exercise 3.A (time: 5 mins)

- Lets try $f(x) = x^{a}(1-x)^{b}$ with a = -0.5 and b = 3.
- Plot x f(x) vs. x and the inverse mellin transform for 0 < x < 1 (use log scale for the x axis)
- Hint: the mellin transform of f is $F(N) = \Gamma(N+a)\Gamma(b+1)/\Gamma(N+a+b+1)$
- Hint: Gamma function is available via gamma(...)
- Attention: the pole of F is at N = -a. Choose c > -a



Exercise 3.B (time: 10 mins)

Consider the convolution

 $\sigma(z) = \int_{z}^{1} \frac{dx}{x} f(x) g\left(\frac{z}{x}\right)$

The mellin transform is

 $\Sigma(N) = F(N)G(N)$

with

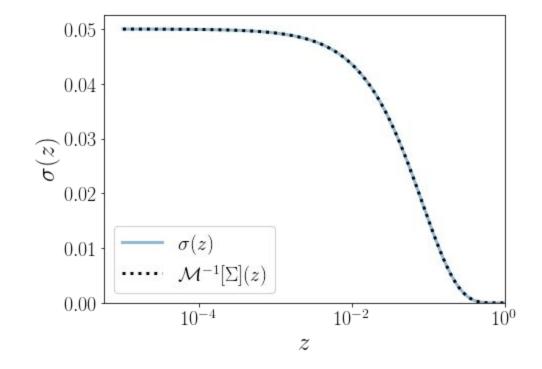
 $F(N) = \int_0^1 x^{N-1} f(x)$ $G(N) = \int_0^1 x^{N-1} g(x)$

Using

 $f(x) = x^{a}(1-x)^{b}$ with a = -0.5 and b = 3. $g(x) = x^{c}(1-x)^{d}$ with c = 1.0 and d = 3

- Plot: zσ(z) vs. z
- Plot: z M⁻¹(Σ) vs. z

• use 0 < z < 1



$$\frac{\partial}{\partial \ln \mu^2} f_{j/H}(\xi,\mu) = \sum_{j'} \int_{\xi}^1 \frac{dz}{z} P_{jj'}(z,g) f_{j'/H}(\xi/z,\mu)$$

Solving DGLAP

DGLAP in Mellin space

Splitting kernels

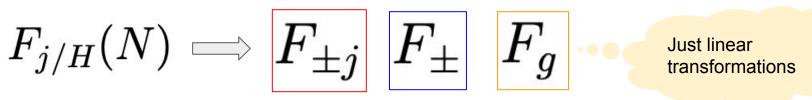
$$\frac{\partial}{\partial \ln \mu^2} f_{j/H}(\xi,\mu) = \sum_{j'} \int_{\xi}^1 \frac{dz}{z} P_{jj'}(z,g) f_{j'/H}(\xi/z,\mu)$$
$$\frac{\partial}{\partial \ln \mu^2} F_{j/H}(N,\mu) = \sum_{j'} P_{jj'}(N,\mu) F_{j'/H}(N,\mu) \qquad \text{Ordinadifferent optimization}$$

System of integro-differential equations

Ordinary system of differential equations

Can be solved Analytically!

Flavor composition



11 = 8 + 2 + 1

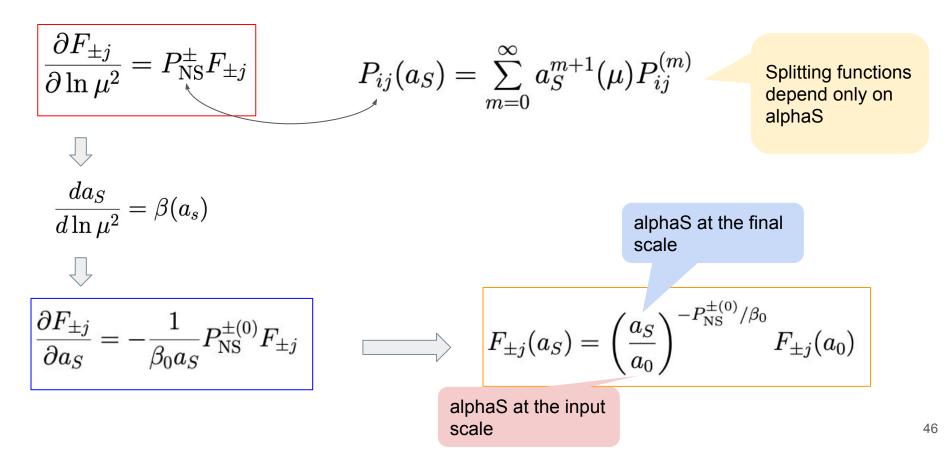
Flavor singlet and non-singlet evolution

$$\frac{\partial}{\partial \ln \mu^2} F_{j/H}(N,\mu) = \sum_{j'} P_{jj'}(N,\mu) F_{j'/H}(N,\mu)$$

Non singlet combinations decouples from glue

$$\frac{\partial}{\partial \ln \mu^2} \begin{pmatrix} F_+ \\ F_g \end{pmatrix} = \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \begin{pmatrix} F_+ \\ F_g \end{pmatrix}$$

Solving the non-singlet evolution equations



Solving the singlet evolution equations

Eigenvalue decomposition

$$\begin{aligned} \frac{\partial}{\partial \ln \mu^{2}} \begin{pmatrix} F_{+} \\ F_{g} \end{pmatrix} &= \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \begin{pmatrix} F_{+} \\ F_{g} \end{pmatrix} \\ \downarrow \\ \hline \\ \frac{\partial}{\partial a_{S}} \begin{pmatrix} F_{+} \\ F_{g} \end{pmatrix} &= \frac{-1}{\beta_{0} a_{S}} \begin{pmatrix} P_{q0}^{(0)} & P_{qg}^{(0)} \\ P_{qq}^{(0)} & P_{gg}^{(0)} \end{pmatrix} \begin{pmatrix} F_{+} \\ F_{g} \end{pmatrix} \\ &= \frac{1}{\beta_{0} a_{S}} \begin{pmatrix} P_{qq}^{(0)} & P_{qg}^{(0)} \\ P_{qq}^{(0)} & P_{qg}^{(0)} \\ P_{gg}^{(0)} & P_{gg}^{(0)} \end{pmatrix} \begin{pmatrix} F_{+} \\ F_{g} \end{pmatrix} \\ &= \frac{1}{2\beta_{0}} \left[P_{qq}^{(0)} + P_{gg}^{(0)} \pm \sqrt{\left(P_{qq}^{(0)} - P_{gg}^{(0)}\right)^{2} + 4P_{qg}^{(0)} P_{gq}^{(0)}} \right] \end{aligned}$$

$$\begin{pmatrix} F_+(a_S) \\ F_g(a_S) \end{pmatrix} = \left[\boldsymbol{e}_- \left(\frac{a_S}{a_0} \right)^{-r_-} + \boldsymbol{e}_+ \left(\frac{a_S}{a_0} \right)^{-r_+} \right] \begin{pmatrix} F_+(a_0) \\ F_g(a_0) \end{pmatrix}$$

Flavor decomposition

$$F_{\pm j}$$
 F_{\pm} F_g

$$F_{b^{\pm}} = (F_{-} - F_{\pm 24})/5$$

$$F_{c^{\pm}} = F_{b^{\pm}} + (F_{\pm 24} - F_{\pm 15})/4$$

$$F_{s^{\pm}} = F_{c^{\pm}} + (F_{\pm 15} - F_{\pm 8})/3$$

$$F_{d^{\pm}} = F_{s^{\pm}} + (F_{\pm 8} - F_{\pm 3})/2$$

$$F_{u^{\pm}} = F_{s^{\pm}} + (F_{\pm 8} + F_{\pm 3})/2$$

$$F_q = rac{1}{2}(F_{q^+}+F_{q^+})$$
 $F_{ar{q}} = rac{1}{2}(F_{q^+}-F_{q^-})$

Evolution flow

$$F_{\pm j} F_{\pm} F_{g} \longrightarrow F_{b^{\pm}} (F_{-} - F_{\pm 24})/5$$

$$F_{c^{\pm}} = F_{b^{\pm}} + (F_{\pm 3} - F_{\pm 15})/4$$

$$F_{c^{\pm}} = F_{c^{\pm}} + (F_{\pm 3} - F_{\pm 3})/2$$

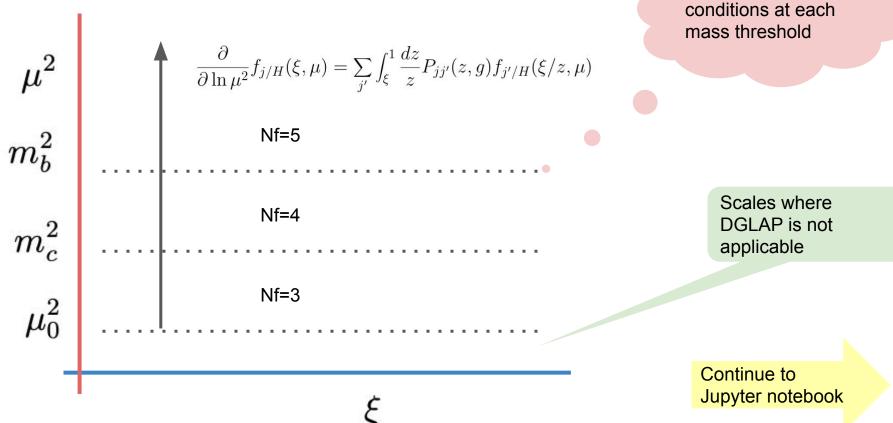
$$F_{c^{\pm}} = F_{c^{\pm}} + (F_{\pm 3} - F_{\pm 3})/2$$

$$F_{\pm j}(a_{S}) = \left(\frac{a_{S}}{a_{0}}\right)^{-P_{NS}^{\pm(0)}/\beta_{0}} F_{\pm j}(a_{0})$$

$$\left(\frac{F_{+}(a_{S})}{F_{g}(a_{S})}\right) = \left[e_{-}\left(\frac{a_{S}}{a_{0}}\right)^{-r_{+}} + e_{+}\left(\frac{a_{S}}{a_{0}}\right)^{-r_{\pm}}\right] \left(\frac{F_{+}(a_{0})}{F_{g}(a_{0})}\right)$$

$$F_{\pm j} F_{\pm j} F_{\pm} F_{g} \longleftarrow F_{\pm s} = F_{s^{\pm}} + F_{s^{\pm}} - F_{s^{\pm}}, F_{s^{\pm}} = F_{s^{\pm}} + F_{s^{\pm}} - 2F_{s^{\pm}}, F_{s^{\pm}} = F_{s^{\pm}} + F_{s^{\pm}} - 2F_{s^{\pm}}, F_{s^{\pm}} = F_{s^{\pm}} + F_{s^{\pm}} - 2F_{s^{\pm}}, F_{s^{\pm}} = F_{s^{\pm}} + F_{s^{\pm}} - 4F_{b^{\pm}}, F_{s^{\pm}} = F_{s^{\pm}} + F_{s^{$$

Boundary conditions



We need boundary

Exercise 4.A (time: 5 mins)

- Set N=1 in the mellin class via conf['mellin'].N=np.array([1])
- check the valence number sum rule at LO

• Hint:
$$\frac{\partial q_v}{\partial \ln \mu^2}(N) = P_{NS}^-(N)q_v(N) = 0$$
 for $N = 1$

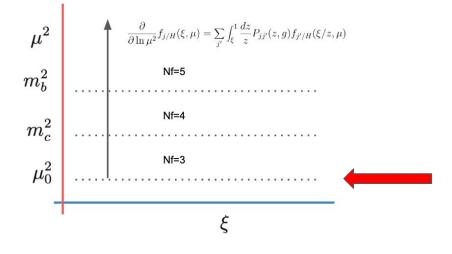
```
Nf=4
Q2ini=conf['aux'].mc2
Q2fin=conf['aux'].mb2
output = dglap.evolve(BC,Q2ini,Q2fin,Nf)
print('um=',output['um'])
print('dm=',output['dm'])
um= [2.+0.j]
dm= [1.+0.j]
```

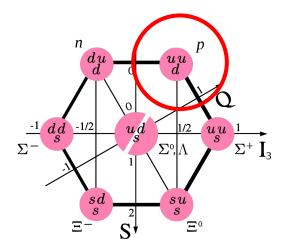
Exercise 4.B (time: 5 mins)

- Set N=2 in the mellin class via conf['mellin'].N=np.array([2])
- check the momentum sum rule at LO
- Hint: $\frac{\partial(\Sigma+G)}{\partial \ln \mu^2}(N) = (P_{qq} + P_{gq})\Sigma + (P_{qg} + P_{gg})G = 0$ for N = 2

```
Nf=4
Q2ini=conf['aux'].mc2
Q2fin=conf['aux'].mb2
output = dglap.evolve(BC,Q2ini,Q2fin,Nf)
print('sigma+g (mu) =',output['g']+output['sigma'])
```

sigma+g (mu) = [0.99999997+0.j]





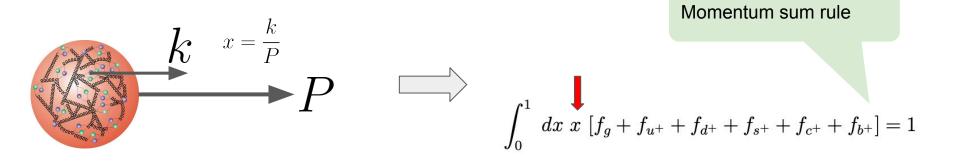
Modeling input scale PDFs

Sum rules for proton PDFs

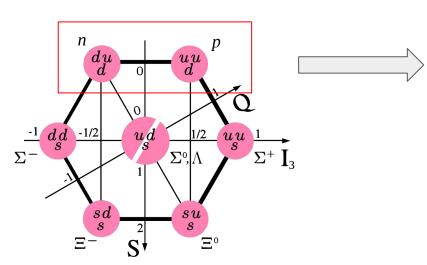
 $\Sigma^{-\frac{1}{s}} \underbrace{dd}_{S} \underbrace{du}_{I} \underbrace{du}_{I} \underbrace{uu}_{I} \underbrace$

$$egin{aligned} &\int_{0}^{1}~dx~[f_{u/p}(x)-f_{ar{u}/p}(x)]=2\ &\int_{0}^{1}~dx~[f_{d/p}(x)-f_{ar{d}/p}(x)]=1\ &\int_{0}^{1}~dx~[f_{s/p}(x)-f_{ar{s}/p}(x)]=0 \end{aligned}$$

Valence number sum rules



neutron PDFs ?



Isospin symmetry

$$f_{u/n} = f_{d/p}$$

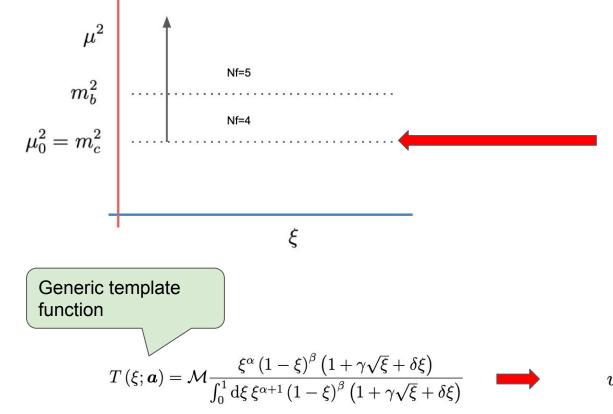
$$f_{d/n} = f_{u/p}$$

$$f_{\bar{u}/n} = f_{\bar{d}/p}$$

$$f_{\bar{d}/n} = f_{\bar{u}/p}$$

 $m_p \simeq m_n$

PDF parametrization (workbook setup)



Continue to Jupyter notebook

 $u(\xi, \mu_0^2) = u_v(\xi, \mu_0^2) + 2\bar{u}(\xi, \mu_0^2)$ $d(\xi, \mu_0^2) = d_v(\xi, \mu_0^2) + 2\bar{d}(\xi, \mu_0^2)$ $\bar{u}(\xi,\mu_0^2) = S_1(\xi,\mu_0^2) + \bar{u}_0(\xi,\mu_0^2)$ $\bar{d}(\xi,\mu_0^2) = S_1(\xi,\mu_0^2) + \bar{d}_0(\xi,\mu_0^2)$ $s(\xi, \mu_0^2) = S_2(\xi, \mu_0^2) + s_0(\xi, \mu_0^2)$ $\bar{s}(\xi,\mu_0^2) = S_2(\xi,\mu_0^2) + \bar{s}_0(\xi,\mu_0^2)$ $u_n, d_n, \bar{u}_0, d_0, s_0, \bar{s}_0, S_1, S_2$

Exercise 5.A (time: 5 mins)

- Physical proton pdfs will need $\int_0^1 dx \, u_v(x) = 2$ and $\int_0^1 dx \, d_v(x) = 1$
- . Modify the BC we use above and show that the valence number sum rules don't evolve
- hint:
 - Use the function dglap.evolve(BC,Q2ini,Q2fin,Nf) to evolve
 - Set N=1 in the mellin class via conf['mellin'].N=np.array([1])
 - Set um = np.array([2])
 - Set dm = np.array([1])
 - Printe the output values um and dm

```
Nf=4
Q2ini=conf['aux'].mc2
Q2fin=conf['aux'].mb2
output = dglap.evolve(BC,Q2ini,Q2fin,Nf)
print('um=',output['um'])
print('dm=',output['dm'])
```

um= [2.+0.j] dm= [1.+0.j]

Exercise 5.B (time: 5 mins)

- A physical proton pdfs will need $\int_0^1 dx \ x \ [\Sigma(x) + g(x)] = 1$
- · Modify the BC we use above and show that the momentum sum rules don't evolve
- hint:
 - Set N=2 in the mellin class via conf['mellin'].N=np.array([2])
 - Set g= 1-up-dp-sp
 - Print the values of output['g']+output['sigma'])

```
Nf=4
Q2ini=conf['aux'].mc2
Q2fin=conf['aux'].mb2
output = dglap.evolve(BC,Q2ini,Q2fin,Nf)
print('sigma+g (mu) =',output['g']+output['sigma'])
```

```
sigma+g (mu) = [0.99999997+0.j]
```

Exercise 6 (time: 5 mins)

• Check the valence number and momentum sum rules at $\mu^2 = m_c^2$, 10, 100, 1000

```
mu^2=1.638400
uv-> (2.000000047183332, 2.4232824635816996e-08)
dv-> (0.9999999958918243, 3.46867490286229e-09)
sv-> (4.3347507561294274e-08, 2.1829166918001526e-08)
msr-> (0.9999999969010325, 6.567994703665647e-09)
```

mu^2=10.000000

/work/JAM/apps/anaconda3/envs/snakes3/lib/python3.6/site-pac tegrationWarning: The integral is probably divergent, or slo """

```
uv-> (2.00000047183332, 2.4232824635816996e-08)
dv-> (0.9999999958918243, 3.46867490286229e-09)
sv-> (4.3347507561294274e-08, 2.1829166918001526e-08)
msr-> (0.9999999969010325, 6.567994703665647e-09)
```

mu^2=100.000000
uv-> (2.00000047183332, 2.4232824635816996e-08)
dv-> (0.9999999958918243, 3.46867490286229e-09)
sv-> (4.3347507561294274e-08, 2.1829166918001526e-08)
msr-> (0.9999999969010325, 6.567994703665647e-09)

mu^2=1000.000000
uv-> (2.00000047183332, 2.4232824635816996e-08)
dv-> (0.999999958918243, 3.46867490286229e-09)
sv-> (4.3347507561294274e-08, 2.1829166918001526e-08)
msr-> (0.9999999969010325, 6.567994703665647e-09)

Outline

Lecture 1

- Motivations
- QCD carpentry setup
- Solving QCD's beta function

Lecture 2

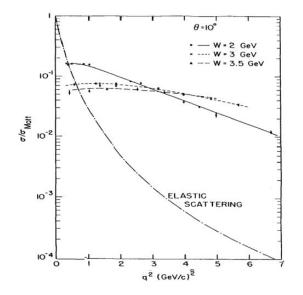
- Mellin transforms
- Solving DGLAP
- Modeling input scale PDFs

Lecture 3

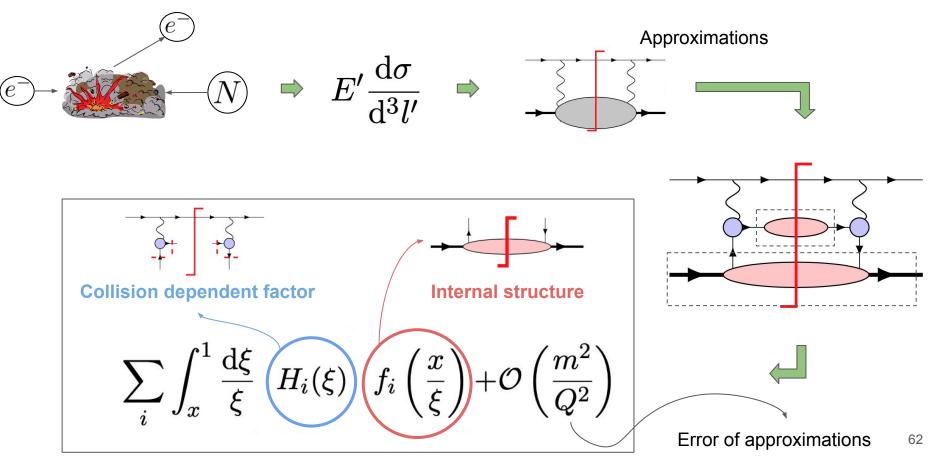
- DIS theory
- World DIS data
- The chi2 function
- Global analysis

Lecture 4

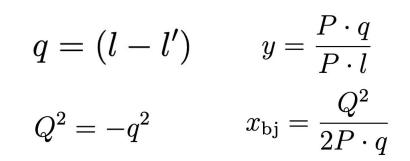
- Bayesian inference
 - Maximum likelihood
 - MC methods
- JAM history
- Machine learning



Factorization in deep-inelastic scattering (DIS)

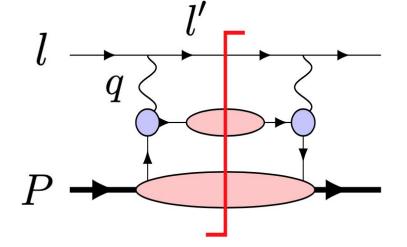


DIS kinematics

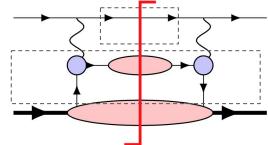


Think them as change of variables

 $l'(E',\theta',\phi') = l'(x_{\rm bj},Q^2,\phi')$



DIS factorization



$$\frac{d^2 \sigma^i}{dx \, dy} = \frac{2\pi \alpha^2}{xyQ^2} \left((Y_+ + 2x^2y^2\frac{M^2}{Q^2})F_2^i - y^2F_L^i \mp Y_-xF_3^i \right)$$

$$F_i^p(x_{\rm bj}, Q^2) = \sum_q e_q^2 \int_{x_{\rm bj}}^1 \frac{d\xi}{\xi} \left[f_{q/p}(\xi, \mu^2)C_{q,i}\left(\frac{x_{\rm bj}}{\xi}, \frac{Q^2}{\mu^2}, \alpha_S(\mu^2)\right) + f_{g/p}(\xi, \mu^2)C_{g,i}\left(\frac{x_{\rm bj}}{\xi}, \frac{Q^2}{\mu^2}, \alpha_S(\mu^2)\right) \right]$$
Quark contributions
Gluon contributions

DIS in Mellin space

$$F_{i}^{p}(x_{\rm bj},Q^{2}) = \sum_{q} e_{q}^{2} \int_{x_{\rm bj}}^{1} \frac{d\xi}{\xi} f_{q/p}(\xi,\mu^{2})C_{q,i}\left(\frac{x_{\rm bj}}{\xi},\frac{Q^{2}}{\mu^{2}},\alpha_{S}(\mu^{2})\right) + (q \to g)$$

$$F_{i}^{p}(N,Q^{2}) = \sum_{q} e_{q}^{2} f_{q/p}(N,\mu^{2})C_{q,i}\left(N,\frac{Q^{2}}{\mu^{2}},\alpha_{S}(\mu^{2})\right) + (q \to g)$$

$$\downarrow$$

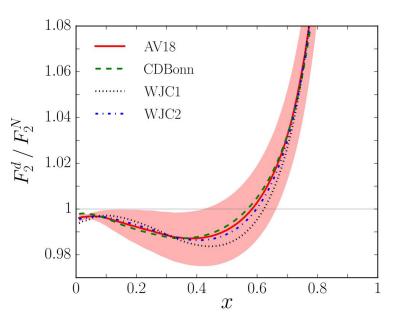
$$C_{j}(N) = C_{j}^{[0]}(N) + \frac{\alpha_{S}}{4\pi}C_{j}^{[1]}(N) + O(\alpha_{S}^{2})$$

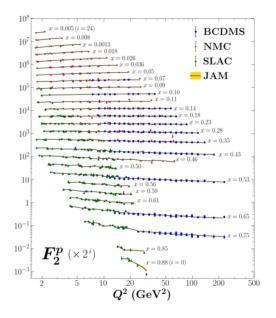
DIS with Deuteron target

$$F_i^d \approx \frac{1}{2} \left(F_i^p + F_i^n \right)$$

- This approximation ignores the "EMC" effect.
- If we ignore the large x_bj data, the approximation is ok

Accardi, Brady, Melnitchouk, Owens, NS

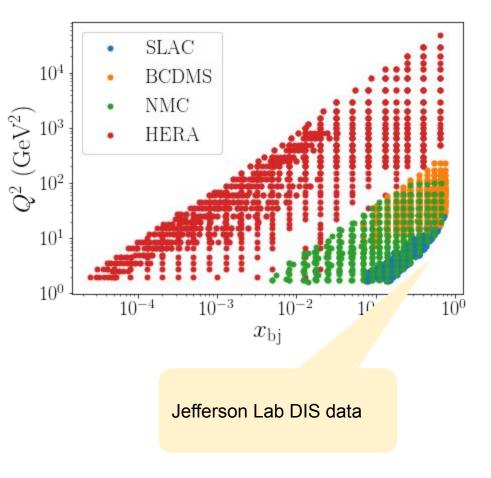




World **DIS** data

World DIS data

	idx	col	target	current	obs
0	10010	SLAC	р	NC	F2
1	10016	BCDMS	р	NC	F2
2	10020	NMC	р	NC	F2
3	10026	HERA II NC e+ (1)	р	NC	sig_r
4	10027	HERA II NC e+ (2)	р	NC	sig_r
5	10028	HERA II NC e+ (3)	р	NC	sig_r
6	10029	HERA II NC e+ (4)	р	NC	sig_r
7	10030	HERA II NC e-	р	NC	sig_r
8	10031	HERA II CC e+	р	CC	sig_r
9	10032	HERA II CC e-	р	CC	sig_r
10	10011	SLAC	d	NC	F2
11	10017	BCDMS	d	NC	F2
12	10021	NMC	d/p	NC	F2d/F2p



DIS database

Continue to Jupyter notebook

QCDHUB / qcdcarpentry									
<> Code	() Issues	ំំ Pull requests	Actions	🛄 Proje					
₽ main -	우 main - qcdcarpentry / database / idis / expdata /								
nobuosato update									
🗋 10001.x	lsx		update						
10002.>	D 10002.xlsx			update					
10003.>	dsx	update							
10004.>	dsx	update							
10005.>	dsx		update						

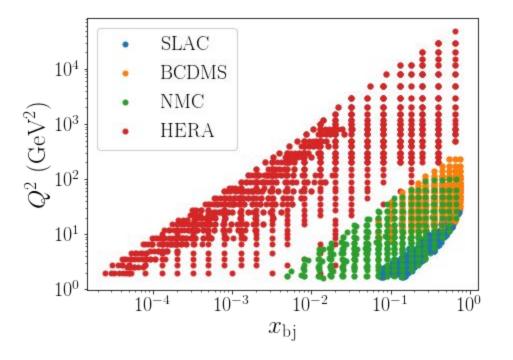
custminze loader for the experimental DIS data tables

```
3]: class READER:
        def init (self):
            self.aux=conf['aux']
        def isnumeric(self,value):
            try:
                int(value)
                return True
            except:
                return False
        def get X(self,tab):
            cols=tab.columns.values
            if any([c=='X' for c in cols])==False:
                if any([c=='W2' for c in cols]):
                    tab['X']=pd.Series(tab['Q2']/(tab['W2']-self.aux.M2+table)
                elif any([c=='W' for c in cols]):
                    tab['X']=pd.Series(tab['Q2']/(tab['W']**2-self.aux.M2+
                else:
                    print('cannot retrive X values')
```

This class will load the excel files, add missing kinematic variables and transform the data into numpy arrays

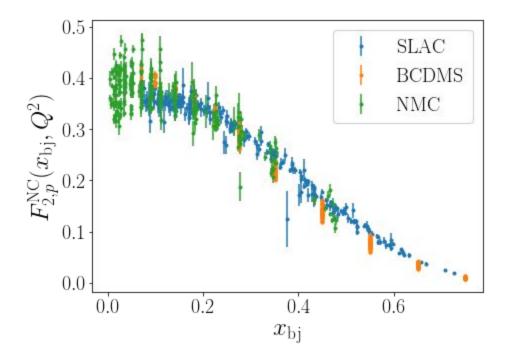
Exercise 7 (time: 5 mins)

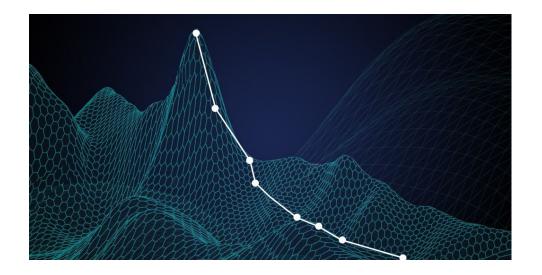
- plot the kinematics bins $x_{
 m bj}, \ Q^2$ of the world DIS data sets
- Hint: use log scale for both axis



Exercise 8 (time: 5 mins)

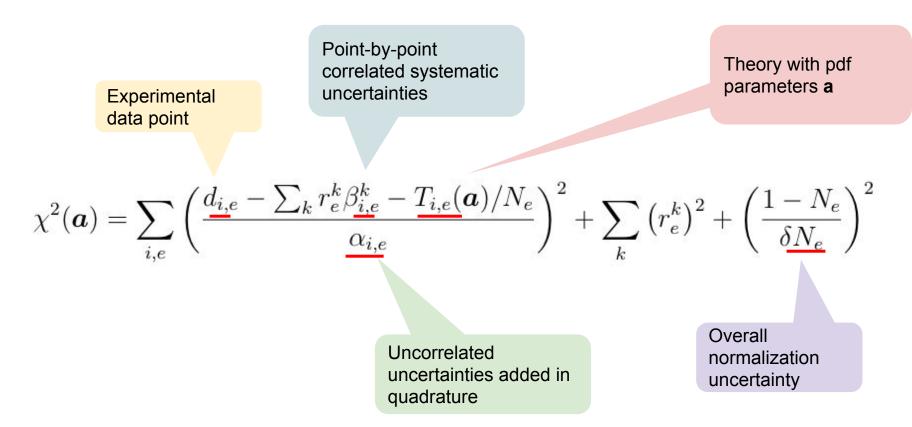
- plot the values of $F_{2,p}^{
 m NC}$ as a function of $x_{
 m bj}$ from all the data sets
- Hint: use the colums X, value, alpha from loss.tabs





The Loss function

Anatomy of Chi2 function



Anatomy of Chi2 function

74

Anatomy of **Chi2** function

$$\chi^{2}(\boldsymbol{a}) = \sum_{i,e} \left(\frac{d_{i,e} - \sum_{k} r_{e}^{k} \beta_{i,e}^{k} - T_{i,e}(\boldsymbol{a})/N_{e}}{\alpha_{i,e}} \right)^{2} + \sum_{k} \left(r_{e}^{k} \right)^{2} + \left(\frac{1 - N_{e}}{\delta N_{e}} \right)^{2}$$
We allow additive and multiplicative distortions to the theory to match the data
$$T_{i,e}^{\text{eff.}}(\boldsymbol{a}) = \sum_{k} r_{e}^{k} \beta_{i,e}^{k} + T_{i,e}(\boldsymbol{a})/N_{e}$$

Exercise 9 (time: 5 mins)

- Include the HERA datasets via get_datasets(Q2cut=1.27**2, W2cut=10, ihera=True)
- Print the lenght of res, rres, nres and interpret these numbers
- Print the summary via residuals.gen_report

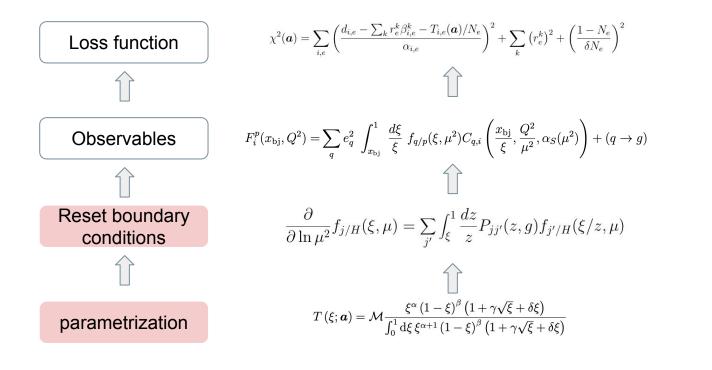
reaction: unpol DIS

filters: Q2>1.612900

filters: W2>10.000000

reaction: unpol DIS

idx	col	obs	tar	npts	chi2	chi2/npts	rchi2	nchi2
10010	SLAC	F2	р	222.00	3446.99	15.53	0.00	2.92
10016	BCDMS	F2	р	348.00	1248.40	3.59	392.95	0.14
10020	NMC	F2	р	274.00	8859.09	32.33	1240.31	1.69
10026	HERA	sig_r	р	402.00	15581.21	38.76	6738.11	0.00
10027	HERA	sig_r	p	75.00	3681.48	49.09	970.09	0.00
10028	HERA	sig_r	р	259.00	1418.46	5.48	411.72	0.00
10029	HERA	sig_r	р	209.00	1690.17	8.09	422.45	0.00
10030	HERA	sig_r	р	159.00	542.90	3.41	266.06	0.00
10031	HERA	sig_r	р	39.00	183.09	4.69	60.78	0.00
10032	HERA	sig_r	р	42.00	42.09	1.00	6.19	0.00
10011	SLAC	F2	d	231.00	6505.54	28.16	0.00	3.37
10017	BCDMS	F2	d	254.00	2112.29	8.32	330.38	0.28
10021	NMC	F2d/F2p	d/p	174.00	1657.92	9.53	924.72	0.00



Managing Parameters

Setting up parameters

def setup params(): conf['params'] = {} conf['params']['pdf'] = {} 3.09994e-01, 'min': None, 'max': None, 'fixed': True } conf['params']['pdf']['g N'] ={'value': 1, 'fixed': False} conf['params']['pdf']['g a'] ={ 'value': -5.20900e-01, 'min': -1.9, 'max': conf['params']['pdf']['g b'] ={'value': 4.29360e+00, 'min': 0. 'max': 10, 'fixed': False} parameters conf['params']['pdf']['uv N'] 3.25322e-01, 'min': None, 'max': None, 'fixed': True } ={ 'value': ={ 'value': -2.14402e-01, 'min': -0.6, 'max': 1, 'fixed': False} conf['params']['pdf']['uv a'] conf['params']['pdf']['uv b'] 3.04406e+00. 'min': ={ 'value': 0. 'max': 10, 'fixed': False} conf['params']['pdf']['dv N'] ={'value': 1.06672e-01, 'min': None, 'max': None, 'fixed': True } conf['params']['pdf']['dv a'] ={ 'value': -3.45404e-01, 'min': -0.6, 'max': 1. 'fixed': False} 4.48193e+00, 'min': 10, 'fixed': False} conf['params']['pdf']['dv b'] ={'value': 0, 'max': conf['params']['pdf']['db N'] 0, 'max': ={ 'value': 3.65346e-02, 'min': 1, 'fixed': False} -1. 'max': conf['params']['pdf']['db a'] -9.35028e-01. 'min': 1, 'fixed': False} ={ 'value': 4.48545e+00, 'min': 0, 'max': 10, 'fixed': False} conf['params']['pdf']['db b'] ={'value': conf['params']['pdf']['ub N'] ={'value': 1.70043e-02, 'min': 0, 'max': 1, 'fixed': False} conf['params']['pdf']['ub a'] ={'value': -1.00000e+00, 'min': -1, 'max': 1, 'fixed': False} conf['params']['pdf']['ub b'] ={'value': 1.00000e+01, 'min': 0, 'max': 10, 'fixed': False} 0, 'max': conf['params']['pdf']['s N'] 9.91077e-02, 'min': ={ 'value': 1, 'fixed': True} conf['params']['pdf']['s a'] ={'value': 1.00000e+00, 'min': -0.6, 'max': 1, 'fixed': False} conf['params']['pdf']['s b'] ={ 'value': 4.43290e+00, 'min': 0. 'max': 10, 'fixed': False} conf['params']['pdf']['sb N'] ={'value': 2.96987e-02, 'min': 0, 'max': 1, 'fixed': False} -6.00000e-01, 'min': -0.6, 'max': 1, 'fixed': False} conf['params']['pdf']['sb a'] ={'value': conf['params']['pdf']['sb b'] 3.56087e+00, 'min': 10, 'fixed': False} ={'value': 0. 'max': 0, 'max': conf['params']['pdf']['sea N'] ={ 'value': 3.68792e-03, 'min': 1, 'fixed': False} conf['params']['pdf']['sea a'] -1.87906e+00, 'min': -1.9, 'max': -1, 'fixed': False} ={ 'value': 8.07746e+00, 'min': 10, 'fixed': False} conf['params']['pdf']['sea b'] ={'value': 0, 'max':

Set limits

Define the **free**

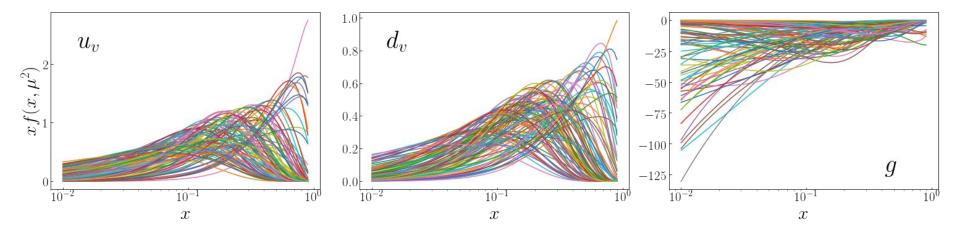
PARMAN - interface to setup parameters

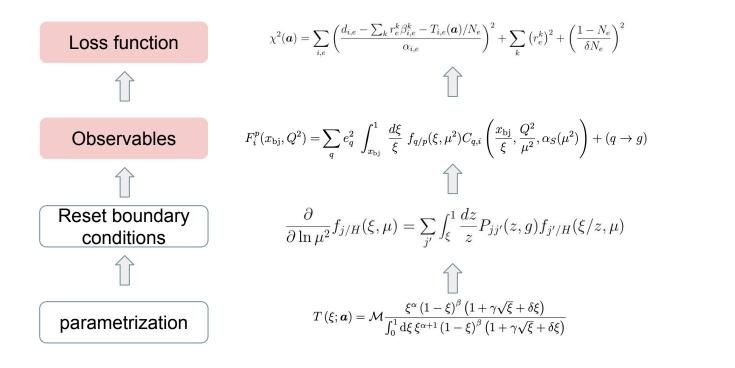
Continue to Jupyter notebook

In [61]: class PARMAN:	
<pre>definit(self): self.get_ordered_free_params()</pre>	Check the limits
<pre>def get_ordered_free_params(self): self.par=[] self.order=[] self.pmin=[] self.pmax=[]</pre>	
<pre>if 'check lims' not in conf: conf['check lims']=True for k in conf['params']: for kk in conf['params'][k]: if conf['params'][k][kk]['fixed']==False:</pre>	Updates the PDF class
<pre>p=conf['params'][k][kk]['value'] pmin=conf['params'][k][kk]['min'] pmax=conf['params'][k][kk]['max'] self.pmin.append(pmin) self.pmax.append(pmax)</pre>	
<pre>if conf['check lims']: raise ValueError</pre>	Handle internally parameter ordering

Exercise 10 (time: 5 mins)

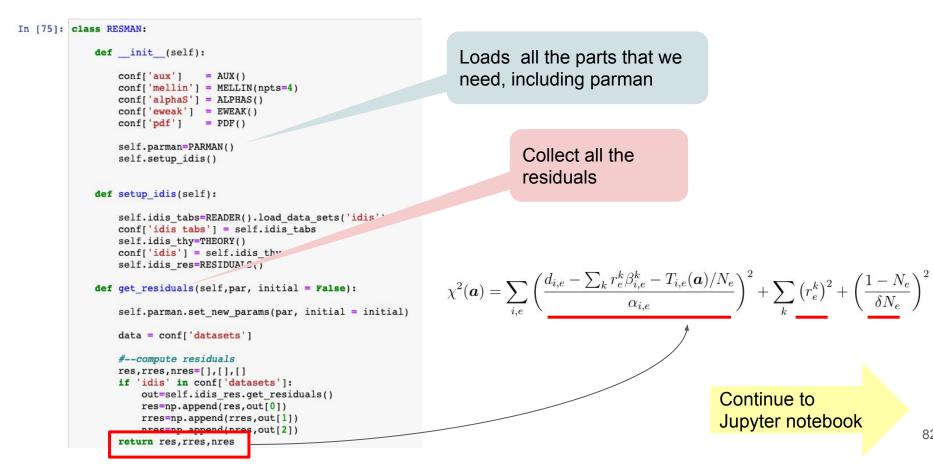
- Use the method gen_flat to scan 100 random parameter vectors within the hyperbox and plot the resulting pdf conbinations xu_v , xd_v , xg at the input scale $mu^2 = 1.27 * *2$.
- Hint: use the x-range X = 10**np.linspace(-2,np.log10(0.9),100)





Managing Residuals

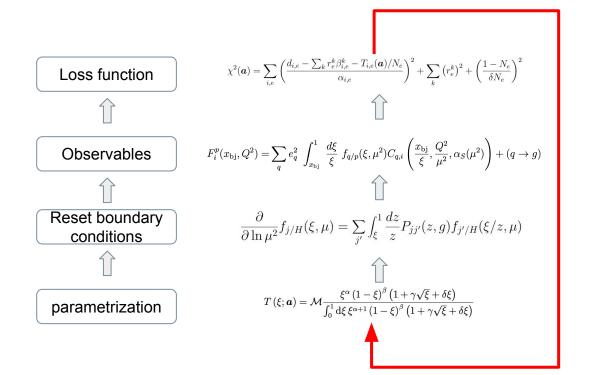
RESMAN - interface to query residuals

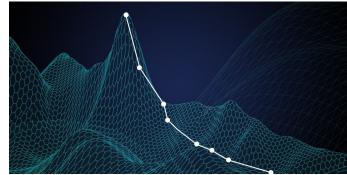


Exercise 11 (time: 5 mins)

- Use RESMAN to compute 10 times the residuals for different parameters generated by parman.gen_flat()
- For each run print the first 3 entries of the current parameters as well a the total χ^2

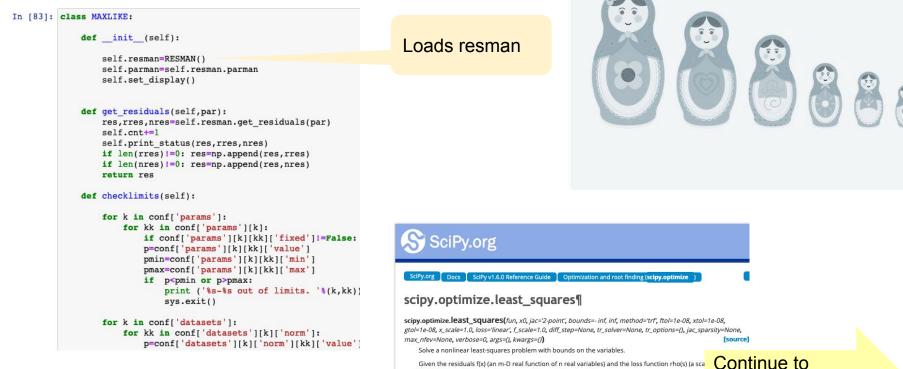
par= [0.19197712 1.03448414 0.34214713] chi2= 13419609.489305
par= [-0.20511792 6.35590864 0.64983866] chi2= 81859552.43154643
par= [-1.1957957 7.33717188 -0.43530517] chi2= 76402443.43800555
par= [0.3481756 3.25387064 -0.54117908] chi2= 18069861.530045442
par= [0.91721661 2.12831572 0.24350342] chi2= 24218875.047675647
par= [-1.33526148 5.43868399 0.00556536] chi2= 17724081.19952482
par= [-0.4772018 0.96316372 0.33593136] chi2= 60638297.4801399
par= [-1.66225909 7.95801622 0.26728382] chi2= 51754451.24467237
par= [0.45288714 6.74492207 0.99792619] chi2= 12098310.192077495
par= [-1.74669965 5.36573854 -0.11400083] chi2= 27450829.072440065





Maximum Likelihood

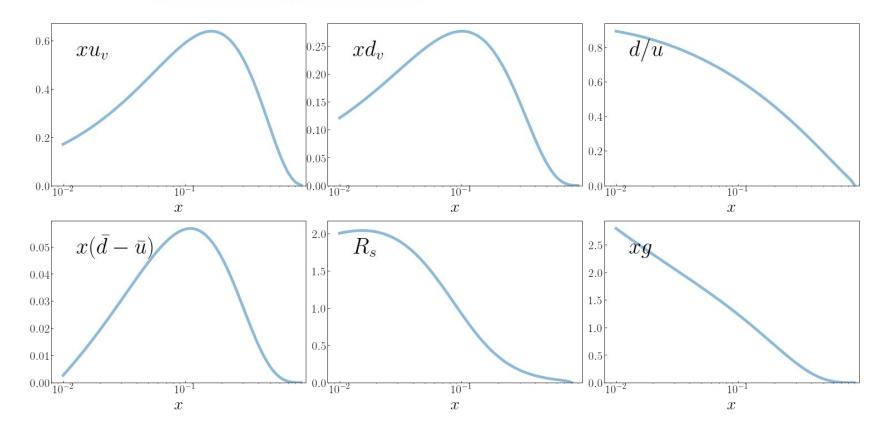
MAXLIKE - interface of maximum likelihood



least_squares finds a local minimum of the cost function F(x):

Exercise 12.A (time: 5 mins)

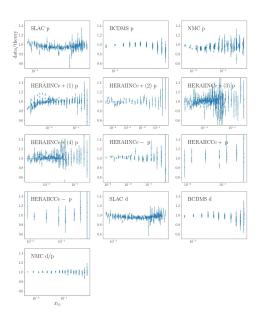
- Plot $xu_v, xd_v, d/u, x(\bar{d} + \bar{u}), x(\bar{d} \bar{u}), R_s = (\bar{d} + \bar{u})/(s + \bar{s}), xg$
- hint: use the method conf['pdf'].get_xf(x,mu2,flav)

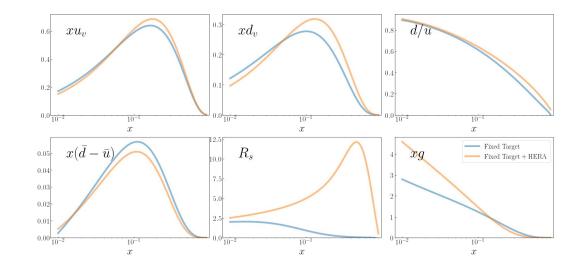


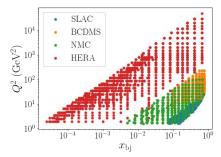
86

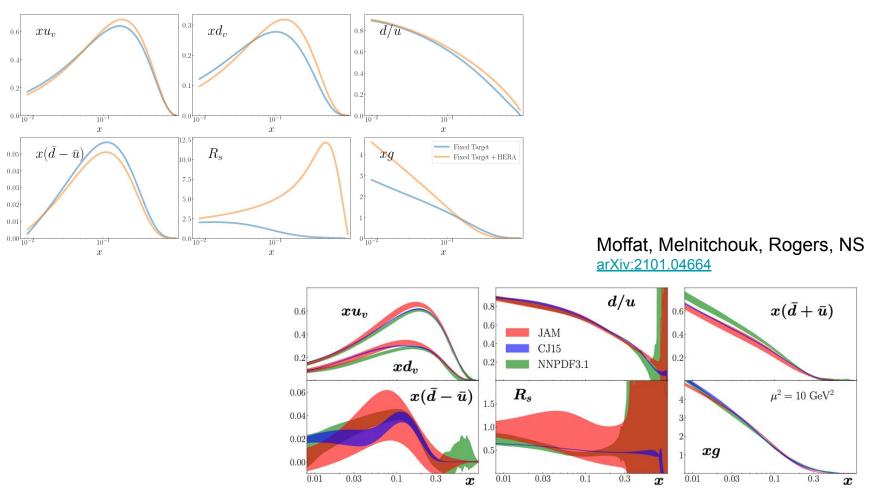
Exercise 12.B (time: 10 mins)

- · Include the HERA data sets and run the fitter
- Plot data/theory for all experiments
- · Plot the pdfs (as above) from the previous run and the new run
- hint:
 - USe get_datasets(Q2cut=1.27**2, W2cut=10, ihera=True)
 - assuming you have the two sets of parameters stored as par1 and par2, when making the pdfs plots, use the method resman.parman.set_new_params(par) to update the PDF class









Outline

Lecture 1

- Motivations
- QCD carpentry setup
- Solving QCD's beta function

Lecture 2

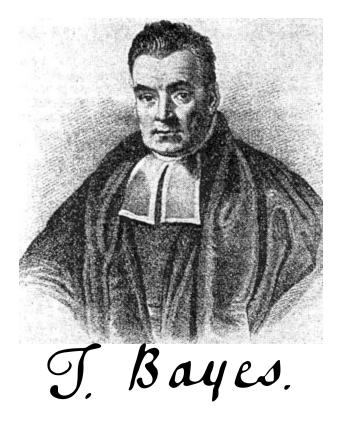
- Mellin transforms
- Solving DGLAP
- Modeling input scale PDFs

Lecture 3

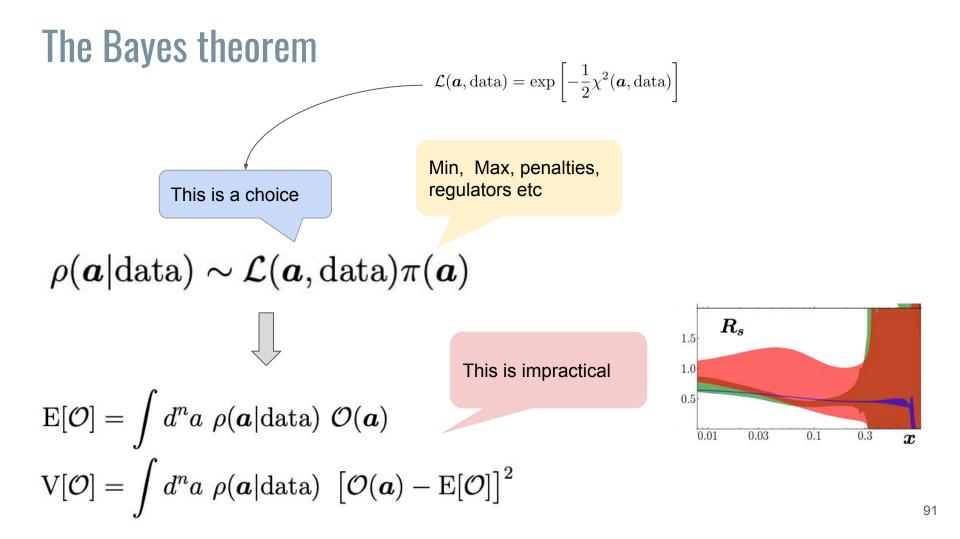
- DIS theory
- World DIS data
- The chi2 function
- Global analysis

Lecture 4

- Bayesian inference
 - Maximum likelihood
 - MC methods
- JAM history
- Machine learning



Bayesian inference



How do we deal with the curse of dimensionality ?

$$\begin{split} \mathbf{E}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\text{data}) \ \mathcal{O}(\boldsymbol{a}) \\ \mathbf{V}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\text{data}) \ \left[\mathcal{O}(\boldsymbol{a}) - \mathbf{E}[\mathcal{O}]\right]^{2} \end{split}$$

Option 1: Maximum likelihood

 $\mathrm{E}[\mathcal{O}] \simeq \mathcal{O}(\boldsymbol{a}_0)$

Asummes symmetric likelihood, unique solution

Assumes Gaussian behavior around ML

 $V[\mathcal{O}] = Hessian, Lagrange multipliers$

How do we deal with the curse of dimensionality ?

$$\begin{split} \mathbf{E}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\text{data}) \ \mathcal{O}(\boldsymbol{a}) \\ \mathbf{V}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\text{data}) \ \left[\mathcal{O}(\boldsymbol{a}) - \mathbf{E}[\mathcal{O}]\right]^{2} \end{split}$$

Option 2: MC approach

$$\begin{split} \mathrm{E}[\mathcal{O}] &\simeq \frac{1}{N} \sum_{k} \mathcal{O}(\boldsymbol{a}_{k}) \\ \mathrm{V}[\mathcal{O}] &= \simeq \frac{1}{N} \sum_{k} \left[\mathcal{O}(\boldsymbol{a}_{k}) - \mathrm{E}[\mathcal{O}] \right]^{2} \end{split}$$

Build an MC ensemble (\$\$\$)

Many algorithms

- MCMC
- HMC

. . .

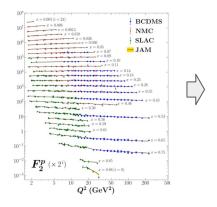
_

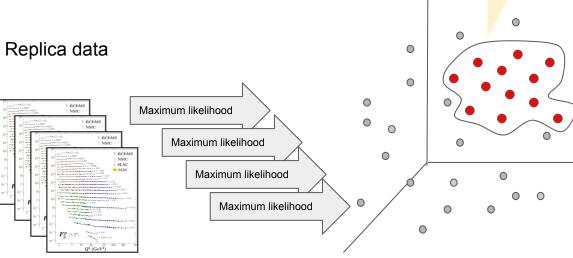
- Data resampling

Data resampling

$$d_{k,i}^{(\text{pseudo})} = d_i^{(\text{original})} + \alpha_i \ R_{k,i}$$

Original data





Parameter space

Confidence region

Staff / Faculty

W. Melnitchouk (JLab), T. Rogers (ODU/JLab), A. Prokudin (PSU), D. Pitonyak (LVC), L. Gamberg (PSU), Z. Kang (UCLA) J. Qiu (JLab), A. Accardi (Hampton/JLab), A. Metz (Temple), C.-R. Ji (NCSU), M. Constantinou (Temple), F. Steffens (Bonn), M. White (Adelaide), ...

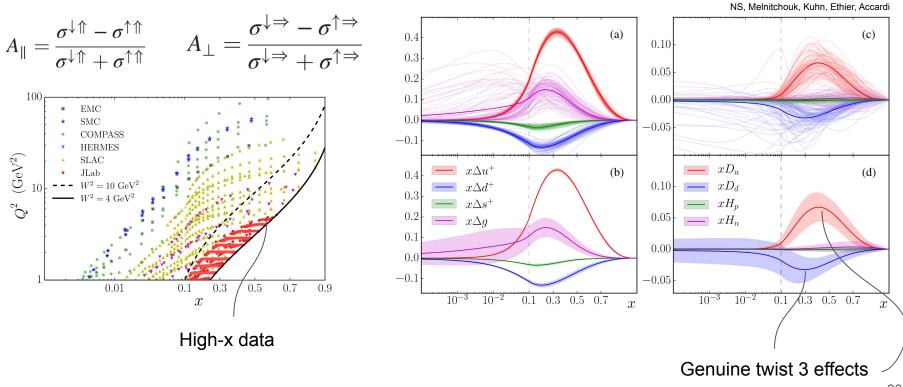
Students / Postdocs

C. Cocuzza (Temple), Y. Zhou (W&M), P. Barry (NCSU), E. Moffat (ODU), J. Bringewatt (UMD), J. Ethier (Nikhef), C. Andres (JLab), F. Delcarro (JLab), A. Hiller-Blin (JLab), Z. Searle (Adelaide)

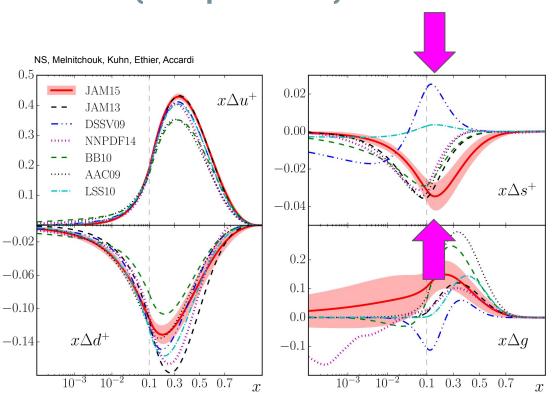
JAM history

JAM'15 (1D spin-PDFs)

Bayesian MC framework



JAM'15 (1D spin-PDFs)



A Possible Resolution of the Strange Quark Polarization Puzzle ?

Elliot Leader, Alexander V. Sidorov, Dimiter B. Stamenov

The strange quark polarization puzzle, i.e. the contradiction between the negative polarized strange quark density obtained from analyses of inclusive DIS data and the positive values obtained from combined analyses of inclusive and semiinclusive SIDIS data using de Florian et. al. (DSS) fragmentation functions, is discussed. To this end the results of a new combined NLO QCD analysis of the polarized inclusive and semi-inclusive DIS data, using the Hirai et. al. (HKNS) fragmentation functions, are presented. It is demonstrated that the polarized strange quark density is very sensitive to the kaon fragmentation functions, and if the set of HKNS fragmentation functions is used, the polarized strange quark density obtained from the combined analysis turns out to be negative and well consistent with values obtained from the pure DIS analyses.

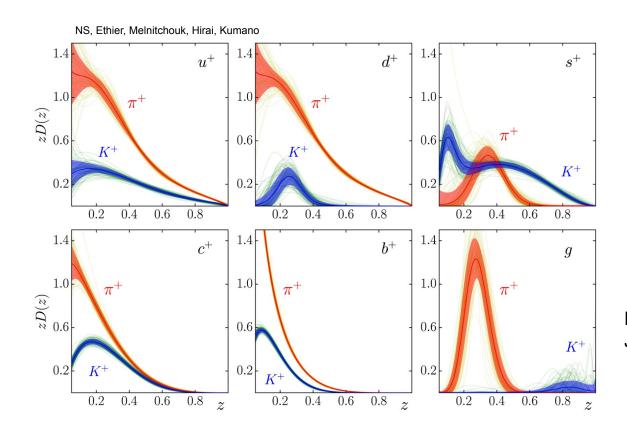
"...It is demonstrated that the polarized strange quark density is very sensitive to Kaon FF."

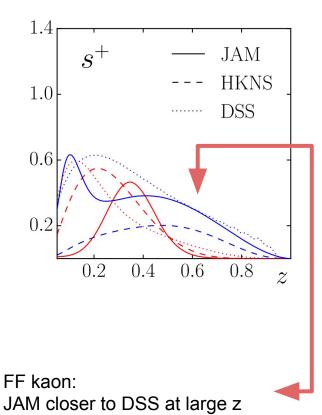
SU(3) constraints:

 $\Delta u^{+}(1,Q^{2}) + \Delta d^{+}(1,Q^{2}) - 2\Delta s^{+}(1,Q^{2}) = a_{8},$

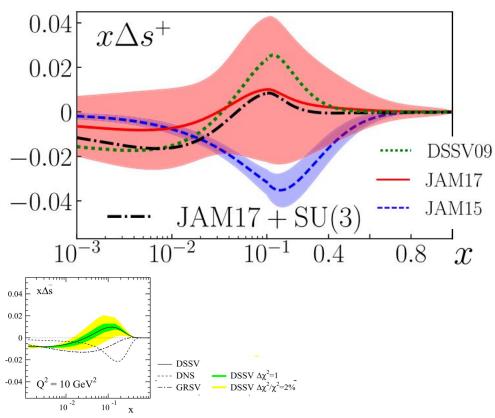
Role of SIDIS and SIA?

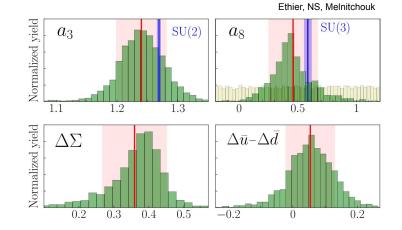
JAM'16 (1D FFs)





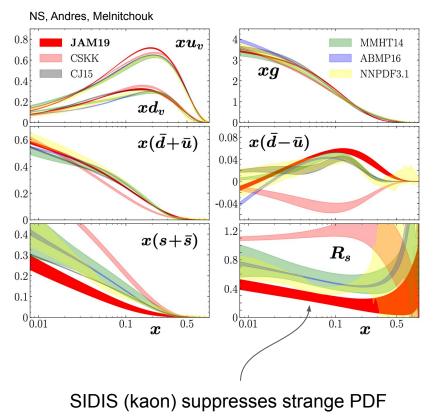
JAM'17 (1D simultaneous extraction of spin PDFs and FFs)

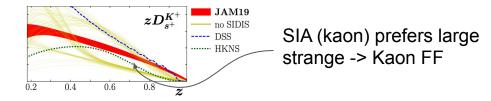


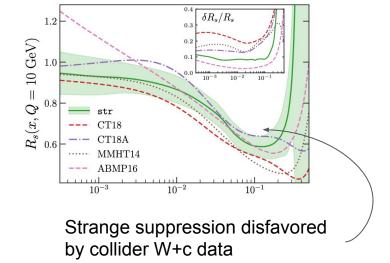


- Use of pol. DIS, SIDIS and SIA
- No SU(2) nor SU(3) constraints
- Empirical evidence of g_3 ~ g_A 2%
- No strange puzzle need more data

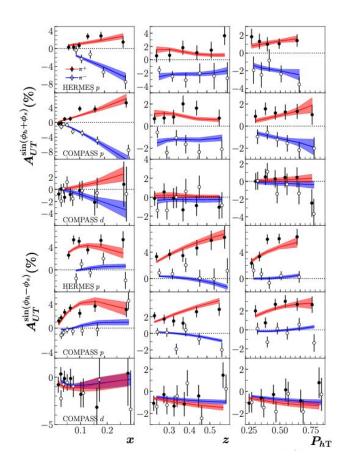
JAM'19 (1D simul. extraction of spin-averaged PDFs and FFs)

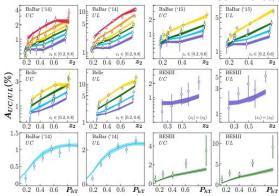




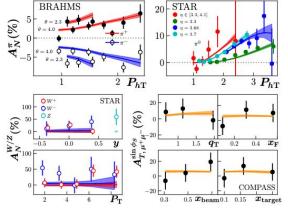


JAM'20 (3D zoo of correlation functions)





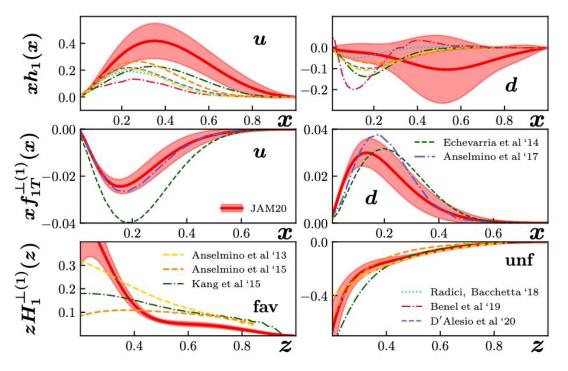
Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, NS



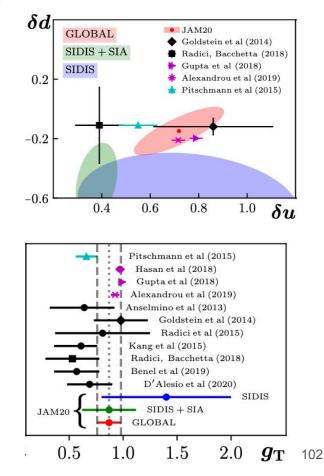
Observable	Reactions			
$A_{ m SIDIS}^{ m Siv}$	$e + (p,d)^{\uparrow} \to e + (\pi^+,\pi^-,\pi^0) + X$			
$A^{ m Col}_{ m SIDIS}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$			
$A_{ m SIA}^{ m Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$			
$A_{ m DY}^{ m Siv}$	$\pi^- + p^\uparrow ightarrow \mu^+ \mu^- + X$			
$A_{ m DY}^{ m Siv}$	$p^\uparrow + p o (W^+, W^-, Z) + X$			
A^h_N	$p^{\uparrow}+p ightarrow(\pi^+,\pi^-,\pi^0)+X$			

101

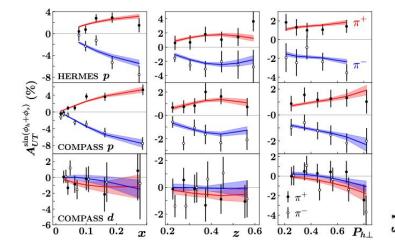
JAM'20 (3D zoo of correlation functions)



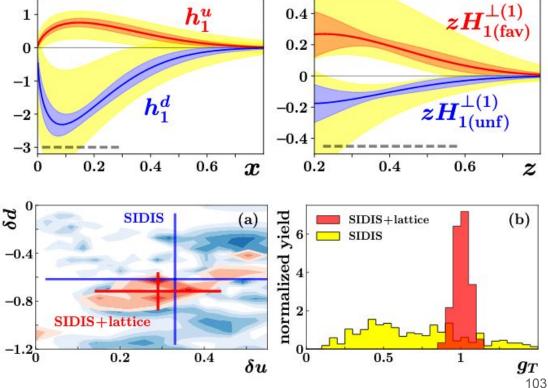
Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, NS



JAM'18 (3D experiment + lattice QCD: gT moment)

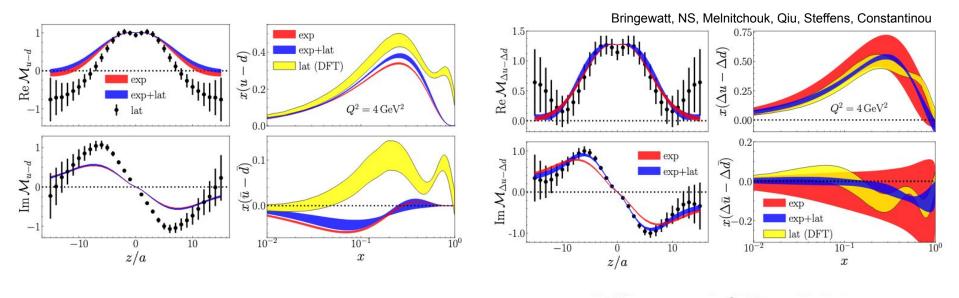


Inclusion of gT as Bayesian prior can complement experimental data

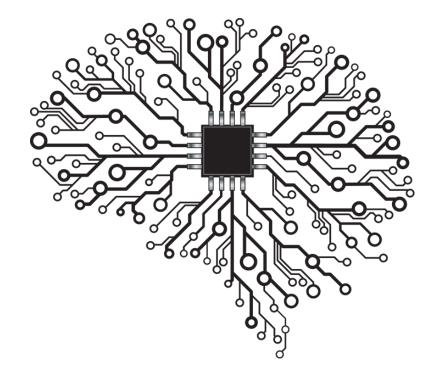


Lin, Melnitchouk, Prokudin, NS, Shows

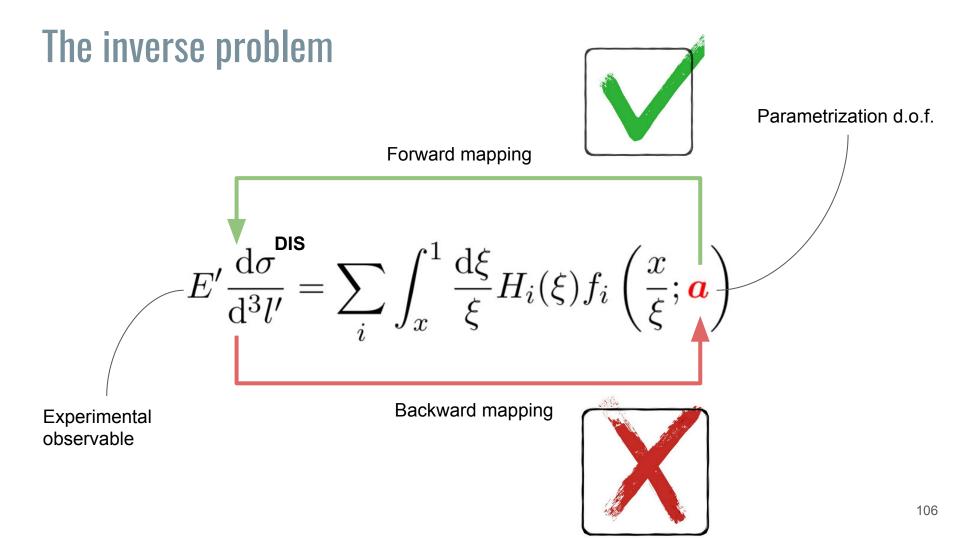
JAM'20 (1D experiment + lattice QCD: quasi-PDFs)



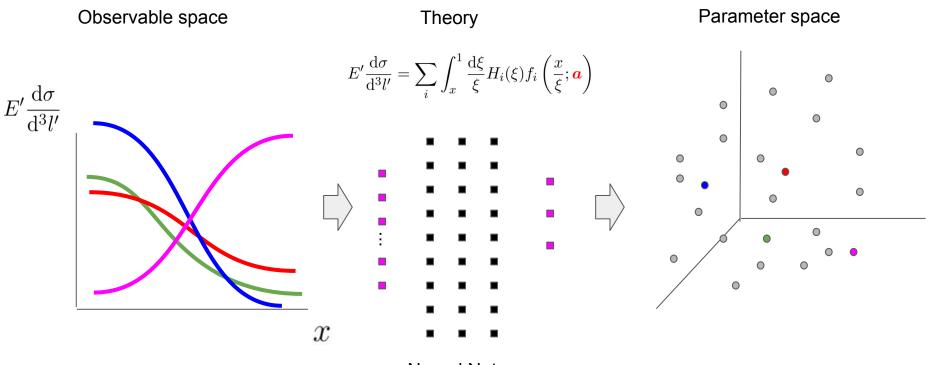
$$\mathcal{M}_{q}(z,\mu) = \int_{-\infty}^{\infty} dx \, e^{-ixP_{3}z} \int_{-1}^{1} \frac{d\xi}{|\xi|} \, C_{q}\left(\frac{x}{\xi},\frac{\mu}{\xi P_{3}}\right) f_{q}(\xi,\mu) \qquad \mathcal{M}_{\Delta q}(z,\mu) = \int_{-\infty}^{\infty} dx \, e^{-ixP_{3}z} \int_{-1}^{1} \frac{d\xi}{|\xi|} \, C_{\Delta q}\left(\frac{x}{\xi},\frac{\mu}{\xi P_{3}}\right) \Delta f_{q}(\xi,\mu)$$



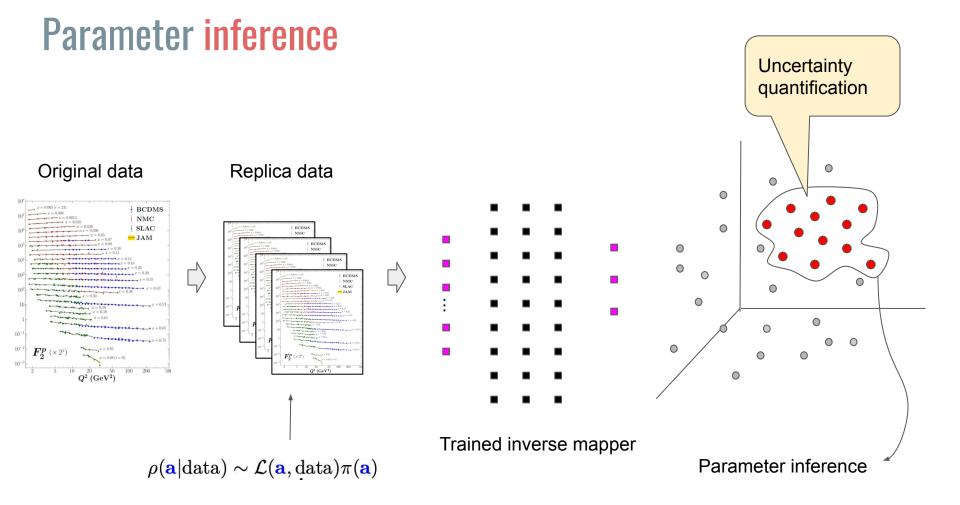
Machine Learning

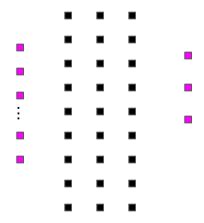


An idea: parametrize the inverse function



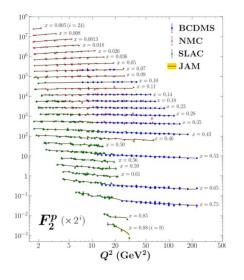
Neural Nets





So why do we need **inverse mappers**?

1) Manipulate data input



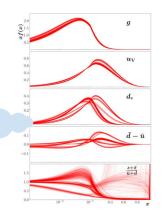
What happens if we remove ... data ?

Where do we need more experiments?

Collecting MC samples is too expensive

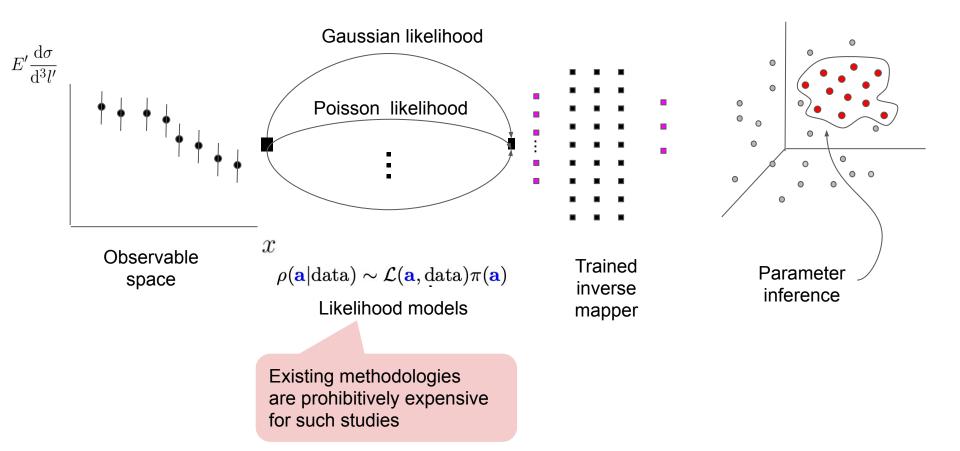
 $\rho(\mathbf{a}|\text{data}) \sim \mathcal{L}(\mathbf{a}, \text{data})\pi(\mathbf{a})$

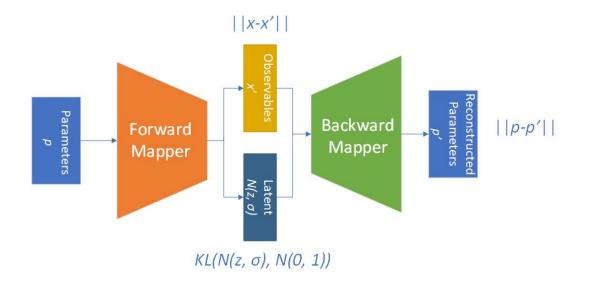
"Global analysis is a kind of a sausage" ... how to unpack it?



What data are forcing ... to be ...?

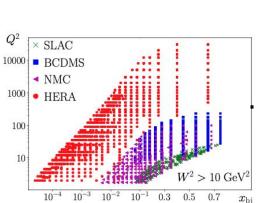
2) Bayesian inference modeling

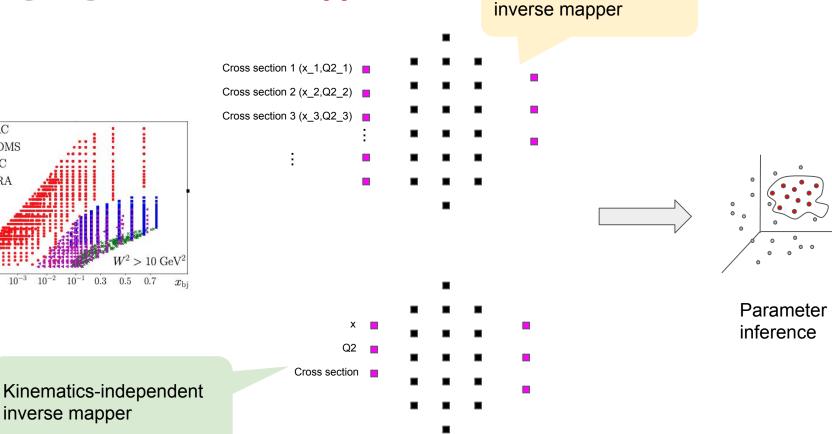




Inverse mapper architectures

Designing the inverse mappers





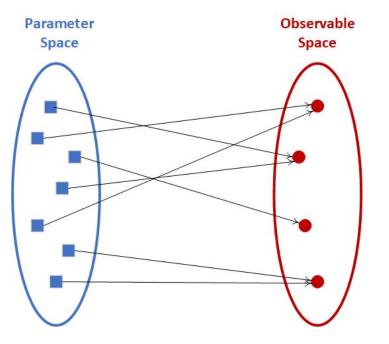
Kinematics dependent

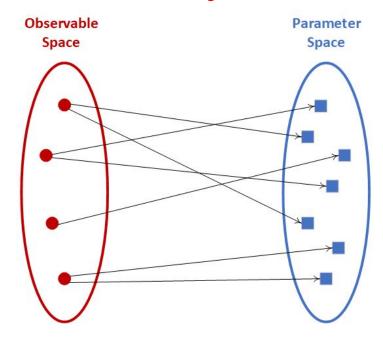
Ambiguity in inverse problems

Forward Mapper

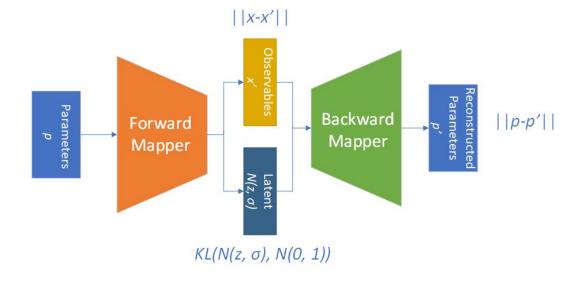
Backward Mapper

Ambiguous



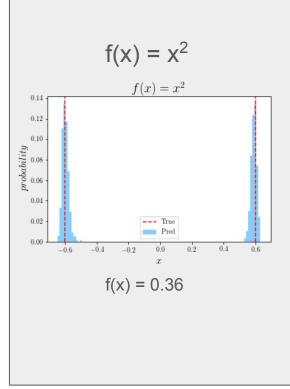


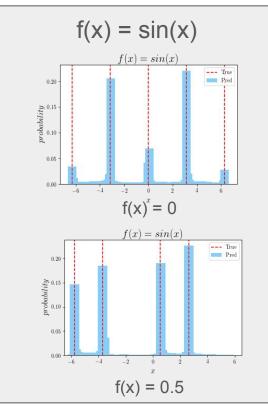
Kinematic-independent inverse mapper: Variational Autoencoder (VAE)

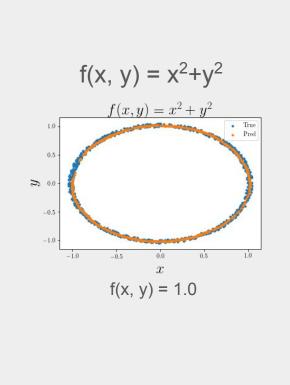


- Better than previous models
- Remove the grid dependence
- Highly accurate
- No Gaussian mixture assumption

Toy problems with multiple solutions







Two Solutions

Multiple Finite Solutions

Infinite Solutions

Does it work for DIS?

M. Almaeen et al. (in preparation, 2020)

