Machine learning for QCD global analysis

Yaohang Li

Old Dominion University Research: Machine learning, Monte Carlo methods

Nobuo Sato

Jefferson Lab Theory Center Research: QCD global analysis (JAM) of hadron structure and hadronization

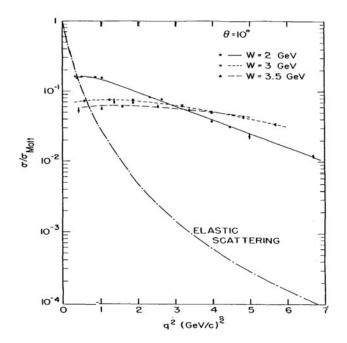
Outline

PART I: (N. Sato)

- Motivations
- Bayesian inference
- Examples
- Why machine learning?

PART II: (Y. Li)

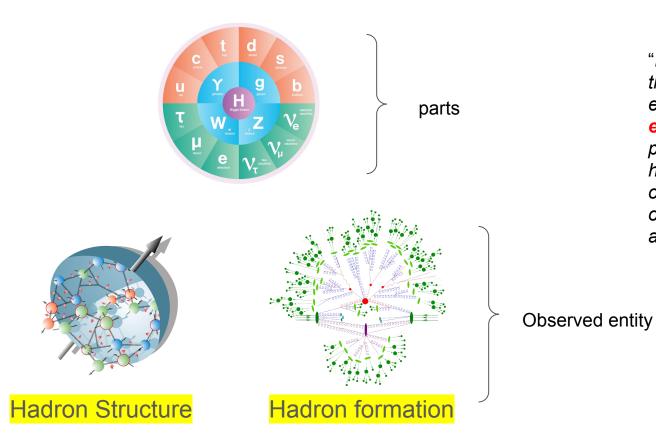
- End-to-end inverse problems
- VAIM Architecture
- Results in Toy Problems
- Results in DIS



Discovery of point-like particles inside proton

Motivations

Understanding the emergent phenomena of QCD



"In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors which emerge only when the parts interact in a wider whole." Wiki

What do we mean by "hadron structure"? (1D)

 $\xi = \frac{k^+}{P^+} \quad \text{Parton momentum fraction relative to parent hadron}$ $f_i(\xi) = \int \frac{\mathrm{d}w^-}{4\pi} e^{-i\xi p^+ w^-} \left\langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \gamma^+ \psi_i(0) | N \right\rangle$

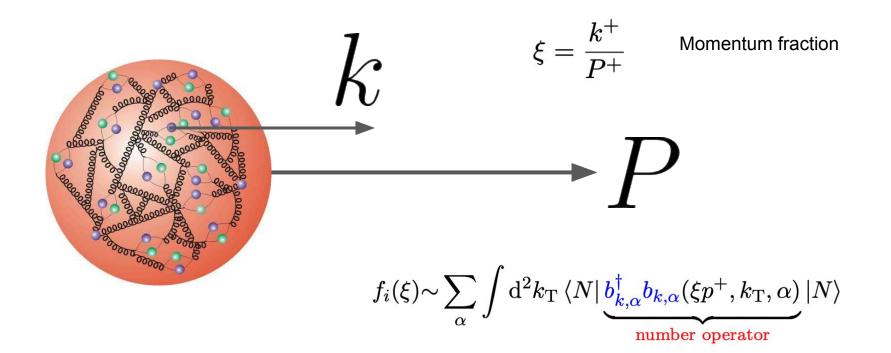
parton distribution function (PDF)

Interpretation in non-interacting QCD

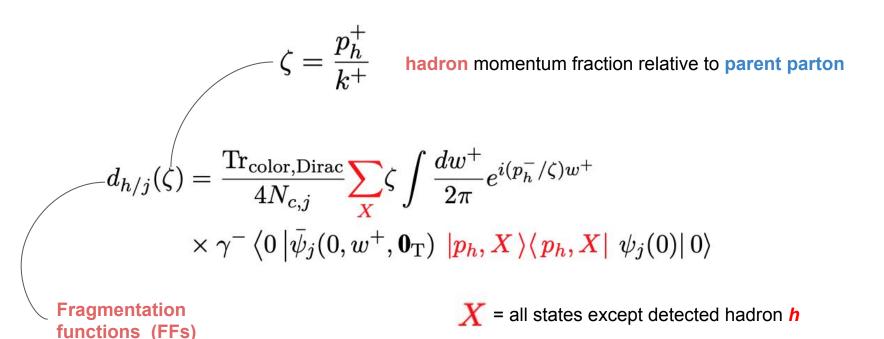
$$\psi_{i}(x) = \sum_{k,\alpha} b_{k,\alpha}(x^{+}) u_{k,\alpha} e^{-ik^{+}x^{-} + ik_{\mathrm{T}} \cdot x_{\mathrm{T}}} + d_{k,\alpha}^{\dagger}(x^{+}) u_{k,-\alpha} e^{ik^{+}x^{-} - ik_{\mathrm{T}} \cdot x_{\mathrm{T}}}$$
$$f_{i}(\xi) \sim \sum_{\alpha} \int \mathrm{d}^{2}k_{\mathrm{T}} \langle N | \underbrace{b_{k,\alpha}^{\dagger} b_{k,\alpha}(\xi p^{+}, k_{\mathrm{T}}, \alpha)}_{\text{number operator}} | N \rangle$$

5

How quarks and gluons are distributed?

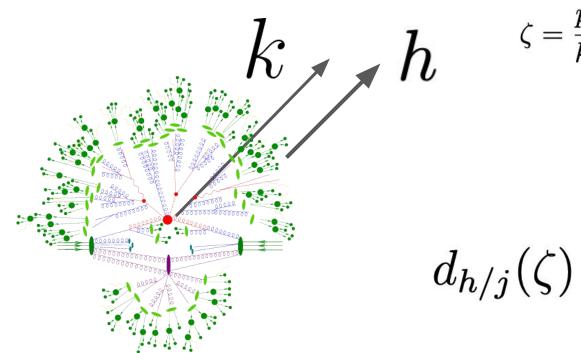


What do we mean by "hadronization"? (1D)



7

How hadrons takes energy from quarks and gluons ?



Number density of hadrons from parent parton

 $\zeta = \frac{p_h}{k^+}$

Hadron structure in interacting theory

Definition of PDFs in field theory requires renormalization

PDFs will depend on renormalization scale and its RGEs are the famous DGLAP equations UV singularity when the field separation is zero

$$f_i(\xi) \stackrel{!}{=} \int \frac{\mathrm{d}w^-}{4\pi} e^{-i\xi p^+ w^-} \left\langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \gamma^+ \psi_i(0) | N \right\rangle$$

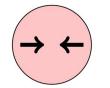
Renormalization

 $f = Z_F \otimes f_{\text{bare}}$ $f(\xi) \to f(\xi, \mu)$ Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

$$\frac{\mathrm{d}f_i(\xi,\mu^2)}{\mathrm{d}\ln\mu^2} = \sum_j \int_{\xi}^1 \frac{\mathrm{d}y}{y} P_{ij}(\xi,\mu^2) f_j\left(\frac{y}{\xi},\mu^2\right)$$

aka **DGLAP**

Spin structures



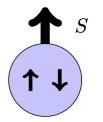
$$f = f_{
ightarrow} + f_{
ightarrow} \qquad \langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \mathbf{\gamma}^+ \psi_i(0) | N \rangle$$

$$\rightarrow \leftarrow \overset{S}{\rightarrow}$$

$$\Delta f = f_{\rightarrow} - f_{\leftarrow}$$

Helicity distribution

 $\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_5\psi_i(0)|N
angle$

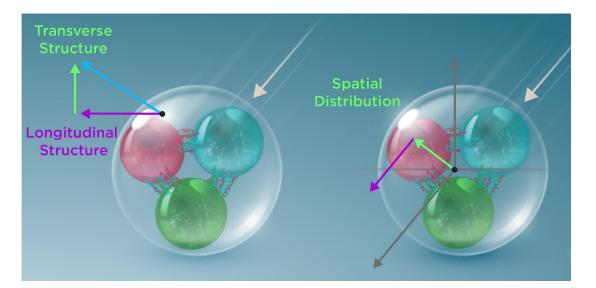


 $\delta_{\rm T} f = f_{\uparrow} - f_{\downarrow}$

Transversity

$$\left\langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \boldsymbol{\gamma}^+ \boldsymbol{\gamma}_\perp \boldsymbol{\gamma}_5 \psi_i(0) | N \right\rangle$$

Extensions to 3D



 $f(\xi)$

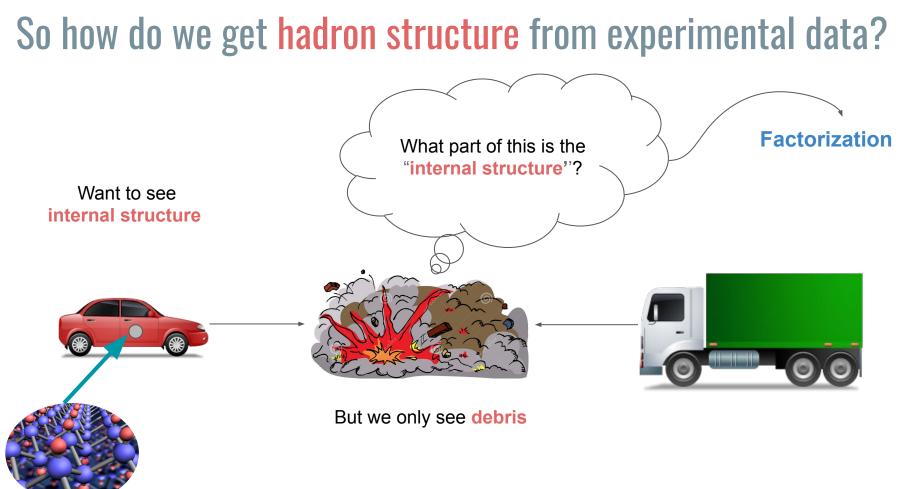
 $f(\xi, k_{\mathrm{T}})$

PDFs

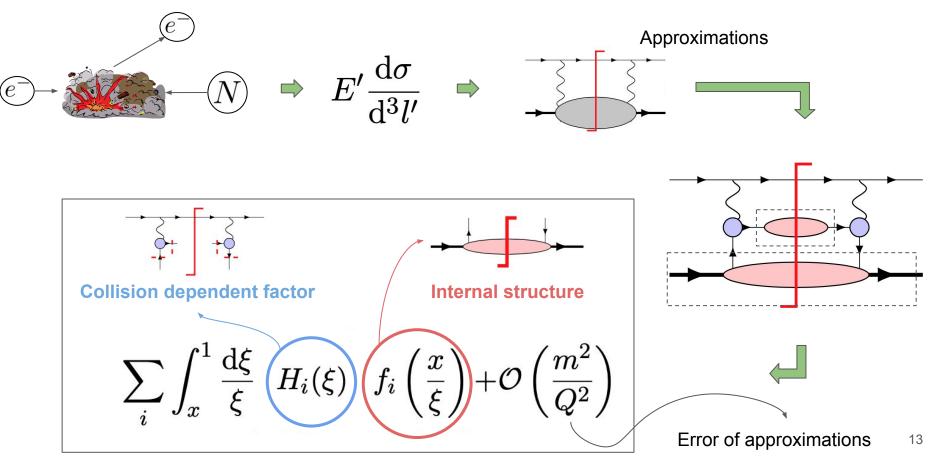
Transverse momentum distribution -> TMDs

 $f(\xi, b_{\mathrm{T}})$

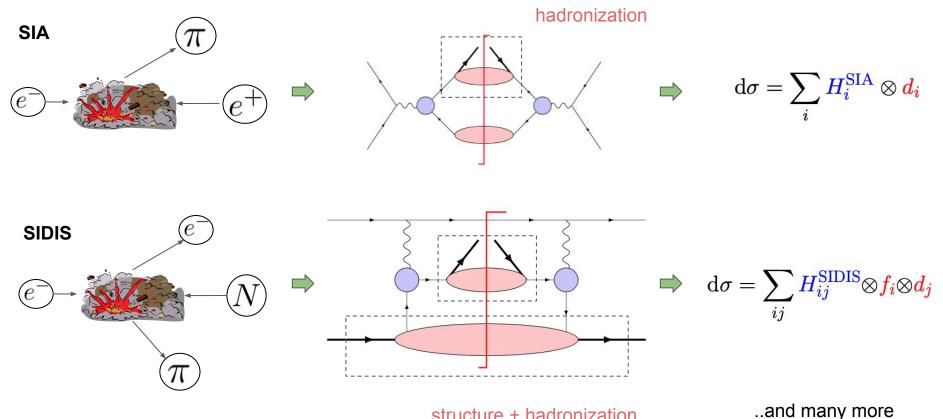
Impact parameter distribution -> GPDs



Factorization in deep-inelastic scattering (DIS)

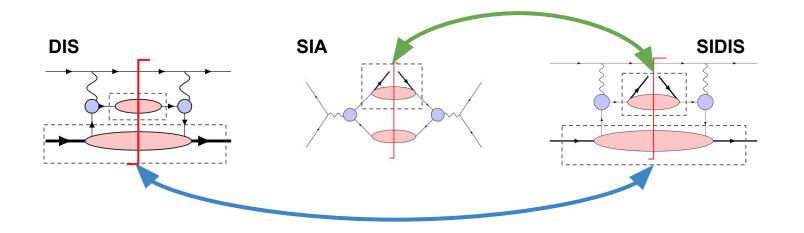


Factorization in other reactions



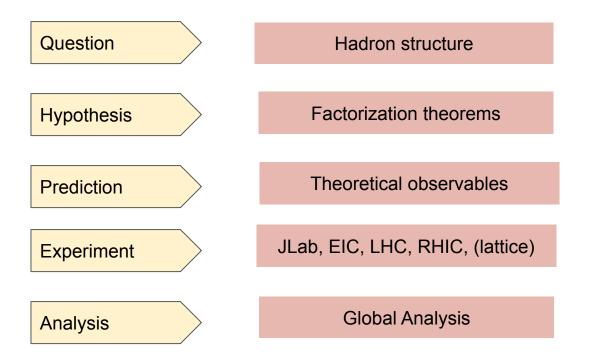
structure + hadronization

Universality



cross sections described by **universal non-perturbative** functions, e.g. PDFs, FFs

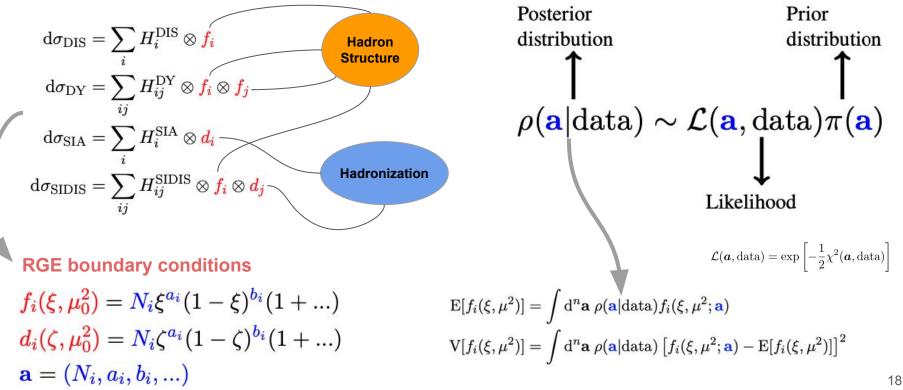
Scientific method

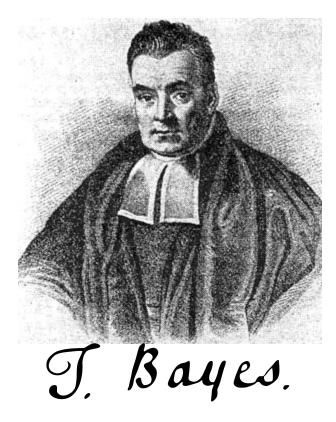


The QCD global analysis paradigm USQCD $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ tended Twister **GPD PDF** Lat. Hadron ollaboration **Bayesian Structure** TMD Inference **PDF Factorization** CERN Exp. Posterior Beliefs FF **Hadronization** Evidence Jefferson Lab Prior Beliefs TMD FF **©KEK** NATIONAL LABOR

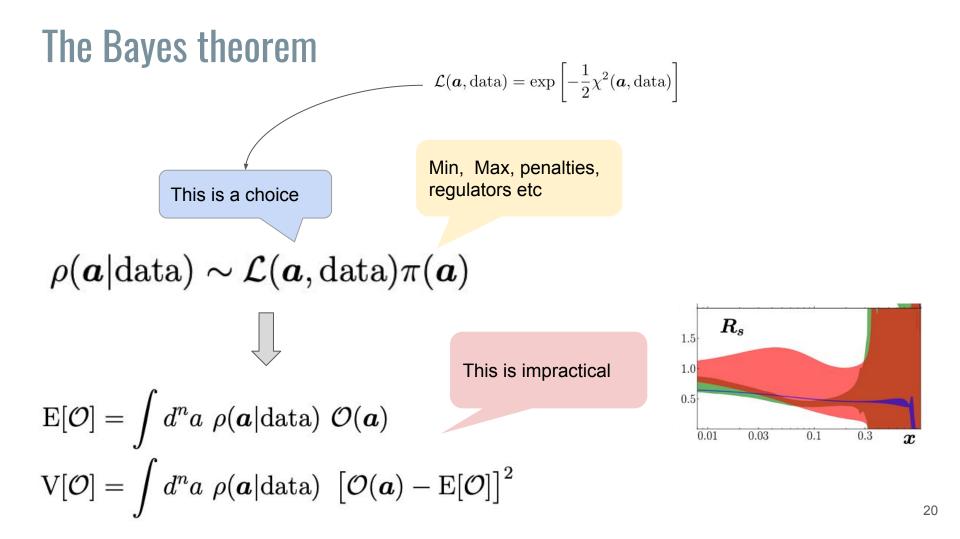
The Bayesian inference

Experiments = theory + errors





Bayesian inference



How do we deal with the curse of dimensionality ?

$$\begin{split} \mathrm{E}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\mathrm{data}) \ \mathcal{O}(\boldsymbol{a}) \\ \mathrm{V}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\mathrm{data}) \ \left[\mathcal{O}(\boldsymbol{a}) - \mathrm{E}[\mathcal{O}]\right]^{2} \end{split}$$

Option 1: Maximum likelihood

 $\mathrm{E}[\mathcal{O}] \simeq \mathcal{O}(\boldsymbol{a}_0)$

Asummes symmetric likelihood, unique solution

Assumes Gaussian behavior around ML

 $V[\mathcal{O}] = Hessian, Lagrange multipliers$

How do we deal with the curse of dimensionality ?

$$\begin{split} \mathbf{E}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\text{data}) \ \mathcal{O}(\boldsymbol{a}) \\ \mathbf{V}[\mathcal{O}] &= \int d^{n}a \ \rho(\boldsymbol{a}|\text{data}) \ \left[\mathcal{O}(\boldsymbol{a}) - \mathbf{E}[\mathcal{O}]\right]^{2} \end{split}$$

Option 2: MC approach

$$\begin{split} \mathrm{E}[\mathcal{O}] &\simeq \frac{1}{N} \sum_{k} \mathcal{O}(\boldsymbol{a}_{k}) \\ \mathrm{V}[\mathcal{O}] &= \simeq \frac{1}{N} \sum_{k} \left[\mathcal{O}(\boldsymbol{a}_{k}) - \mathrm{E}[\mathcal{O}] \right]^{2} \end{split}$$

Build an MC ensemble (\$\$\$)

Many algorithms

- MCMC
- HMC

. . .

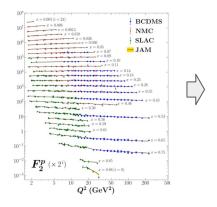
_

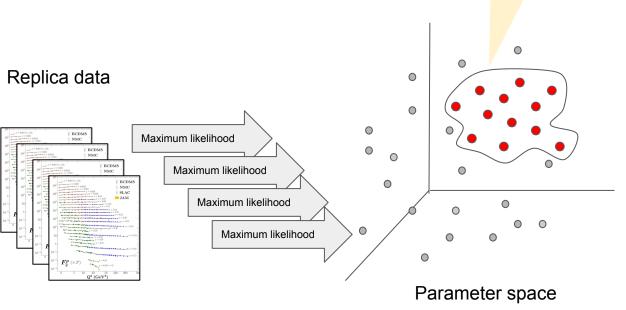
- Data resampling

Data resampling

$$d_{k,i}^{(\text{pseudo})} = d_i^{(\text{original})} + \alpha_i \ R_{k,i}$$

Original data





Confidence region

Staff / Faculty

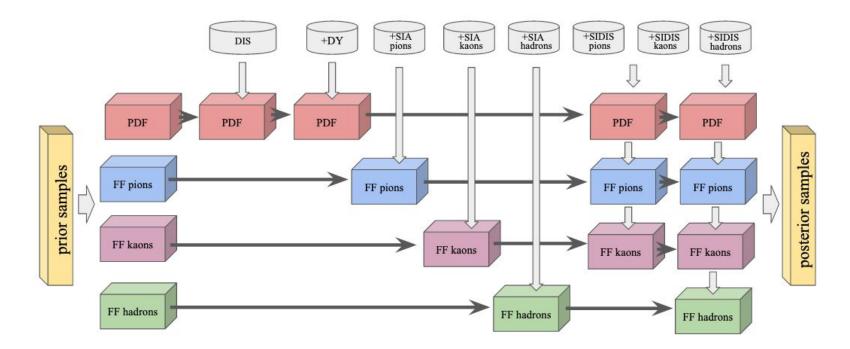
W. Melnitchouk (JLab), T. Rogers (ODU/JLab), A. Prokudin (PSU), D. Pitonyak (LVC), L. Gamberg (PSU), Z. Kang (UCLA) J. Qiu (JLab), A. Accardi (Hampton/JLab), A. Metz (Temple), C.-R. Ji (NCSU), M. Constantinou (Temple), F. Steffens (Bonn), M. White (Adelaide), ...

Students / Postdocs

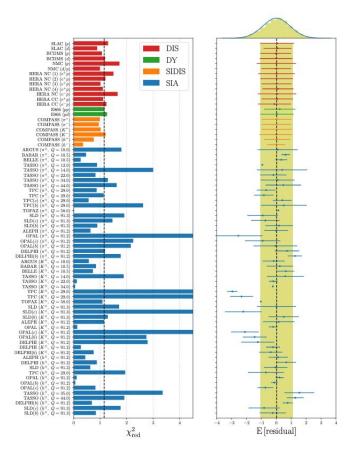
C. Cocuzza (Temple), Y. Zhou (W&M), P. Barry (NCSU), E. Moffat (ODU), J. Bringewatt (UMD), J. Ethier (Nikhef), C. Andres (JLab), F. Delcarro (JLab), A. Hiller-Blin (JLab), Z. Searle (Adelaide)

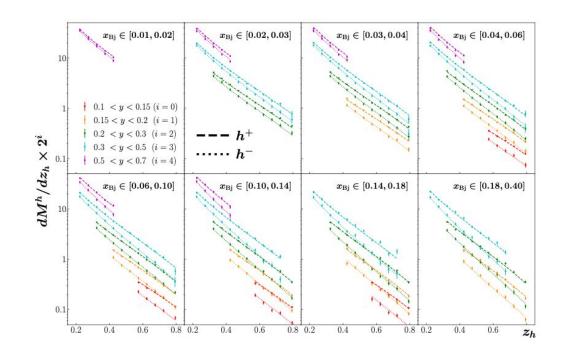
Examples

Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664

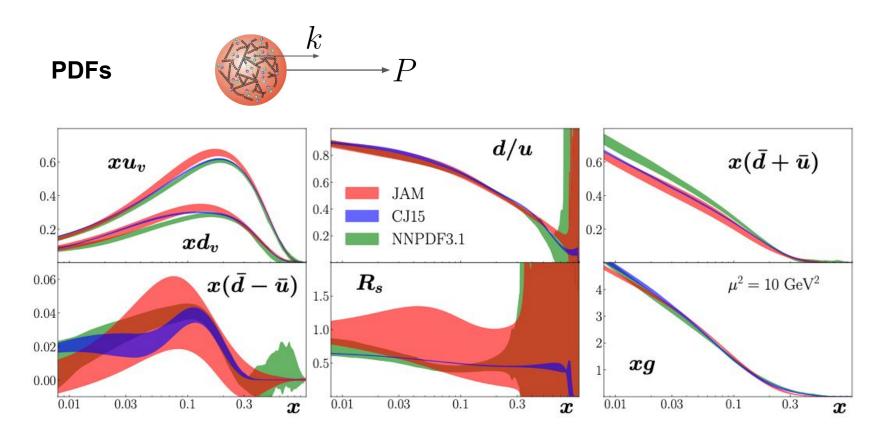


Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664

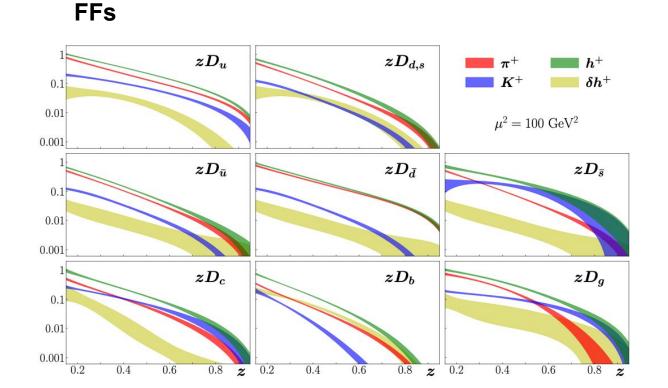


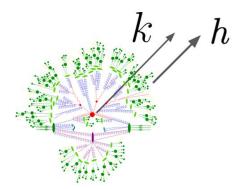


Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664

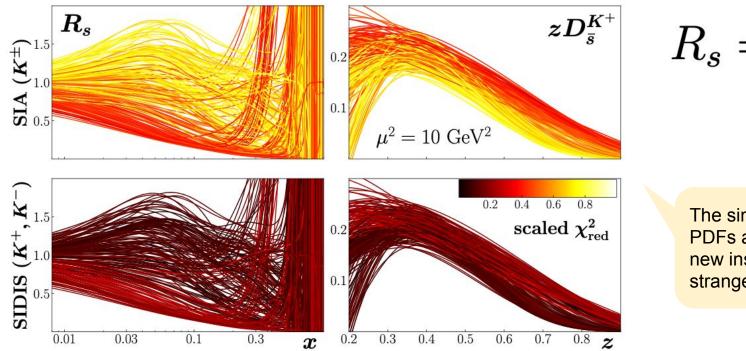


Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664





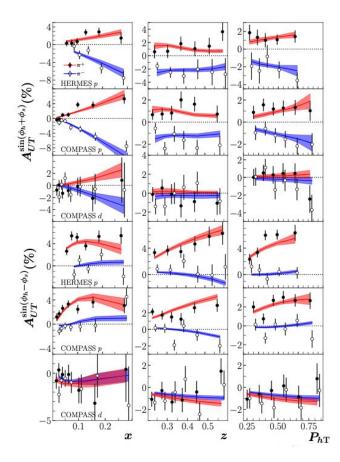
Moffat, Melnitchouk, Rogers, NS arXiv:2101.04664

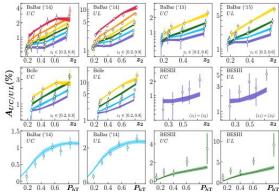


The simultaneous fit of PDFs and FFs provides new insights on nucleon strangeness

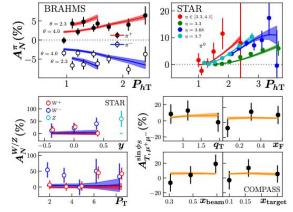
 $= \frac{s + \bar{s}}{\bar{u} + \bar{d}}$

JAM3D: TMDs +CT3





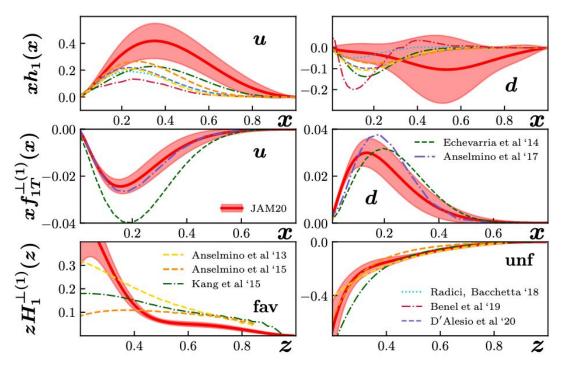
Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, NS



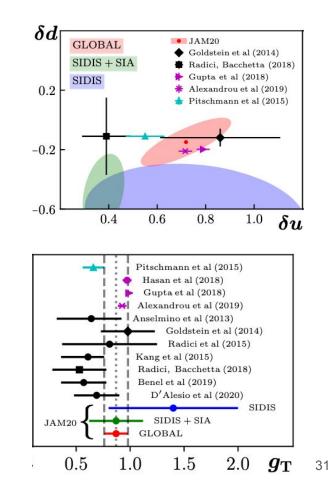
Observable	Reactions
$A^{ m Siv}_{ m SIDIS}$	$e + (p,d)^{\uparrow} \to e + (\pi^+,\pi^-,\pi^0) + X$
$A^{ m Col}_{ m SIDIS}$	$e + (p,d)^{\uparrow} \to e + (\pi^+,\pi^-,\pi^0) + X$
$A_{ m SIA}^{ m Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$
$A_{ m DY}^{ m Siv}$	$\pi^- + p^\uparrow ightarrow \mu^+ \mu^- + X$
$A_{ m DY}^{ m Siv}$	$p^{\uparrow} + p ightarrow (W^+, W^-, Z) + X$
A^h_N	$p^\uparrow + p ightarrow (\pi^+,\pi^-,\pi^0) + X$

30

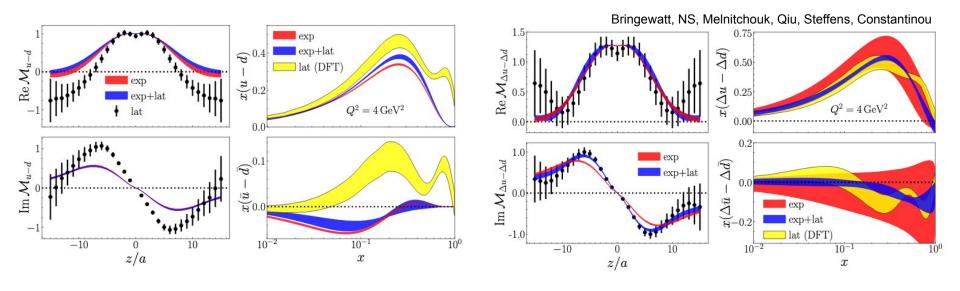
JAM<mark>3D</mark>: TMDs + CT3



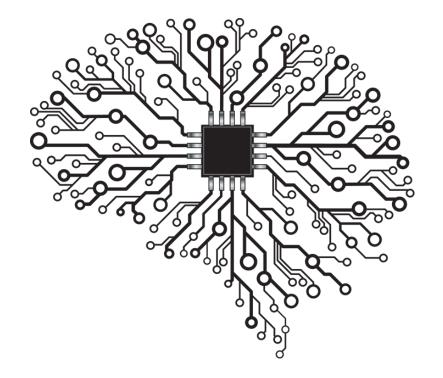
Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, NS



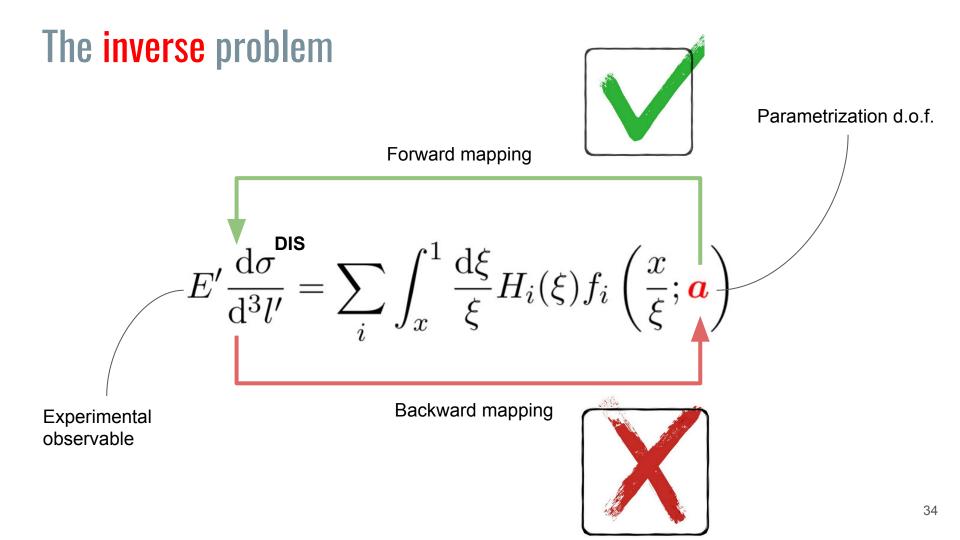
JAM1D: experimen + lattice



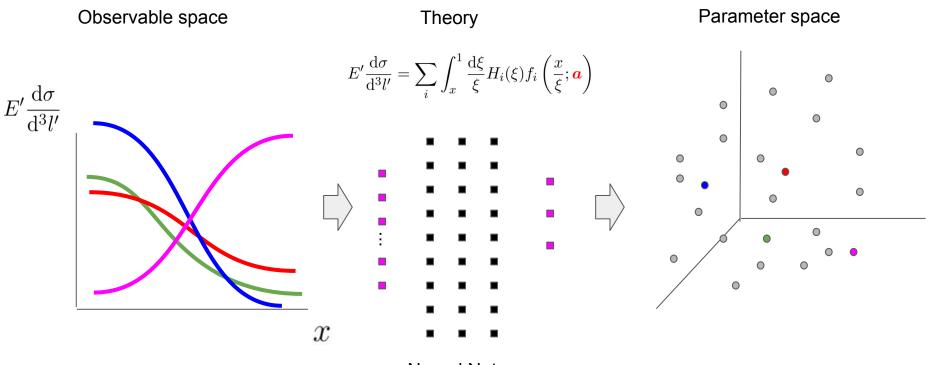
$$\mathcal{M}_{q}(z,\mu) = \int_{-\infty}^{\infty} dx \, e^{-ixP_{3}z} \int_{-1}^{1} \frac{d\xi}{|\xi|} \, C_{q}\left(\frac{x}{\xi},\frac{\mu}{\xi P_{3}}\right) f_{q}(\xi,\mu) \qquad \mathcal{M}_{\Delta q}(z,\mu) = \int_{-\infty}^{\infty} dx \, e^{-ixP_{3}z} \int_{-1}^{1} \frac{d\xi}{|\xi|} \, C_{\Delta q}\left(\frac{x}{\xi},\frac{\mu}{\xi P_{3}}\right) \Delta f_{q}(\xi,\mu)$$



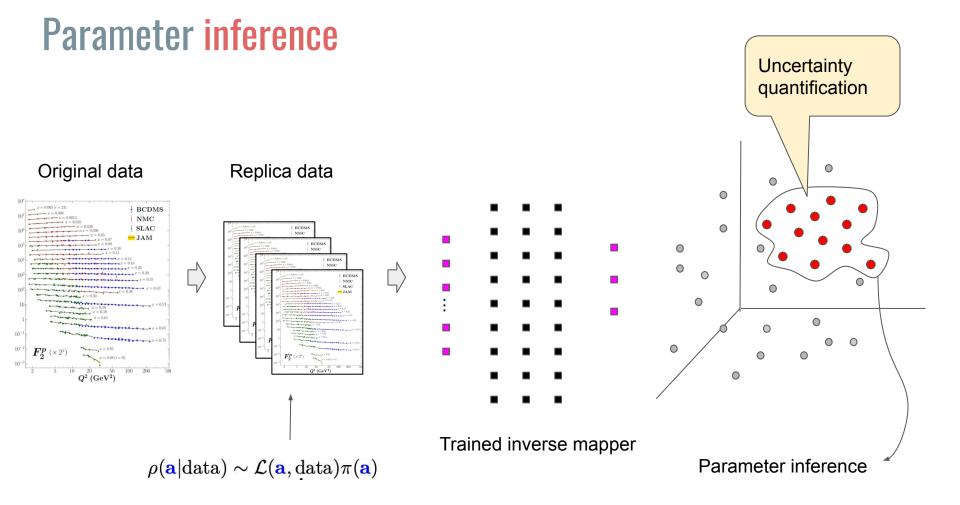
Why Machine Learning?

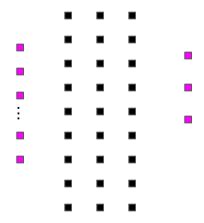


An idea: parametrize the inverse function



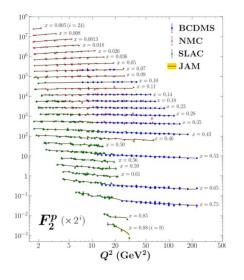
Neural Nets





So why do we need **inverse mappers**?

1) Manipulate data input



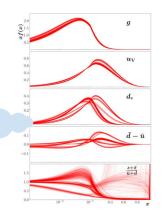
What happens if we remove ... data ?

Where do we need more experiments?

Collecting MC samples is too expensive

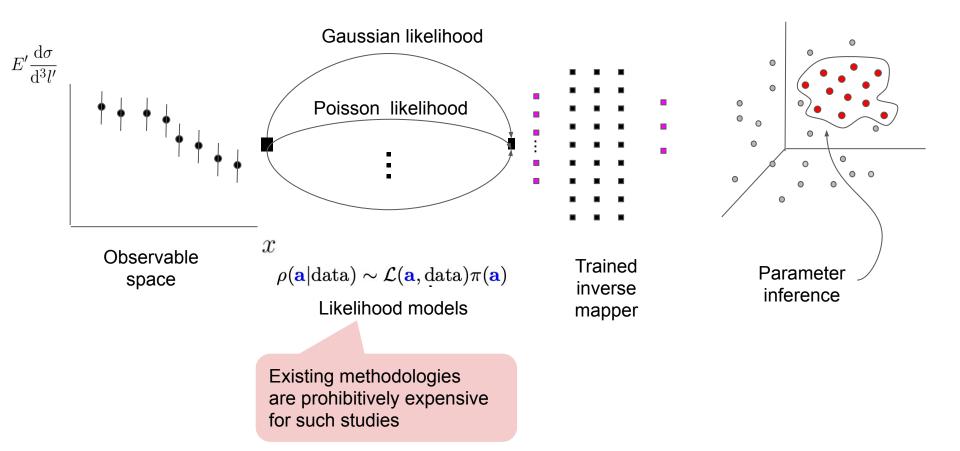
 $\rho(\mathbf{a}|\text{data}) \sim \mathcal{L}(\mathbf{a}, \text{data})\pi(\mathbf{a})$

"Global analysis is a kind of a sausage" ... how to unpack it?



What data are forcing ... to be ...?

2) Bayesian inference modeling



3) Change how we view global analysis efforts

LHAPDF 6.3.0

Main page PDF sets Class hierarchy Functions Examples Mor

LHAPDF Documentation

Introduction

LHAPDF is a general purpose C++ interpolator, used for evaluating PDFs from discretised data files. Previous versions of LHAPDF were written in Fortran 77/90 and are documented at http://lhapdf.hepforge.org/lhapdf5/.

LHAPDF ID	Set name	Number of set members	Latest data version	Notes
251	GRVPI0	1	1	alpha_s was broken in LHAPDF5. This version uses approximate 1st order running from reported Lambda4,5 values.
252	GRVPI1	1	1	
270	xFitterPI_NLO_EIG	8	1	
280	xFitterPI_NLO_VAR	6	1	
10000	cteq6	41	-1	Corresponds to LHAPDF5's cteq6 or cteq6mE; central member equivalent to cteq6m.
10042	cteq611	1	4	
10150	cteq61	41	1	
10550	cteq66	45	1	
10770	CT09MCS	1	1	
10771	CT09MC1	1	1	
10772	CT09MC2	1	1	
10800	CT10	53	4	
10860	CT10as	11	2	
10900	CT10w	53	1	
10960	CT10was	11	2	
10980	CT10f3	1	1	7
10981	CT1014	1	1	
10982	CT10wf3	1	1	Many aroune
10983	CT10wf4	1	1	Many groups
11000	CT10nlo	53	4	
11062	CT10nlo_as_0112	1	1	around the world
11063	CT10nlo_as_0113	1	1	

- Global efforts consolidated in interpolation tables - static version of hadron structures
- Inverse mapper can be a new representation for hadron structure data dynamical version
- Towards a unified quality control for hadron structure inference

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

 $I(J^P) = 0(\frac{1}{2})$ Status: ***

The $\Lambda_c^+\pi^+\pi^-$ mode is largely, and perhaps entirely, $\Sigma_c\pi$, which is just at threshold; since the Σ_c has $J^P=1/2^+$, the J^P here is almost certainly $1/2^-$. This result is in accord with the theoretical expectation that this is the charm counterpart of the strange $\Lambda(1405).$

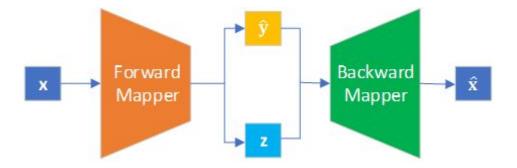
Outline

PART I: (N. Sato)

- Motivations
- Bayesian inference
- Examples
- Machine learning

PART II: (Y. Li)

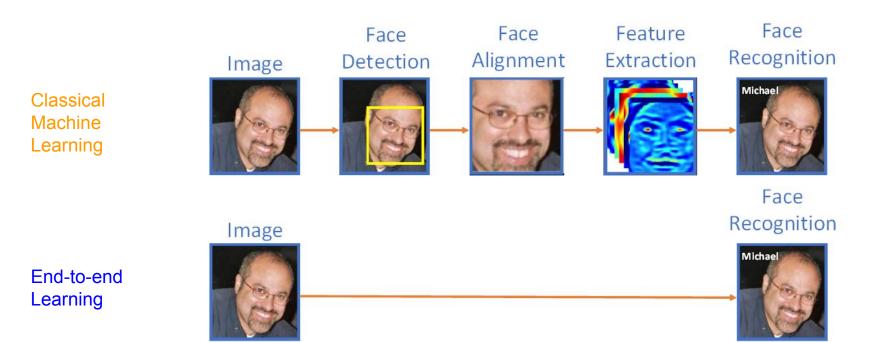
- End-to-end inverse problems
- VAIM Architecture
- Results in Toy Problems
- Results in DIS



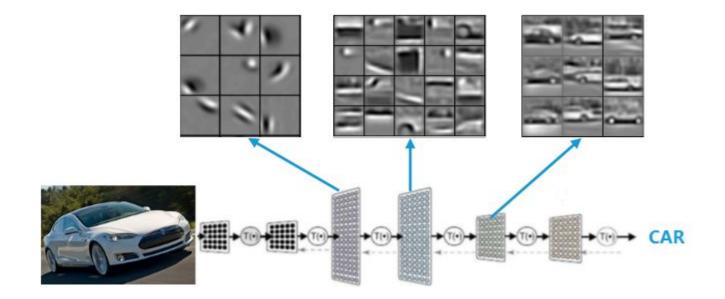
Inverse mapper architectures

End-to-End Learning

- End-to-End Learning
 - Machine learning model automatically learns all features
 - Directly convert input data into output prediction



End-to-End Learning in Image Recognition



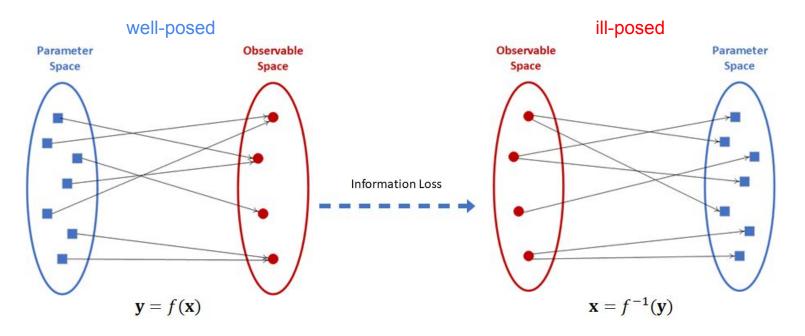
Source: https://goo.gl/1KsWvF

End-to-End Learning for Inverse Problems

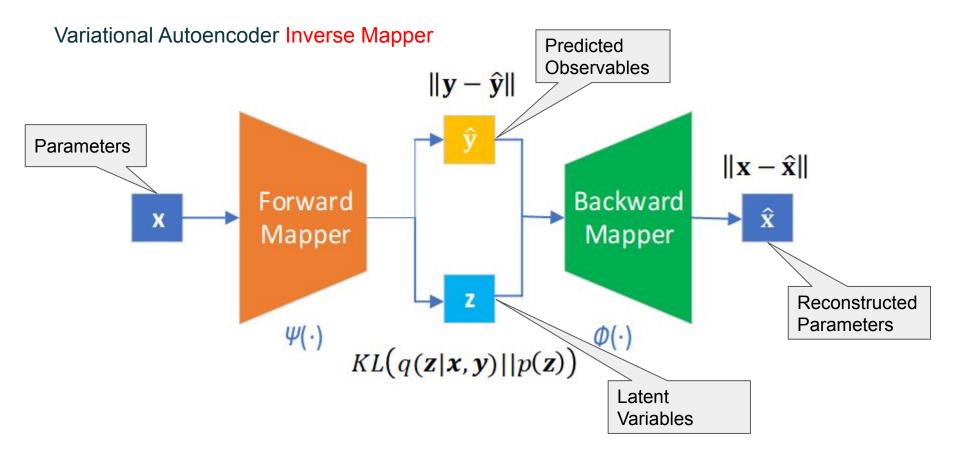
III-posedness of Inverse Problems

Forward Mapper

Backward Mapper

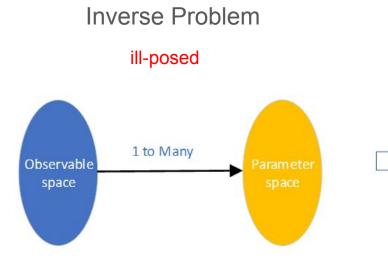


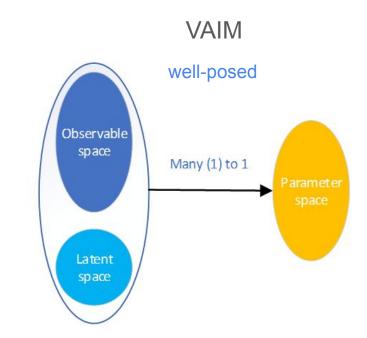
Machine Learning Architecture



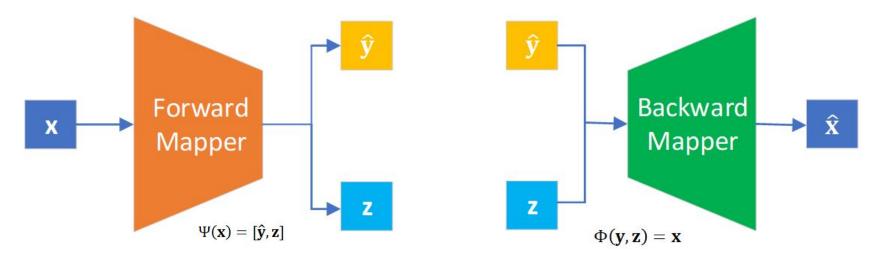
Fundamental Idea

Variational Autoencoder Inverse Mapper





Forward Mapper and Backward Mapper



Learn posterior distribution $p(\mathbf{z}|\mathbf{x}, \mathbf{y})$

Learn likelihood distribution $p(\mathbf{x}, \mathbf{y} | \mathbf{z})$

Math behind Variational Autoencoder Inverse Mapper

- Approximate
- True posterior distribution $p(\mathbf{z} \mid \mathbf{x}, \mathbf{y})$ Variational Inference

Learn an approximate distribution $q(\mathbf{z} \mid \mathbf{x}, \mathbf{y})$ such that Ο

 $q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \sim p(\mathbf{z} \mid \mathbf{x}, \mathbf{y})$ Minimize the Kullback-Leibler (KL) divergence Ο

$$\min KL(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \mid\mid p(\mathbf{z} \mid \mathbf{x}, \mathbf{y}))$$

Math behind Variational Autoencoder Inverse Mapper (cont.)

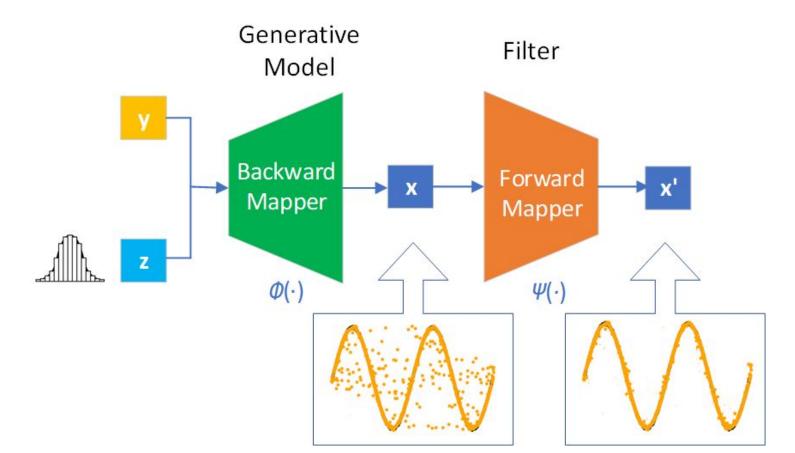
• Variational Autoencoder Theory

 $\min_{\substack{KL(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \mid \mid p(\mathbf{z} \mid \mathbf{x}, \mathbf{y})) \\ \text{Equivalent to}}$

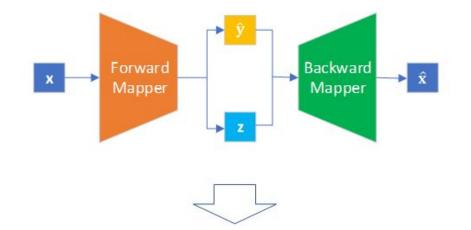
$$\min \|\mathbf{y} - \hat{\mathbf{y}}\|_2^2 + \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + KL(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \mid \mid p(\mathbf{z}))$$

- True prior distribution
 - Select tractable (Zistribution easy to generate
 - Gaussian
 - Uniform

Variational Autoencoder Inverse Mapper Production Mode

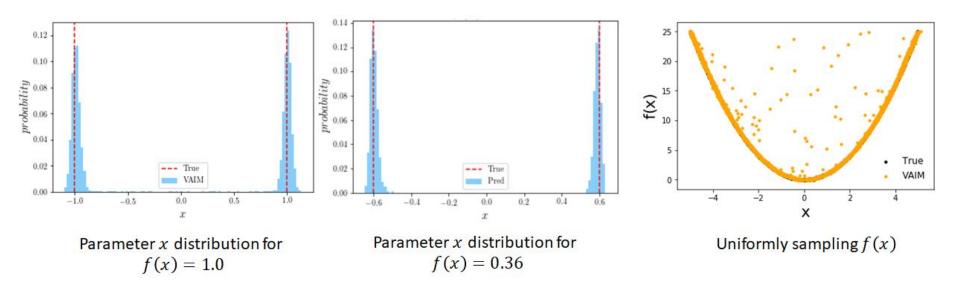


Toy Inverse Problems



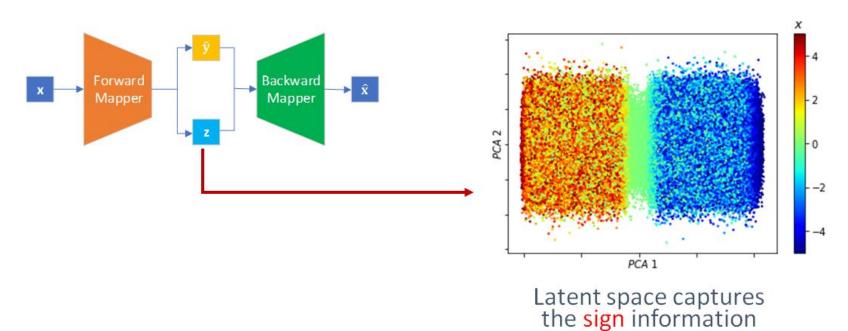
Toy Problems	Solution Characteristics
1) $f(x) = x^2$	2 solutions (except x = 0)
$2) f(x) = \sin(x)$	Finite but different number of solutions
3) $f(x) = x_0^2 + x_1^2$	Infinite solutions

Toy Problem 1) $f(x) = x^2$

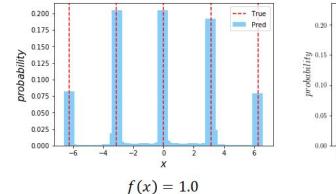


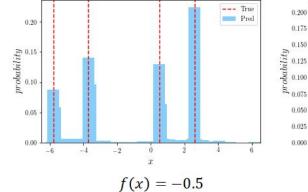
Toy Problem 1) $f(x) = x^2$

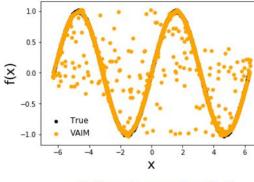
Latent Space Analysis

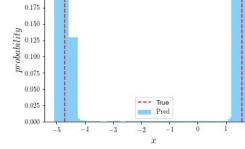


Toy Problem 2) $f(x) = \sin(x), x \in [-2\pi, 2\pi]$







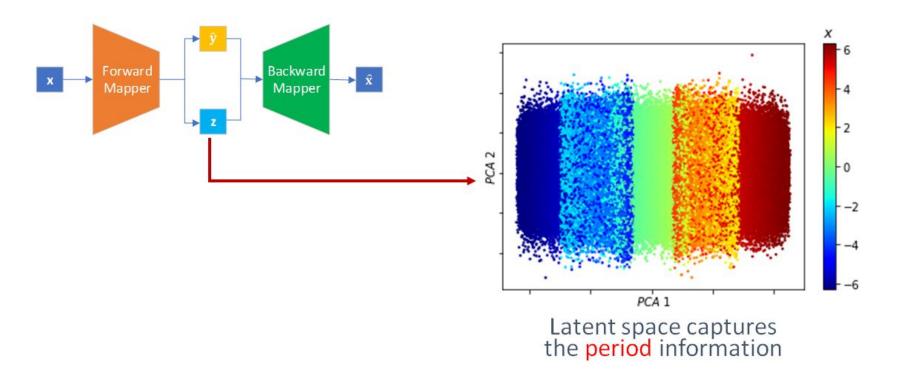


f(x)=0.0

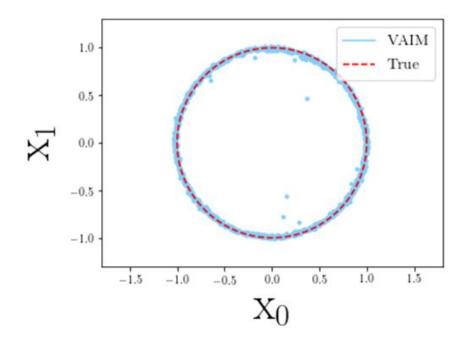
Uniformly sampling f(x)

Toy Problem 2) $f(x) = \sin(x), x \in [-2\pi, 2\pi]$

Latent Space Analysis



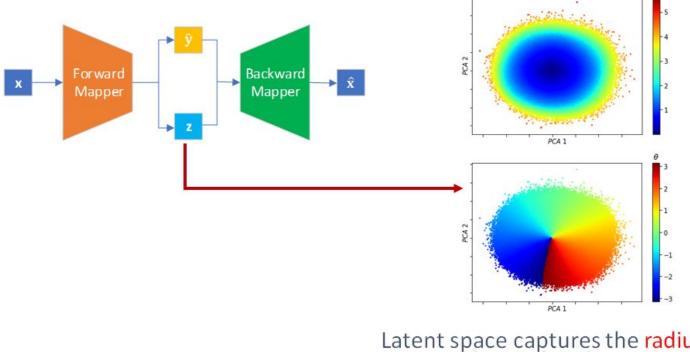
Toy Problem 3) $f(x) = x_0^2 + x_1^2$



Parameter (x_0, x_1) distribution for f(x) = 1.0

Toy Problem 3) $f(x) = x_0^2 + x_1^2$

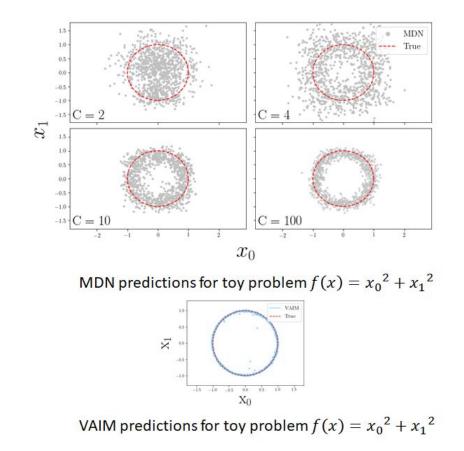
Latent Space Analysis

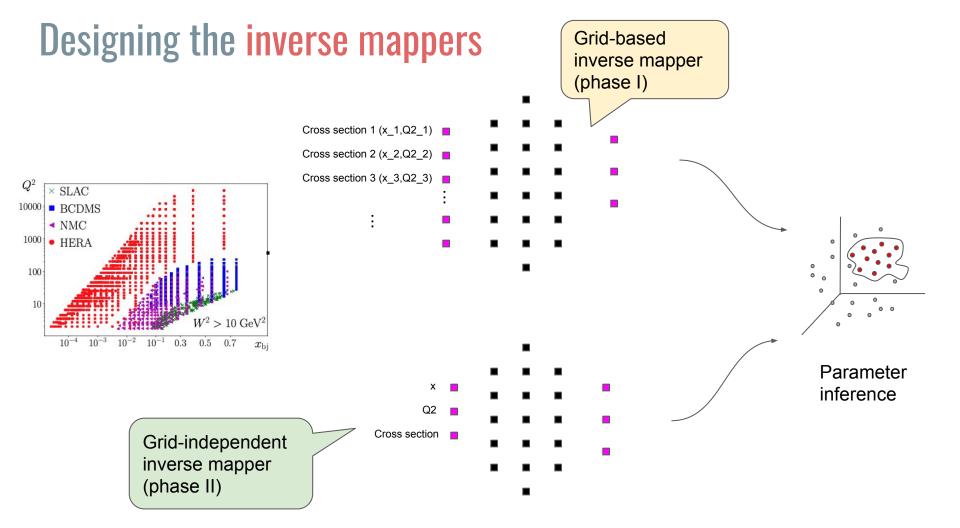


Latent space captures the radius and polar angle information

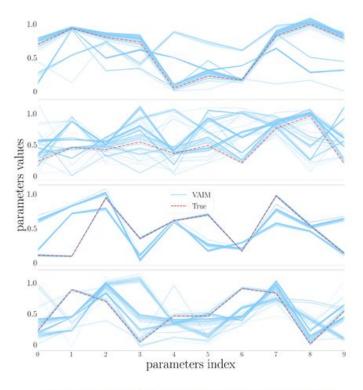
Comparison with Mixture Density Network (MDN)

- Fundamental Idea of MDN
 - Construct a conditional probability $p(\mathbf{y}|\mathbf{x})$
 - Approximated with mixing Gaussian components
 - Assumption
 - (Finite) Gaussian Mixture
 - Poor approximation when the inverse problem is significantly non-Gaussian
- Advantage of VAIM
 - No Gaussian Assumption

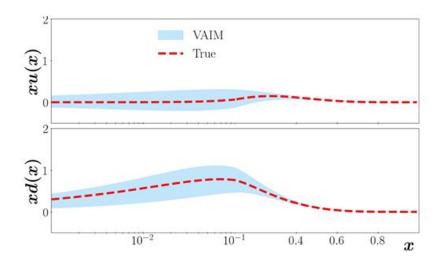




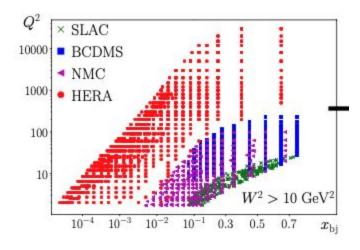
Toy DIS Problem



Parameter distributions generated by VAIM in four control samples



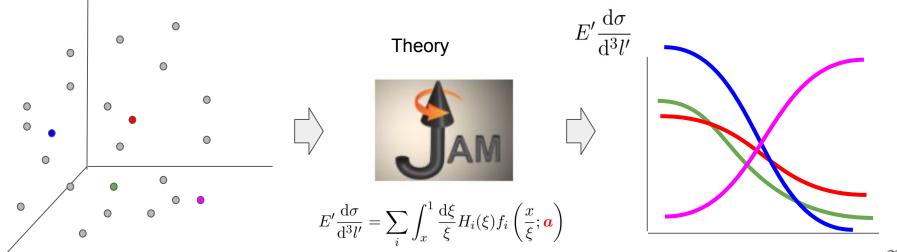
Reconstructed PDF using a control sample

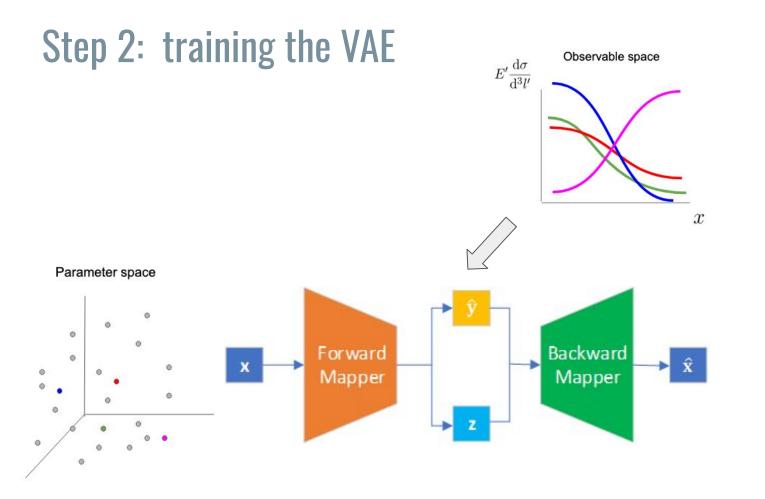


Application to real QCD

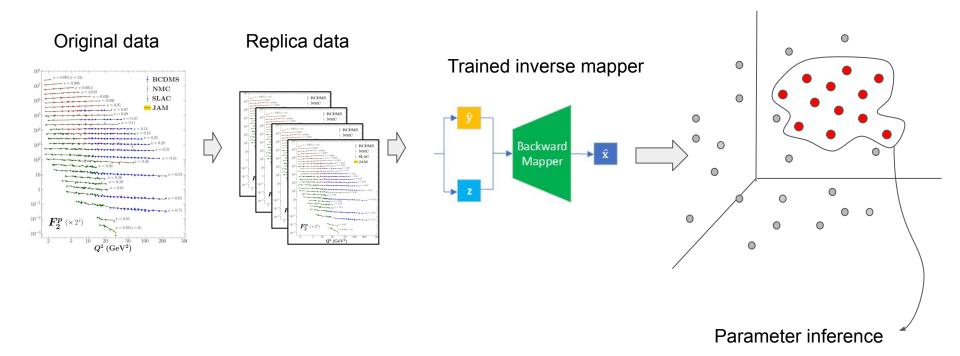
Step 1: training samples from JAM

Parameter space

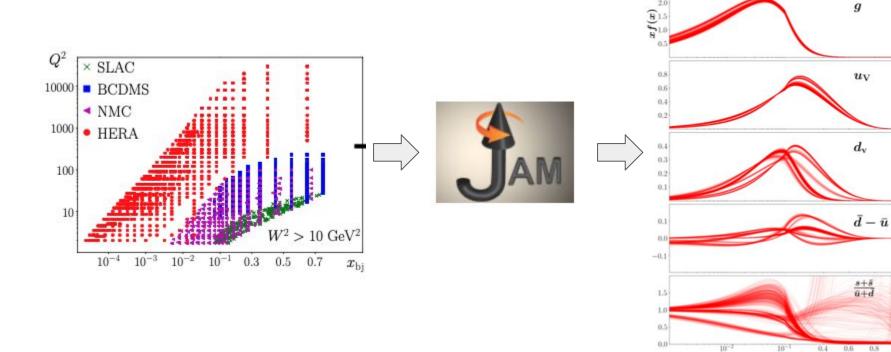




Step 3: Parameter inference

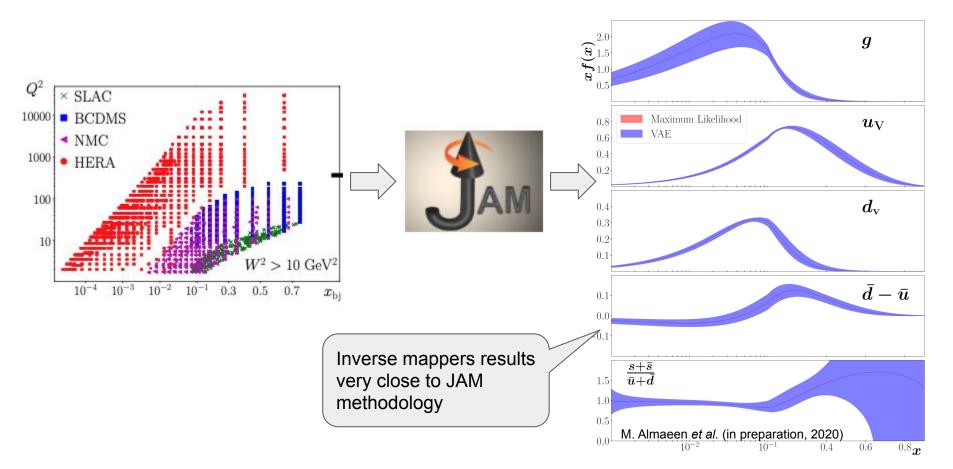


Upol PDF inference using JAM MC framework



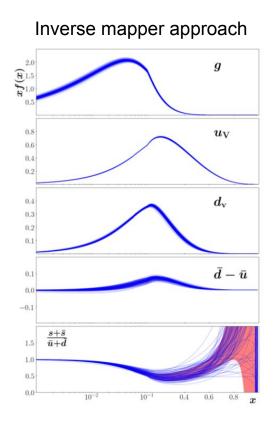
0.8

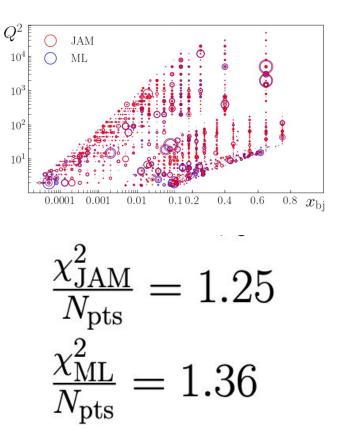
Upol PDF inference using JAM inverse mapper



Does it work?

JAM MC approach 2.0 \boldsymbol{g} $(x)_{1.5}^{1.5}$ f_x 0.5 $u_{
m V}$ 0.8 0.6 0.4 0.2 $d_{\rm v}$ 0.4 0.3 0.2 0.1 $ar{d} - ar{u}$ 0.1 0.0 -0.1 $rac{s+ar{s}}{ar{u}+d}$ 1.5 1.0 0.5 0.0 10^{-2} 10^{-1} 0.4 0.6 0.8 \boldsymbol{x}





Preliminary

Summary

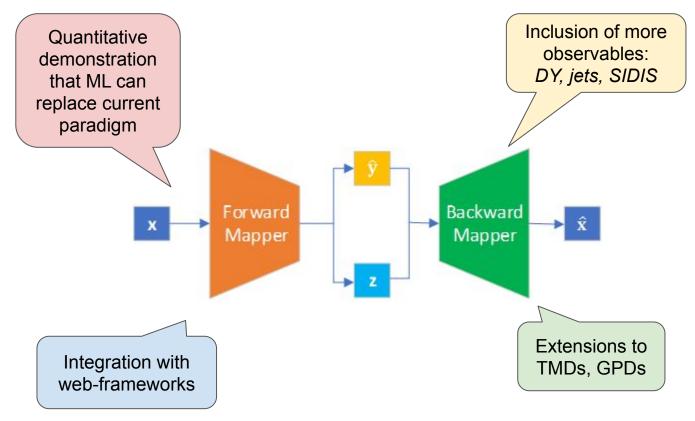
- VAIM an end-to-end deep learning model for inverse problems
 - Works well in three toy inverse problems with very different solution patterns
 - Preliminary success in toy DIS problems
 - Preliminary success in real PDFs from actual global QCD analysis of experimental data on inclusive DIS
- Challenges
 - Stability
 - Robustness
 - Programming physics into the deep learning framework

Publication: Almaeem et al., Variational Autoencoder Inverse Mapper: An End-to-End Deep Learning Framework for Inverse Problems, IJCAI2021, to be submitted today.

Acknowledgement: The work is supported by CNF.

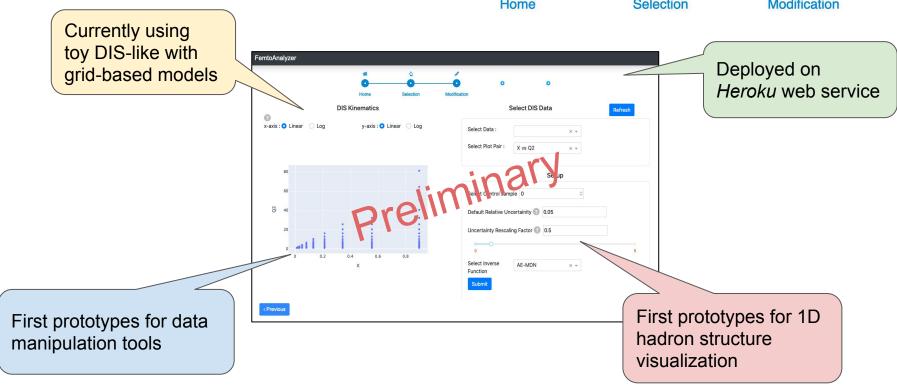
Future directions

Where do we go from here?



Status of web framework

FemtoAnalyzer



Where do we go from here?

Where can we host the web application \$\$\$?

