Critical Tests of QCD at the EIC

Jianwei Qiu
Theory Center, Jefferson Lab

Also at this DNP:
see talks at the workshop on “Physics Opportunities with EIC”

Acknowledgement:
Much of the results presented here are based on the work of EIC White Paper Writing Committee put together by BNL and JLab managements, …
A long journey, a joint effort of the full community:

• Three profound questions:
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?

Explore the emergent phenomena of QCD!
How QCD has been tested?
QCD is the right theory, ...

- Hadron mass from lattice QCD calculations:

How does QCD generate this? The role of quarks vs. that of gluons?
The challenge: How to test a theory, its dynamics, without seeing the players?

- No modern detector has seen any quark or gluon in isolation:
 - Gluons are dark, but, carry color:
 - NO separation between color charges!
 - Color is fully entangled!
 - No "color" radius of proton:
 - NO elastic "color" form factor!
 - The challenge:
 - How to test a theory, its dynamics, without seeing the players?

- The "helper" – QCD Asymptotic Freedom:
 - Interaction strength:
 \[
 \alpha_s(\mu_2) = \frac{\alpha_s(\mu_1)}{1 - \frac{\beta_1}{4\pi} \alpha_s(\mu_1) \ln \left(\frac{\mu_2^2}{\mu_1^2} \right)} \equiv \frac{4\pi}{-\beta_1 \ln \left(\frac{\mu_2^2}{\Lambda_{QCD}^2} \right)}
 \]

 Controllable perturbative QCD calculations at HIGH ENERGY Controllable “probe”?
QCD has been tested in the asymptotic regime

- Hard probes to "catch" the quantum fluctuation:

 \[\text{Hard probe (t \sim 1/Q < fm)} \rightarrow \text{Probability to "catch" the parton!} \]

- Any cross section with identified hadron(s) is NOT perturbatively calculable!

\[\sigma_{\text{DIS}}(x, Q^2) = 2 \approx \frac{1}{Q} \rightarrow xP, k_T \]

\[f_{q/p}(x, k_T; \mu^2) \sim O\left(\frac{1}{Q^2}\right) \]

- NO "still picture" for hadron structure!

QCD is tested: factorization + probe + universality of the quantum correlations!
Unprecedented success of QCD and QCD factorization

Universal Parton Distributions:

\[
q(x) = \left| \begin{array}{c}
\frac{P^+}{xP^+} \\
\frac{P^-}{xP^-}
\end{array} \right|^2 \times X
\]
SM: Electroweak processes + QCD perturbation theory + PDFs works!
Part II

Critical tests ↔ Critical questions

Critical capabilities
Eternal Questions we have been asking ...

- **Where did we come from?**

 How did hadrons are emerged from the energy, the quarks and gluons?

- **What are we made of?**

 What is the internal structure and dynamics of hadrons?

- **What holds us together?**

 How does the glue bind us all?

EIC: a single facility being able to address all these questions, emergent phenomena of QCD, with the precision and the uniqueness, ...
Exploring emergent phenomena of QCD

QCD landscape of nucleon and nuclei?

- Color Confinement
- Asymptotic freedom

<table>
<thead>
<tr>
<th>Scale</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MeV (10 fm)</td>
<td>200 MeV (1 fm)</td>
<td>Femto-science (0.1-10 fm) vs. Nano-science (1-100 nm)</td>
</tr>
<tr>
<td>2 GeV (1/10 fm)</td>
<td></td>
<td>Probing scale</td>
</tr>
</tbody>
</table>

Need observables with two-momentum scales:

\[Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{QCD} \]

- **Hard scale:** localizes the probe particle nature of quarks/gluons
- **“Soft” scale:** could be more sensitive to the hadron structure \(\sim 1/\text{fm} \)
- **Hit the hadron “very hard” without breaking it, clean information on the structure!**
QCD needs lepton-hadron facilities

- Hadrons are produced from the energy in e+e- collisions:
 - No hadron to start with
 - Emergence of hadrons

- Hadrons are produced in hadron-hadron collisions:
 - Partonic structure
 - Emergence of hadrons
 - Heavy ion target or beam(s)

- Hadrons are produced in lepton-hadron collisions:
 - Colliding hadron can be broken or stay intact!
 - Imaging partonic structure
 - Emergence of hadrons
 - Heavy ion target or beam(s)

One facility covers all!
US EIC – can do what HERA could not do

- **Quantum imaging:**
 - HERA discovered: 15% of e-p events is diffractive – Proton not broken!
 - US-EIC: 100-1000 times luminosity – Critical for 3D tomography!

- **Quantum interference & entanglement:**
 - US-EIC: Highly polarized beams – Origin of hadron property: Spin, ...
 Direct access to chromo-quantum interference!

- **Nonlinear quantum dynamics:**
 - US-EIC: Light-to-heavy nuclear beams – Origin of nuclear force, ...
 Catch the transition from chromo-quantum fluctuation
 to chromo-condensate of gluons, ...
 Emergence of hadrons (femtometer size detector!),
 – “a new controllable knob” – Atomic weight of nuclei
US-EIC: Why existing facilities, even with upgrades, cannot do the same?

✧ Emergence of hadrons
✧ Hadron properties:
 mass, spin, ...
✧ Hadron’s 3D partonic structure:
 confined motion, spatial distribution,
 color correlation, fluctuation,
 saturation, ...
✧ Quantum correlation between
 hadron properties and parton dynamics, ...

...

Due to the time, only some examples to be presented in this talk!
How did hadrons be emerged from quarks and gluons?

- Ions as femtometer sized detectors:
 - The Control of ν & medium length!
 - $\nu = \frac{Q^2}{2m_x}$
 - Beyond HERA & pA!

- Mass dependence of hadronization:

- Critical test of QCD hadronization!
How does the mass of the nucleon arise?

- Nucleon mass – dominates the mass of visible world:

 Higgs mechanism is far from enough!!!

- How does QCD generate the nucleon mass?

 “... The vast majority of the nucleon’s mass is due to quantum fluctuations of quark-antiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ...”

REACHING FOR THE HORIZON
The 2015 Long Range Plan for Nuclear Science

How to quantify and verify this, theoretically and experimentally?
The Proton Mass: decomposition

- Role of quarks and gluons?
 - Trace of the QCD energy-momentum tensor:
 \[T^\alpha_\alpha = \frac{\beta(g)}{2g} F^{\mu\nu,a} F_{\mu\nu}^a + \sum_{q=u,d,s} m_q (1 + \gamma_m) \bar{\psi}_q \psi_q \rightarrow M_P^2 \propto \langle P | T^\alpha_\alpha | P \rangle \]
 - QCD trace anomaly
 - Chiral symmetry breaking

- Decomposition or sum rules – could be frame dependent!

\[M_P = \left(\frac{\langle P | \int d^3 x \, T^{00} | P \rangle}{\langle P | P \rangle} \right) \text{at rest} \]

\[= E_q + E_g + \chi m_q + T_g \]

- Sum Rule is useful if individual terms can be measured independently

- Critical test of QCD mass generation:
 - Need a dilaton field!
 - Probe the distribution of mass inside the proton?

\[\gamma^* \rightarrow J/\psi, \Upsilon, \ldots \]
Three-pronged approach to explore the origin of hadron mass

- Lattice QCD
- Mass decomposition – roles of the constituents
- Model calculation – approximated analytical approach

The Proton Mass: renewed world effort

A true international effort!

INT workshop (INT-20-77W):

Origin of the Visible Universe:
Unraveling the Proton Mass

May 4-8, 2020,
I. Cloet, Z.-E. Meziani, B. Pasquini
How does the spin of the nucleon arise?

- An incomplete story:

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + (L_q + L_g)$

 Proton Spin

 $\frac{1}{2} \int dx (\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s})$

 Quark helicity

 Best known

 $\int dx \Delta g(x) \approx 40\%$

 Orbital Angular Momentum of quarks and gluons

 Start to know

 Gluon helicity

 Little known

- What an EIC could help:

 With RHIC data

 $Q^2 = 10 \text{ GeV}^2$
The Proton Spin: from JLab12 to EIC

- Complementary between JLab12 and EIC:

 - No other machine in the world can achieve this!

- Critical Tests of the emergence of hadron properties in QCD:
 - Precision measurement of $\Delta g(x)$ – extend to smaller x regime – form bias?
 - Orbital angular momentum contribution – measurement of TMDs & GPDs!
Two-scale observables are natural in lepton-hadron collisions:

- **Semi-inclusive DIS:**
 - SIDIS: $Q \gg P_T$
 - Parton’s confined motion encoded into TMDs

- **Exclusive DIS:**
 - DVCS: $Q^2 \gg |t|$
 - Parton’s spatial imaging from Fourier transform of GPDs’ t-dependence
 - Imaging quarks
 - Imaging gluons
 - Heavy quarkonium: $Q^2 + M^2 \gg |t|$
 - Imaging the glue only at EIC

“See” nucleon’s internal landscape
Theory is solid – unified description

- Wigner distributions in 5D (or GTMDs):
 - Momentum Space
 - Coordinate Space
 - TMDs
 - Spatial distribution
 - Confined motion
 - GPDs

\[\int d^2 b_T \; f(x,k_T) \quad \text{Two-scales observables} \]
\[\int d^2 k_T \; f(x,b_T) \]

- TMDs & SIDIS as an example:
 - Low \(P_h << Q \) – TMD factorization:
 \[\sigma_{\text{SIDIS}}(Q, P_h, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f(x, k_T) \otimes D_{f \to h}(z, p) \otimes S(k_s) + O\left(\frac{P_h}{Q}\right) \]
 - High \(P_h \approx Q \) – Collinear factorization:
 \[\sigma_{\text{SIDIS}}(Q, P_h, x_B, z_h) = \hat{H}(Q, P_h, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + O\left(\frac{1}{P_h}, \frac{1}{Q}\right) \]
 - \(P_h \) Integrated - Collinear factorization:
 \[\sigma_{\text{SIDIS}}(Q, x_B, z_h) = \hat{H}(Q, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + O\left(\frac{1}{Q}\right) \]
 - Very high \(P_h >> Q \) – Collinear factorization:
 \[\sigma_{\text{SIDIS}}(Q, P_h, x_B, z_h) = \sum_{abc} \hat{H}_{ab \to c} \otimes \phi_{\gamma \to a} \otimes \phi_b \otimes D_{c \to h} + O\left(\frac{1}{Q}, \frac{Q}{P_h}\right) \]
Quantum correlation between hadron spin and parton motion:

- Sivers effect – Sivers function
 Hadron spin influences parton’s transverse motion

Quantum correlation between parton’s spin and its hadronization:

- Collins effect – Collins function
 Parton’s transverse polarization influences its hadronization
Critical tests of the flavor-dependent spatial imaging

- **DVCS at EIC:**
 - Factorization \rightarrow GPDs
 - Proton radius of quarks (x)!

- **“Seeing” the glue at EIC:**
 - $J/\Psi, \Phi, \ldots$
 - Proton radius of gluons (x)!
 - F.T. t-dep

- How fast does glue density fall?
- How far does glue density spread?

Only possible at EIC!
QCD glue holds us together!

- Another HERA discovery:
 - What are the emergent properties of dense systems of gluons, when the occupation number is ~ O(1)?

- The hard probe at small-x is NOT localized:
 - Longitudinal probing size
 - > Lorentz contracted nucleon
 - if \(\frac{1}{xp} > 2R_m^2 \) or \(x < 0.1 \)

 In hadron rest frame:
 - \(\frac{1}{Q^2} \langle g(x) \rangle \sim \frac{Q_s^2(x)}{Q^2} \)
 - Color entangled between two active partons

Saturation in proton: \(x \sim 10^{-5} \)
Nuclear landscape – nuclear force

- **EMC discovery:**

 Nuclear landscape ≠ Superposition of nucleon landscape

- **Simple, but fundamental, questions:**

 ✷ What does a nucleus look like?

 if we only see quarks and gluons

 ✷ Does the color of nucleon “A” know the color of nucleon “B”?

 IF YES, Nucleus could act like a bigger proton at small-\(x\), and could reaching the saturation much sooner!

 IF NOT, Observed nuclear effect in \(x\)-section is a coherent collision effect

EIC can tell!
A simple question:
Will the suppression/shadowing continue to fall as x decreases?

Color localized
Inside nucleons

Nucleus as a bigger proton

Color leaks outside nucleons
Soft gluon radius is larger
QCD has been very successful in describing the short-distance dynamics owing to its “Asymptotic Freedom”, a defining property of QCD.

QCD’s another defining property, “Confinement”, makes the QCD and its emergent phenomena extremely rich, opening up a new femto-science.

EIC is a ultimate QCD machine and a facility, capable of discovering and exploring the emergent phenomena of QCD, and the role of color and glue.

US-EIC is sitting at a sweet spot for rich QCD dynamics, capable of taking us to the next frontier of Nuclear Science!

Thanks!
Hadron structure

1933: Proton’s magnetic moment

Nobel Prize in Physics 1943
Otto Stern

"for ... and for his discovery of the magnetic moment of the proton".

$g \neq 2$ Proton is NOT point-like

1969: Deep inelastic e-p scattering

Nobel Prize in Physics 1990
Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor

"for their pioneering investigations concerning deep inelastic scattering of electrons on protons...".

1960: Elastic e-p scattering

Nobel Prize in Physics 1961
Robert Hofstadter

"for ... for his discoveries concerning the structure of the nucleons"

Form factor – charge distribution

“Proton Radius”

1974: QCD Asymptotic Freedom

Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek

"for the discovery of asymptotic freedom in the theory of the strong interaction".
Mary complementary probes at one facility

- The new generation of “Rutherford” experiment:

 - Inclusive events: $e+p/A \rightarrow e'+X$

 Detect only the scattered lepton in the detector
 (Modern Rutherford experiment!)

 - Semi-Inclusive events: $e+p/A \rightarrow e'+h(p,K,p,jet)+X$

 Detect the scattered lepton in coincidence with identified hadrons/jets
 (Initial hadron is broken – confined motion! – cleaner than $h-h$ collisions)

 - Exclusive events: $e+p/A \rightarrow e'+p'/A'+h(p,K,p,jet)$

 Detect every things including scattered proton/nucleus (or its fragments)
 (Initial hadron is NOT broken – tomography! – almost impossible for $h-h$ collisions)

- $Q^2 \rightarrow$ Measure of resolution
- $y \rightarrow$ Measure of inelasticity
- $x \rightarrow$ Measure of momentum fraction of the struck quark in a proton

$Q^2 = S \times y$
US-EIC: Luminosity and kinematic coverage

- **JLAB/CEBAF**
- **SLAC**
- **EIC**
- **HERMES**
- **COMPASS**
- **HIAF-EIC**
- **BCDMS**
- **LHeC/HE-LHC**
- **LHeC/HL-LHC**
- **LHeC/CDR**
- **HERA (ZEUS/H1)**

Ep Facilities & Experiments:
- Past Colliders
- Collider Concepts
- Past Fixed Target
- Ongoing Fixed Target
- EIC Project

Measurements with A ≥ 56: (Fo):
- eAµA DIS (E-139, E-665, EMC, NMC)
- JLAB-12
- vA DIS (CCFR, CDHSW, CHORUS, NuTeV)
- DY (E772, E866)
- DY (E906)

Current polarized DIS ep data:
- CERN
- JLab-12

Current polarized RHIC pp data:
- PHENIX x²
- STAR 1-jet
- W bosons
US-EIC: an International Effort

- **EIC Users Group – EICUG.ORG:**
 - 732 collaborators, 29 countries, 169 institutions... (growing, ...)
 - (no students included yet!)

Map of institution’s locations