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QCD and the Structure of Nucleons and Nuclei

(] QCD - Color Confinement:

<> Do not see any quarks and gluons in isolation
<> The structure of nucleons and nuclei — emergent properties of QCD

Color Confinement Asymptotic freedom
: ] : : : > Q (GeV)
200 MeV (1 fm) 2 GeV (1/10 fm) ,
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QCD at a Fermi scale: Femto-science ( m) — regime
All emergent phenomena depend on the probes e PQCD
and the scale at which we probe them! . works
— beautifully!
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QCD and the Structure of Nucleons and Nuclei

(] QCD - Color Confinement:

<> Do not see any quarks and gluons in isolation
<> The structure of nucleons and nuclei — emergent properties of QCD

Color Confinement Asymptotic freedom
: | | | F——> Q (GeV)
200 MeV (1 fm) 2 GeV (1/10 fm) .
. Probing
DD 8 o5
’ | : &3y
\ J
! Asymptotic

QCD at a Fermi scale: Femto-science (0.1-10 fm)

.,
— regime
All emergent phenomena depend on the probes . PQCD
and the scale at which we probe them! . works

L,

. beautifully!
J QCD - Asymptotic Freedom: eautifully
<> QCD Factorization — Controllable Approximation

<> Explore the structure of nucleons and nuclei by using “controllable”,

'(4 14 '(4 »n §
sharp” and “local” probes, ... -,
P P ’ Jefferson Lab



“See” the Structure of Nucleons and Nuclei

[ Cross section with identified hadron is NOT perturbatively calculable!
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“See” the Structure of Nucleons and Nuclei

[ Cross section with identified hadron is NOT perturbatively calculable!

€ P
—> 0 L ]
opis(x, ~1

Factorizaﬁoﬁ Hard-part Parton-distribution Power corrections
Probe Structure Approximation!

Structure: in terms of quantum probability distributions, correlations — matrix elements

(J Need to identify observables with two-momentum scales:
Q1> Q2~1/R~ Aqcp

<> Hard scale: localizes the probe
particle nature of quarks/gluons "y
< “Soft” scale: could be more sensitive to the P
hadron structure ~ 1/fm &\V -
< Hit the hadron “very hard” without breaking it, clean J
information on the structure! Jefferson Lab
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Lepton-Hadron Deep Inelastic Scattering

ek )
" Q2 > Measure of resolution
) Y > Measure of inelasticity
X = Measure of momentum fraction
of the struck quark in a proton
> X (p,)) 2=-6x
P, " Q y

(J Many complementary probes at one facility:
Inclusive events: e+p/A 2 e’+X

Detect only the scattered lepton in the detector
(Modern Rutherford experiment — Single hard scale!)

Semi-Inclusive events: e+p/A = e’+h(p,K,p,jet)+X

Detect the scattered lepton in coincidence with identified hadrons/jets

(Initial hadron is broken — confined motion! — cleaner than h-h collisions)

Exclusive events: e+p/A = e’+ p’/A’+ h(p,K,p,jet)

Detect every things including scattered proton/nucleus (or its fragments)

(Initial hadron is NOT broken — tomography! ‘!Qf‘f/e.gon Lab



Lepton-Hadron Deep Inelastic Scattering

1 QCD is fully color entangled — Factorization: tmp fragmentation
SIDIS:

w05 42)

+ Soft factors

\
TMD parton distribution
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Lepton-Hadron Deep Inelastic Scattering

1 QCD is fully color entangled — Factorization: tmp fragmentation
SIDIS:

w05 42)

+ Soft factors

EEEILR]
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\
TMD parton distribution
d Low P,; — TMD factorization:

os01s(Q, Pris 2, 2n) = H(Q) @ @ (x, k1) @ D n(2,p1) @ S(key) + O [

4 High P,; — Collinear factorization:

1 1
osiois(Q, Phi,xp,2n) = H(Q, PhL,Oés)®¢f®Df—>h+@( )
P’ Q

Pr ]
Q

4 P, ; Integrated - Collinear factorization:

- 1
osiois(Q, 25, 2n) = H(Q, ) @ o5 @ Dy + O (@) Jefferéon Lab

—



Surprise from COMPASS

Q SIDIS production of charge hadron: Also see Ted Rogers’ talk
ap; = 0.04 Q% =1.2 (GeV?) zp; = 0.06 Q* = 1.5 (GeV?) Ty = 0.10 Q% = 1.8 (GeV?)
BEAN I <z>=0.1
| <2>=02
| <2>=03
S | <2>=05
S% | <2>=09
<
~
B9 Solid = NLO
oS Dotted = LO
= %: 10* .
g el > Q
107" Bands =
10_2:‘-..__ variation of RG
6 '- scale

qr(GeV) qr(GeV) qr(GeV)

Data: M. Aghasyan et al. (COMPASS Collaboration), Phys. Rev. D97 (2018) 032006
Theory: B. Wang et al. Phys. Rev. D99 (2019) 094029 .ggf_f./egon Lab



Theoretical Calculations

(J QCD factorization is an approximation — leading power:

dUI+P—>l’+Ph+X NZ/I @/lﬁqf,. (a:)D- (,) d51+i—>l'+j+x
d31/(2E") d3Py/(2E}) - "~ Jas z /,, >z Pi/p ish(2 @1/(2E") #p/(2E,)
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Theoretical Calculations

(J QCD factorization is an approximation — leading power:
doy PP+ X . doyyisr4jeX
FURLE) &P, (2Er) Z/ / 22 () Di-nl?) ey dp) oF,)

(J Where does the color go?
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Theoretical Calculations

Colored !

J QCD factorization is an approximation — leading power:

doy psrip, 1 X dx doyyisryjix
FTCE) @Pn2En) E/  6yp(a) Dyn(2) FTCE) #p]2E,)

(J Where does the color go?
], Color neutralization needs:

<> Large enough phase space to shower

— < Sufficiently high multiplicity

Soft pions < AND: El ;s < E), forfactorization

Near threshold — low multiplicity?
P y: J fggon Lab



Much Enhanced Power “Corrections” — High p+
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Much Enhanced Power “Corrections” — High p+

+ ...

J Low multiplicity events — edge of phase space:
Large Pr and large z, ~ 2

Ao PV P+X dx dOisisryjix
FURE") &P,/(2E;) Z/ / 72 97 (®) Dion) a5 i 0By

<> Leading power: o ox D(z) X (1 — z)” ~ (1 — Zh)“ COMPASS: <z,>
as large as 0.9

Jefferson Lab



Much Enhanced Power “Corrections” — High p+

a + (YY)

P X
1
O (P—% X qu/<Z,...)>

J Low multiplicity events — edge of phase space:
Large Pr and large z, ~ 2

Aoy, p1rsp, + dx Aoy iy yji X
d31/(2E')d3Ph/(2Eh)’“Z/ / 72 97 (®) Dion) a5 i 0By

<> Leading power: o ox D(z) X (1 — z)” ~ (1 — Zh)“ COMPASS: <z,>
e | - )\ | 0 ) as large as 0.9
ower: oxX —=D(z,...) ~ —= — 2z
o Py TR

Hadronization — “pre-hadron state” — better chance to form hadron -
Jefferson Lab



Calculation of the P;-suppressed Power Correction

(] QCD factorization:
doyeAsheX / dT/ - A0+ ya(l)—f(p)+X
— D
BP/(2E) 22 Porr@ D)= o)

+ Z / / / d€dC ¢a/p() Difr(n))—n(2, &, C) - +a(d);[1/'{2(27)1§”5 =
a,[ff'(k)] "B ”

Jefferson Lab



Calculation of the P;-suppressed Power Correction

. . arXiv:1907.06136
1 QCD factorization: T. Liu & J.W. Qiu

doys 4 A5htX / d-’l‘/ : A0+ ya(l) £ (p)+X
~ - D Z
S NIETN Z = ¢ayp() Dy_n(2) 7 /(QEp)

: — ’ ! (K L.0O+X
a,[ff'(K)] B

dsp/ (QEP)

 Two-parton fragmentation functions:
7 B,

Y y+y| n

AR

Ep (1-&p! 1=-Qp (p

Prdy~ [ Pfdy; [ P;dy;
Digqr(n))—h(2,€,€) = Z/ s / yl/ = Gauge link:
x etl1— C)—+y, e—tp—y e—i(1- £)— ®,(y~) = Pexp [—ng/iodAn-G‘4(An)t‘4‘
x CP (0l (up) [@n (u7)]T @ (0))a(0) | H(P1) X)
x (h(Pn) X q(y™) [@n(y )] [@n(y+v2)]d (v ™+ 42 )|0) Jefferdon Lab
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Fragmentation Functions - Hadronization

1 Leading power fragmentation function:

Jefferson Lab



Fragmentation Functions - Hadronization

arXiv:1907.06136

 Leading power fragmentation function: T. Liu & J.W. Qiu

(J Next-to-Leading power fragmentation function:
/ /
T W T W

- R

Dya(z,u,v) 0 <2 |~ o —3

LU, ) —— T P ) — 5(1 — Z)
",,:"f ; d d‘ ‘u u'::,.-‘ , d d ~ u “Exclusive”

, W ™, \
Lol A v L A Ll oy

e 2
/ Jefferson Lab



Two-parton Fragmentation Function — Approximation

arXiv:1907.06136

(J Lowest order two-parton fragmentation function: T. Liu & J.W. Qiu
Pirdy~ [ Pidy; [ Pidys; AR o
D[qq'(la)](Z,f,CaMO)“/ h27r / h27r l / h2ﬂ2 etl1- C)—h-yl e iy —i(1-8) L,
1
, “ N 1@ (W) (7 - 798 Uerar (y1 5 0)gar 1(0) |R(F))
h
ﬂ"" ", i 1 7
A Y X TN PF (h(Pr)|@ari(y™) (- 1Y5)i5Uartr (W, 4™ + 43 )@y (v~ + 93 )]0)
e — ¢ h
- - 16N ? 2 27 27
/ 1 - J — 1 . J -—
(1a) x 2B [ dge ORI (o) [ dg' e =BV gy (€', o)
0

5 A
@3 z0(1 - z)¢h(<s#0)¢h@

Jeﬁ;gon Lab



Two-parton Fragmentation Function — Approximation

, , arXiv:1907.06136
 Lowest order two-parton fragmentation function: T. Liu & J.W. Qiu

Pidy= [ Pldy; [ Pjldys rr pt
D[qq'(lan(z,f,éauo)z/ o= / - ‘/ b Y2 10 up i Ty 16 s

2 2T
1
, NP7 57 018 (v (7 - n¥s)aUerar (vy 5 0)gar 1(0) |R(Fn))
ﬂ"’ '-I;:__ x* 1 _ _ _ _ _ 7 _ _
4 \ X —(h(Pr)|@ar i (™) (v - 2¥5)i5Uartr (¥, ¥~ + 95 )y (¥~ +95)|0)
e — AN.Py
u, fd d‘ \u _ 1 / P ’::- d'y_ / P, ,-:- dyl_ / P h d'y2 1(1 ¢) _h_yl 6_" —h-y _'(1 £) —b-y2
- - 16N 2 o o o
d pt 1 . "NpPty- . : nNpty-
(1a) x fretnt / d¢' e "V 6y (¢ o) / "0 gy (€, po)
o 0
fi
= z0(1—2 )
@g ( )Qsh(Caﬂ'O)(bh(éaﬂ‘O)
( Pseudoscalar distribution amplitude: ¢n(, 1)
(01a,i (v y1 ) (v 1%5)iUab(y ™+ 1, ¥ )@,5 (v )| A(Fh)) -
Uab(y2 + Uy )

1
_ ip+ —izPly~ —i(1—2) P} (v~ +uy)
—iP; fh/o da e T (@) — [ @ (v3)]he[®n(vi)]eb

1
= iPy fn e_,;p,,*y‘/ dz e~ =D gy (2, ), Jefferéon Lab
0
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Partonic Hard Part at Next-to-Leading Power

0 LO Feynman diagrams: @ .
q Z& ]
Two possible channels g +q§

Jefferson Lab



Partonic Hard Part at Next-to-Leading Power

(@)

(1 LO Feynman diagrams: 2,
)
Two possible channels // I+q§
 Hard parts: ’{;‘j ‘
A 'fl
Epdoy- a1 +X ©
d*p l\
_ My tay= i i +x :
2(5 + QQ) I-p
VL 0(54+1+u+Q? s
2(27)2 | '
s§=(q+1)? t=(qg-p)>

e 2
Jefferson Lab



Partonic Hard Part at Next-to-Leading Power

arXiv:1907.06136
J LO Feynman diagrams: ® ®

Zé\ Zg\. T. Liu & J.W. Qiu
17 x 2
. 7 I+q cp
Two possible channels
/ % -(-Op ( >
 Hard parts: ’/ T
Epdoy- o) [f11(0)+X ©
d3p ]\ <p
_ |-’\/1'Y*+a(l)—>[ff’('~‘~)](10)+X|2 \5 -(1-Op ()
2(5 4+ Q?) I-p
! 5(+t+1+Q? ? "
X -
) S U q

O One example: =@+ )?, t=(¢—-p? a=(1-p)?

tatatbrbtatst t+20)AsA; +u2(f — EA; — CAF)  2a3(5+1+ 4
|ma+a b+ba+bb2=4CKeg _( ) £ C——A ( f ¢ C §)+A’uA(S:i- +u)
"‘ fCSQAgAE S(t+ u)QAE‘Aé
K — o204 — (47)3 2
Transverse © e A( T) Feme _
polarized Ap=t+n(s+a), n=24&¢¢& ¢
photon B, = 5t — a(t +na), E=1-¢(=1-( .ge/ff/egon Lab




Numerical Estimate — Lower Limit

[ Differential
multiplicity:

d*Mj,
dzth%

d4O_SIDIS

depdQ?dzydP3

d2oDIS
dz gdQ?

Lower limit for

eV™)

1
T

(12[\"1}, /th(lPﬁT ((

the power correction!

Only used leading
term of two-parton
fragmentation
functions

arXiv:1907.06136
T. Liu & J.W. Qiu
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JLab Kinematics

[ Differential multiplicity: Epcam = 11GeV, Q? = 3GeV?, 25 = 0.2, and 2, = 0.7

_— a a
Y 10 TIO &
= — =
élo ------- S
“: Se— .u!.:
E ) e S %
$0q 2,238 ) 3
.~ . — x

‘?': 10-7] Zy = 0.7 - ?
< —— <~

0.8 P 0.8} i
=206} " =206F -
Eoaf 204f
o I =R T

02t 0 Tl 02 Tl

88 1.0 1.2 1.4 8.8 1.0 1.2 1.4

A™M - (1079GeVH)

1.5¢0n Lab



Near Threshold — Lower p;

 Lower W? with sufficiently large Q% - less phase space to “shower”:
[!
[ Lower multiplicity!

Leading power TMD
factorization should
not work here!

Color singlet pre-hadron states

e D
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Near Threshold — Lower p;

 Lower W? with sufficiently large Q% - less phase space to “shower”:

Il
/ Lower multiplicity!
QG I
Leading power TMD
a factorization should
not work here!
P
 Threshold and resonance region: Color singlet pre-hadron states

Q2 is still sufficiently large

Localized hard collision
j Single active parton j

Formation of pre-hadron states is not a hard process
1/Q? - inclusive high twist terms should be small — duality Jeﬁ/e?son Lab




Summary

] Lepton-hadron facility is an excellent one for QCD study:

<> Many observables/probes at one facility

<> Probe the partonic structure by either breaking or not breaking the hadron
<> Study the hadronization with controllable probes

J QCD is fully color entangled:

<> QCD Factorization is an approximation with suppressed color entanglement
<> Power “corrections” are important near the threshold

J “Power corrections” is much more important for hadronization:

< 1/P;2-type correction to fragmentation is important near threshold
< When lower W or PT, the 1/P,%-type contribution to hadronization are
much enhanced, or dominate

<> 1/Q2-type high-twist contribution to SIDIS is small if Q is large enough

Thank you! 2

Jefferson Lab



