

3-7 February, 2020 CERN, Geneva Switzerland and hadron production near threshold

Jianwei Qiu Theory Center, Jefferson Lab February 6, 2020

Stan is 80! Really? I do not believe it!

Stan is 80! Really? I do not believe it! He writes more papers, gives more talks, travels more miles, ... than all of us!

Stan is 80! Really? I do not believe it! He writes more papers, gives more talks, travels more miles, ... than all of us! Well, Aram is young, only 70!

Stan is 80! Really? I do not believe it! He writes more papers, gives more talks, travels more miles, ... than all of us! Well, Aram is young, only 70!

ENERGY TECHNOLOGIES

QCD and the Structure of Nucleons and Nuclei

QCD – Color Confinement:

- $\diamond\,$ Do not see any quarks and gluons in isolation
- $\diamond~$ The structure of nucleons and nuclei emergent properties of QCD

QCD and the Structure of Nucleons and Nuclei

QCD – Color Confinement:

- $\diamond\,$ Do not see any quarks and gluons in isolation
- $\diamond~$ The structure of nucleons and nuclei emergent properties of QCD

- QCD Factorization Controllable Approximation
- Explore the structure of nucleons and nuclei by using "controllable", "sharp" and "local" probes, ...
 Jefferson Lab

Cross section with identified hadron is NOT perturbatively calculable!

Cross section with identified hadron is NOT perturbatively calculable!

Cross section with identified hadron is NOT perturbatively calculable!

Structure: in terms of quantum probability distributions, correlations – matrix elements

Cross section with identified hadron is NOT perturbatively calculable!

Structure: in terms of quantum probability distributions, correlations – matrix elements

Need to identify observables with two-momentum scales:

 $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$

 Hard scale: localizes the probe particle nature of quarks/gluons

Soft" scale: could be more sensitive to the hadron structure ~ 1/fm

Hit the hadron "very hard" without breaking it, clean information on the structure!

Lepton-Hadron Deep Inelastic Scattering

- $Q^2 \rightarrow$ Measure of resolution
- $\mathbf{y} \rightarrow \mathbf{M}$ easure of inelasticity
- $\mathbf{X} \rightarrow$ Measure of momentum fraction

of the struck quark in a proton

 $\mathbf{Q}^2 = \mathbf{S} \times \mathbf{y}$

 Many complementary probes at one facility: <u>Inclusive events</u>: e+p/A → e'+X
 Detect only the scattered lepton in the detector (Modern Rutherford experiment – Single hard scale!)
 <u>Semi-Inclusive events</u>: e+p/A → e'+h(p,K,p,jet)+X
 Detect the scattered lepton in coincidence with identified hadrons/jets (Initial hadron is broken – confined motion! – cleaner than h-h collisions)
 <u>Exclusive events</u>: e+p/A → e'+ p'/A'+ h(p,K,p,jet)
 Detect every things including scattered proton/nucleus (or its fragments)

(Initial hadron is NOT broken – tomography!

Lepton-Hadron Deep Inelastic Scattering

Lepton-Hadron Deep Inelastic Scattering

Low P_{hT} – TMD factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f(x, k_\perp) \otimes \mathcal{D}_{f \to h}(z, p_\perp) \otimes \mathcal{S}(k_{s\perp}) + \mathcal{O}\left[\frac{P_{h\perp}}{Q}\right]$$

□ High P_{hT} – Collinear factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q, P_{h\perp}, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{P_{h\perp}}, \frac{1}{Q}\right)$$

$\Box P_{hT} \text{ Integrated - Collinear factorization:} \\ \sigma_{\text{SIDIS}}(Q, x_B, z_h) = \tilde{H}(Q, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{Q}\right)$

Jefferson Lab

Surprise from COMPASS

□ SIDIS production of charge hadron:

Also see Ted Rogers' talk

Data:M. Aghasyan et al. (COMPASS Collaboration), Phys. Rev. D97 (2018) 032006Theory:B. Wang et al. Phys. Rev. D99 (2019) 094029Jefferson Lab

Theoretical Calculations

QCD factorization is an **approximation** – leading power:

$$\frac{d\sigma_{l+P\to l'+P_h+X}}{d^3\mathbf{l}'(2E')\,d^3\mathbf{P}_h/(2E_h)} \approx \sum_{i,j} \int_{x_B}^1 \frac{dx}{x} \int_{z_h}^1 \frac{dz}{z^2} \,\phi_{i/P}(x) \,D_{j\to h}(z) \,\frac{d\hat{\sigma}_{l+i\to l'+j+X}}{d^3\mathbf{l}'(2E')\,d^3\mathbf{p}/(2E_p)}$$

Theoretical Calculations

QCD factorization is an **approximation** – leading power:

$$\frac{d\sigma_{l+P\to l'+P_h+X}}{d^3\mathbf{l}'(2E')\,d^3\mathbf{P}_h/(2E_h)} \approx \sum_{i,j} \int_{x_B}^1 \frac{dx}{x} \int_{z_h}^1 \frac{dz}{z^2} \,\phi_{i/P}(x) \,D_{j\to h}(z) \,\frac{d\hat{\sigma}_{l+i\to l'+j+X}}{d^3\mathbf{l}'(2E')\,d^3\mathbf{p}/(2E_p)}$$

□ Where does the color go?

Theoretical Calculations

QCD factorization is an approximation – leading power:

$$\frac{d\sigma_{l+P\to l'+P_h+X}}{d^3\mathbf{l}'(2E')\,d^3\mathbf{P}_h/(2E_h)} \approx \sum_{i,j} \int_{x_B}^1 \frac{dx}{x} \int_{z_h}^1 \frac{dz}{z^2} \,\phi_{i/P}(x) \,D_{j\to h}(z) \,\frac{d\hat{\sigma}_{l+i\to l'+j+X}}{d^3\mathbf{l}'(2E')\,d^3\mathbf{p}/(2E_p)}$$

□ Where does the color go?

Color neutralization needs:

- \diamond Large enough phase space to shower
- Sufficiently high multiplicity

 \diamond AND: $E_{
m pions} \ll E_h$ for factorization

Near threshold – low multiplicity? Jefferson Lab

Much Enhanced Power "Corrections" – High p_T

 $\mathcal{O}\left(D_f(z)\right)$

Much Enhanced Power "Corrections" – High p_T

Low multiplicity events – edge of phase space:

Large P_T and large $z_h \sim z$

$$\frac{d\sigma_{l+P\to l'+P_h+X}}{d^3\mathbf{l}'\!/(2E')\,d^3\mathbf{P}_h\!/(2E_h)} \approx \sum_{i,j} \int_{x_B}^1 \frac{dx}{x} \int_{z_h}^1 \frac{dz}{z^2} \,\phi_{i/P}(x) \,D_{j\to h}(z) \,\frac{d\hat{\sigma}_{l+i\to l'+j+X}}{d^3\mathbf{l}'\!/(2E')\,d^3\mathbf{p}/(2E_p)}$$

 \diamond Leading power: $\sigma \propto D(z) \propto (1-z)^n \sim (1-z_h)^n$

COMPASS: <z_h> as large as 0.9

Much Enhanced Power "Corrections" – High p_T

Low multiplicity events – edge of phase space:

Large P_T and large $z_h \sim z$

$$\frac{d\sigma_{l+P\to l'+P_h+X}}{d^3\mathbf{l}'\!/(2E')\,d^3\mathbf{P}_h\!/(2E_h)} \approx \sum_{i,j} \int_{x_B}^1 \frac{dx}{x} \int_{z_h}^1 \frac{dz}{z^2} \,\phi_{i/P}(x) \,D_{j\to h}(z) \,\frac{d\hat{\sigma}_{l+i\to l'+j+X}}{d^3\mathbf{l}'\!/(2E')\,d^3\mathbf{p}/(2E_p)}$$

♦ Leading power: $\sigma \propto D(z) \propto (1-z)^n \sim (1-z_h)^n$

 \diamond NL power: $\sigma \propto \frac{1}{P_T^2} \mathcal{D}(z,...) \sim \frac{1}{P_T^2} \delta(1-z)$

COMPASS: <z_h> as large as 0.9

Hadronization – "pre-hadron state" – better chance to form hadron Jefferson Lab

Calculation of the P_T -suppressed Power Correction

QCD factorization:

arXiv:1907.06136 T. Liu & J.W. Qiu

$$\frac{d\sigma_{\gamma^*+A\to h+X}}{d^{3}\mathbf{P}_{h}/(2E_{h})} \approx \sum_{a,f} \int_{x_{B}}^{1} \frac{dx}{x} \int_{z_{h}}^{1} \frac{dz}{z^{2}} \phi_{a/P}(x) D_{f\to h}(z) \frac{d\hat{\sigma}_{\gamma^*+a(l)\to f(p)+X}}{d^{3}\mathbf{p}/(2E_{p})}
+ \sum_{a,[ff'(\kappa)]} \int_{x_{B}}^{1} \frac{dx}{x} \int_{z_{h}}^{1} \frac{dz}{z^{2}} \int_{0}^{1} d\xi d\zeta \phi_{a/P}(x) D_{[ff'(\kappa)]\to h}(z,\xi,\zeta) \frac{d\hat{\sigma}_{\gamma^*+a(l)\to [ff'(\kappa)](p,\xi,\zeta)+X}}{d^{3}\mathbf{p}/(2E_{p})}$$

Calculation of the P_T-suppressed Power Correction

QCD factorization:

arXiv:1907.06136 T. Liu & J.W. Qiu

$$\frac{d\sigma_{\gamma^*+A\to h+X}}{d^{3}\mathbf{P}_{h}/(2E_{h})} \approx \sum_{a,f} \int_{x_{B}}^{1} \frac{dx}{x} \int_{z_{h}}^{1} \frac{dz}{z^{2}} \phi_{a/P}(x) D_{f\to h}(z) \frac{d\hat{\sigma}_{\gamma^*+a(l)\to f(p)+X}}{d^{3}\mathbf{p}/(2E_{p})}
+ \sum_{a,[ff'(\kappa)]} \int_{x_{B}}^{1} \frac{dx}{x} \int_{z_{h}}^{1} \frac{dz}{z^{2}} \int_{0}^{1} d\xi d\zeta \phi_{a/P}(x) D_{[ff'(\kappa)]\to h}(z,\xi,\zeta) \frac{d\hat{\sigma}_{\gamma^*+a(l)\to [ff'(\kappa)](p,\xi,\zeta)+X}}{d^{3}\mathbf{p}/(2E_{p})}$$

Two-parton fragmentation functions:

 $\times \mathcal{CP} \langle 0|\bar{q}'(y_1^-)[\Phi_n(y_1^-)]^{\dagger}[\Phi_n(0)]q(0)|h(P_h)X\rangle$

 $\times \langle h(P_h)X|\bar{q}(y^-)[\Phi_n(y^-)]^{\dagger}[\Phi_n(y^-+y_2^-)]q'(y^-+y_2^-)|0\rangle$

Gauge link:

Fragmentation Functions - Hadronization

Fragmentation Functions - Hadronization

Two-parton Fragmentation Function – Approximation

$$\begin{aligned} \square \text{ Lowest order two-parton fragmentation function:} & \text{arXiv:1907.06136} \\ \square \text{ Lowest order two-parton fragmentation function:} & \text{Liu & J.W. Qiu} \\ D_{[qq'(1a)]}(z,\xi,\zeta,\mu_0) &\approx \int \frac{P_h^+ dy^-}{2\pi} \int \frac{P_h^+ dy_1^-}{2\pi} \int \frac{P_h^+ dy_2^-}{2\pi} e^{i(1-\zeta)\frac{P_h^+}{z}y_1^-} e^{-i\frac{P_h^+}{z}y_2^-} e^{-i(1-\xi)\frac{P_h^+}{z}y_2^-} \\ & \times \frac{1}{4N_c P_h^+} \langle 0|\vec{q}_{c',k}'(y_1^-)(\gamma \cdot n\gamma_5)_{kl}U_{c'd'}(y_1^-, 0)q_{d',l}(0)|h(P_h) \rangle \\ & \times \frac{1}{4N_c P_h^+} \langle h(P_h)|\vec{q}_{a',i}(y^-)(\gamma \cdot n\gamma_5)_{ij}U_{a'b'}(y^-, y^- + y_2^-)q_{b',j}'(y^- + y_2^-)|0 \rangle \\ & \times \frac{1}{16N_c^2} \int \frac{P_h^+ dy^-}{2\pi} \int \frac{P_h^+ dy_1^-}{2\pi} \int \frac{P_h^+ dy_2^-}{2\pi} e^{i(1-\zeta)\frac{P_h^+}{z}y_1^-} e^{-i\frac{P_h^+}{z}y_1^-} e^{-i(1-\xi)\frac{P_h^+}{z}y_2^-} \\ & \text{(1a)} & \times f_h^2 e^{iP_h^+ y^-} \int_0^1 d\zeta' e^{-i(1-\zeta')P_h^+ y_1^-} \phi_h(\zeta',\mu_0) \int_0^1 d\xi' e^{i(1-\xi')P_h^+ y_2^-} \phi_h(\xi',\mu_0) \\ & = \frac{f_h^2}{16N_c^2} z \, \delta(1-z)\phi_h(\zeta,\mu_0)\phi_h(\xi,\mu_0). \end{aligned}$$

Two-parton Fragmentation Function – Approximation

$$\begin{aligned} \square \text{ Lowest order two-parton fragmentation function:} & \text{arXiv:1907.06136} \\ \square \text{ Lowest order two-parton fragmentation function:} & \text{Liu & J.W. Qiu} \\ D_{[qq'(1a)]}(z,\xi,\zeta,\mu_0) &\approx \int \frac{P_h^+ dy^-}{2\pi} \int \frac{P_h^+ dy_1^-}{2\pi} \int \frac{P_h^+ dy_2^-}{2\pi} e^{i(1-\zeta)\frac{P_h^+}{z}y_1^-} e^{-i\frac{P_h^+}{z}y_2^-} e^{-i(1-\xi)\frac{P_h^+}{z}y_2^-} \\ & \times \frac{1}{4N_c P_h^+} \langle 0|\bar{q}_{c',k}'(y_1^-)(\gamma\cdot n\gamma_5)_{kl}U_{c'd'}(y_1^-,0)q_{d',l}(0)|h(P_h)\rangle \\ & \times \frac{1}{4N_c P_h^+} \langle h(P_h)|\bar{q}_{a',i}(y^-)(\gamma\cdot n\gamma_5)_{ij}U_{a'b'}(y^-,y^-+y_2^-)q_{b',j}'(y^-+y_2^-)|0\rangle \\ & \times \frac{1}{4N_c P_h^+} \langle h(P_h)|\bar{q}_{a',i}(y^-)(\gamma\cdot n\gamma_5)_{ij}U_{a'b'}(y^-,y^-+y_2^-)q_{b',j}'(y^-+y_2^-)|0\rangle \\ & \times \frac{1}{4N_c P_h^+} \langle h(P_h)|\bar{q}_{a',i}(y^-)(\gamma\cdot n\gamma_5)_{ij}U_{a'b'}(y^-,y^-+y_2^-)q_{b',j}'(y^-+y_2^-)|0\rangle \\ & \times f_h^2 e^{iP_h^+y^-} \int \frac{P_h^+ dy_1^-}{2\pi} \int \frac{P_h^+ dy_1^-}{2\pi} \int \frac{P_h^+ dy_2^-}{2\pi} e^{i(1-\zeta)\frac{P_h^+}{z}y_1^-} e^{-i\frac{P_h^+}{z}y^-} e^{-i(1-\xi)\frac{P_h^+}{z}y_2^-} \\ & \times f_h^2 e^{iP_h^+y^-} \int \frac{1}{4\zeta'} d\zeta' e^{-i(1-\zeta')P_h^+y_1^-} \phi_h(\zeta',\mu_0) \int_0^1 d\xi' e^{i(1-\xi')P_h^+y_2^-} \phi_h(\xi',\mu_0) \\ & = \frac{f_h^2}{16N_c^2} z \,\delta(1-z)\phi_h(\zeta,\mu_0)\phi_h(\xi,\mu_0). \end{aligned}$$

D Pseudoscalar distribution amplitude: $\phi_h(x,\mu)$

$$\begin{split} & \langle 0 | \bar{q}_{a,i} (y^- + y_1^-) (\gamma \cdot n\gamma_5)_{ij} U_{ab} (y^- + y_1^-, y^-) q_{b,j} (y^-) | h(P_h) \rangle \\ &= i P_h^+ f_h \int_0^1 dx \, e^{-ix P_h^+ y^- - i(1-x) P_h^+ (y^- + y_1^-)} \phi_h(x,\mu) \\ &= i P_h^+ f_h \, e^{-i P_h^+ y^-} \int_0^1 dx \, e^{-i(1-x) P_h^+ y_1^-} \phi_h(x,\mu), \end{split}$$

 $U_{ab}(y_2^-, y_1^-) = [\Phi_n(y_2^-)]_{ac}^{\dagger} [\Phi_n(y_1^-)]_{cb}$

Partonic Hard Part at Next-to-Leading Power

LO Feynman diagrams:

Two possible channels

Partonic Hard Part at Next-to-Leading Power

Partonic Hard Part at Next-to-Leading Power

Numerical Estimate – Lower Limit

JLab Kinematics

Differential multiplicity: $E_{\text{beam}} = 11 \text{ GeV}, Q^2 = 3 \text{ GeV}^2, x_B = 0.2, \text{ and } z_h = 0.7$

Near Threshold – Lower p_T

□ Lower W² with sufficiently large Q² – less phase space to "shower":

Lower multiplicity!

Leading power TMD factorization should not work here!

Color singlet pre-hadron states

Near Threshold – Lower p_T

□ Lower W² with sufficiently large Q² – less phase space to "shower":

Formation of pre-hadron states is not a hard process $1/Q^2$ – inclusive high twist terms should be small – duality

Lepton-hadron facility is an excellent one for QCD study:

- Any observables/probes at one facility
- $\diamond\,$ Probe the partonic structure by either breaking or not breaking the hadron
- ♦ Study the hadronization with controllable probes

QCD is fully color entangled:

- $\diamond\,$ QCD Factorization is an approximation with suppressed color entanglement
- Power "corrections" are important near the threshold

G "Power corrections" is much more important for hadronization:

- $1/P_{T}^{2}$ -type correction to fragmentation is important near threshold
- When lower W or PT, the 1/P_T²-type contribution to hadronization are much enhanced, or dominate
- ~~~~ 1/Q²-type high-twist contribution to SIDIS is small if Q is large enough

Thank you!

