

The 2021 CFNS Summer School on the Physics of the Electron-Ion Collider

August 9-20, 2021

Introduction to QCD

- Lec. 1: Fundamentals of QCD
- Lec. 2: Matching observed hadrons to quarks and gluons
- Lec. 3: QCD for cross sections with identified hadrons
- Lec. 4: QCD for cross sections with polarized beam(s)

Jianwei Qiu Theory Center Jefferson Lab

Office of Science

Inclusive lepton-hadron DIS – one hadron

□ Scattering amplitude:

$$M(\lambda, \lambda'; \sigma, q) = \overline{u}_{\lambda'}(k') \left[-ie\gamma_{\mu} \right] u_{\lambda}(k)$$

$$* \left(\frac{i}{q^{2}} \right) \left(-g^{\mu\mu'} \right)$$

$$* \langle X | eJ_{\mu'}^{em}(0) | p, \sigma \rangle$$

$$\overline{p, \sigma}$$

Cross section:

$$d\sigma^{\text{DIS}} = \frac{1}{2s} \left(\frac{1}{2}\right)^{2} \sum_{X} \sum_{\lambda,\lambda',\sigma} \left| M(\lambda,\lambda';\sigma,q) \right|^{2} \left[\prod_{i=1}^{X} \frac{d^{3}l_{i}}{(2\pi)^{3} 2E_{i}} \right] \frac{d^{3}k'}{(2\pi)^{3} 2E'} (2\pi)^{4} \delta^{4} \left(\sum_{i=1}^{X} l_{i} + k' - p - k \right) \right]$$
$$\sum_{i=1}^{N} \left[E' \frac{d\sigma^{\text{DIS}}}{d^{3}k'} = \frac{1}{2s} \left(\frac{1}{Q^{2}} \right)^{2} L^{\mu\nu}(k,k') W_{\mu\nu}(q,p) \right]$$

Leptonic tensor:

– known from QED

$$L^{\mu\nu}(k,k') = \frac{e^2}{2\pi^2} \left(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} - k \cdot k'g^{\mu\nu} \right)$$

Jefferson Lab

Hadronic tensor:

$$W_{\mu\nu}(q,p,\mathbf{S}) = \frac{1}{4\pi} \int d^4 z \, \mathrm{e}^{iq \cdot z} \left\langle p, \mathbf{S} \left| J^{\dagger}_{\mu}(z) J_{\nu}(0) \right| p, \mathbf{S} \right\rangle$$

Symmetries:

 $\Rightarrow \text{ Parity invariance (EM current)} \qquad \longrightarrow \qquad W_{\mu\nu} = W_{\nu\mu} \text{ sysmetric for spin avg.} \\\Rightarrow \text{ Time-reversal invariance} \qquad \longrightarrow \qquad W_{\mu\nu} = W_{\mu\nu}^* \text{ real} \\\Rightarrow \text{ Current conservation} \qquad \longrightarrow \qquad W_{\mu\nu} = W_{\mu\nu}^* \text{ real} \\\Rightarrow q^{\mu}W_{\mu\nu} = q^{\nu}W_{\mu\nu} = 0 \\W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1(x_B,Q^2) + \frac{1}{p \cdot q}\left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^2}\right)\left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^2}\right)F_2(x_B,Q^2) \\+ iM_p \varepsilon^{\mu\nu\rho\sigma}q_{\rho}\left[\frac{S_{\sigma}}{p \cdot q}g_1(x_B,Q^2) + \frac{(p \cdot q)S_{\sigma} - (S \cdot q)p_{\sigma}}{(p \cdot q)^2}g_2(x_B,Q^2)\right] \qquad Q^2 = -q^2 \\x_B = \frac{Q^2}{2p \cdot q}$

Structure functions – infrared sensitive:

 $F_1(x_B,Q^2), F_2(x_B,Q^2), g_1(x_B,Q^2), g_2(x_B,Q^2)$

No QCD parton dynamics used in above derivation!

Long-lived parton states

Feynman diagram representation of the hadronic tensor:

Perturbative factorization:

Light-cone coordinate:

1

$$k^{\mu} = xp^{\mu} + \frac{k^{2} + k_{T}^{2}}{2xp \cdot n} n^{\mu} + k_{T}^{\mu}$$

$$v^{\mu} = (v^{+}, v^{-}, v^{\perp}), v^{\pm} = \frac{1}{\sqrt{2}} (v^{0} \pm v^{3})$$

$$\int \frac{dx}{x} d^{2}k_{T} \operatorname{H}(Q, k^{2} = 0) \int dk^{2} \left(\frac{1}{k^{2} + i\varepsilon}\right) \left(\frac{1}{k^{2} - i\varepsilon}\right) \operatorname{T}(k, \frac{1}{r_{0}}) + \mathcal{O}\left(\frac{\langle k^{2} \rangle}{Q^{2}}\right)$$
Short-distance
Nonperturbative matrix element
Lab

4

Collinear factorization – further approximation

5

v **Collinear approximation, if** $Q \sim xp \cdot n \gg k_T, \sqrt{k^2}$ -Lowest order: $\delta((k+q)^2) = \frac{1}{2P \cdot q} \delta(x-\xi) = \frac{1}{2P \cdot q} \delta\left(x-\frac{k^+}{P^+}\right)$ $W^{\mu\nu}_{\gamma^* p} = \sum_{\ell} \int \frac{d^4k}{(2\pi)^4} \sum_{ii} \left(\gamma^{\mu} \gamma \cdot (k+q) \gamma^{\nu} \right)_{ij} (2\pi) \delta((k+q)^2) \int d^4y e^{iky} \langle p | \overline{\psi}_j(0) \psi_i(y) | p \rangle + \dots$ $\equiv \sum_{k=1}^{\infty} \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr} \left[\mathcal{H}^{\mu\nu}_{\gamma^* f}(Q,k) \mathcal{F}_{f/p}(k,p) \right] + \dots$ $\approx \sum \int dx \, \operatorname{Tr} \left[\mathcal{H}^{\mu\nu}_{\gamma^* f}(Q, k \approx xp) \int \frac{d^4k}{(2\pi)^4} \delta(x - \frac{k \cdot n}{p \cdot n}) \mathcal{F}_{f/p}(k, p) \right] + \mathcal{O}(\frac{\langle k^2 \rangle}{Q^2}, \frac{\langle k_T^2 \rangle}{Q^2}) + \dots$ $\approx \sum_{k} \int \frac{dx}{x} \operatorname{Tr} \left[\mathcal{H}^{\mu\nu}_{\gamma^* f}(Q, xp) \frac{1}{2} \gamma \cdot (xp) \right] \int \frac{d^4k}{(2\pi)^4} \delta(x - \frac{k \cdot n}{p \cdot n}) \operatorname{Tr} \left[\frac{\gamma \cdot n}{2p \cdot n} \mathcal{F}_{f/p}(k, p) \right] + \dots$ $\approx \sum_{n} \int \frac{dx}{x} \, \widehat{W}^{\mu\nu}_{\gamma^* f}(x, Q^2/\mu^2) \, \phi_{f/p}(x, \mu^2) + \dots$ $\approx \left(\begin{array}{c} \sum_{x_{n}}^{q} & e^{-q} \\ \sum_{x_{n}}^{q} & e^{-q} \\ \sum_{k=x_{n}}^{q} & e^{-q} \\ \sum_{x_{n}}^{q} & e^{-q} \\ \sum_{k=x_{n}}^{q} & e^{-q} \\ \sum_{k=x_{n}}^{q}$ $\frac{1}{2}\gamma \cdot (xp) \quad \widehat{W}^{\mu\nu}_{\gamma^*f}(x, Q^2/\mu^2) = \operatorname{Tr}\left[\mathcal{H}^{\mu\nu}_{\gamma^*f}(Q, xp)\frac{1}{2}\gamma \cdot (xp)\right] \text{ Jefferson Lab}$

Parton distribution functions (PDFs)

PDFs as matrix elements of two parton fields:

- combine the amplitude & its complex-conjugate

$$\phi_{q/h}(x,\mu^2) = \int \frac{p^+ dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \bar{\psi}_q(0) \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle$$

|h(p)
angle can be a hadron, or a nucleus, or a parton state!

But, it is NOT gauge invariant!

$$\psi(x) \to e^{i\alpha_a(x)t_a}\psi(x) \quad \bar{\psi}(x) \to \bar{\psi}(x)e^{-i\alpha_a(x)t_a}$$

– need a gauge link:

$$\phi_{q/h}(x,\mu^2) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \bar{\psi}_q(0) \left[\mathcal{P}e^{-ig\int_0^{y^-} d\eta^- A^+(\eta^-)} \right] \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle \mathcal{Z}_{\mathcal{O}}(\mu^2)$$

- corresponding diagram in momentum space:

Universality – process independence – predictive power

Gauge link – 1st order in coupling "g"

Longitudinal gluon:

Left diagram:

$$\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ (y_1^- - y^-)} n \cdot A^a(y_1^-) \right] \mathcal{M}(-igt^a) \frac{\gamma \cdot p}{p^+} \frac{i((x - x_1 - x_B)\gamma \cdot p + (Q^2/2x_B p^+)\gamma \cdot n)}{(x - x_1 - x_B)Q^2/x_B + i\epsilon}$$
$$= g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{-x_1 + i\epsilon} e^{ix_1 p^+ (y_1^- - y^-)} \right] \mathcal{M} = -ig \int_{y^-}^{\infty} dy_1^- n \cdot A(y_1^-) \mathcal{M}$$

Right diagram:

$$\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ y_1^-} n \cdot A^a(y_1^-) \right] \frac{-i((x + x_1 - x_B)\gamma \cdot p + (Q^2/2x_B p^+)\gamma \cdot n)}{(x + x_1 - x_B)Q^2/x_B - i\epsilon} (+igt^a) \frac{\gamma \cdot p}{p^+} \mathcal{M}$$
$$= g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{x_1 - i\epsilon} e^{ix_1 p^+ y_1^-} \right] \mathcal{M} = ig \int_0^\infty dy_1^- n \cdot A(y_1^-) \mathcal{M}$$

□ Total contribution:

 $-ig \left[\int_0^\infty - \int_{y^-}^\infty \right] dy_1^- n \cdot A(y_1^-) \mathcal{M}_{LO} \qquad \begin{array}{l} \text{O(g)-term of} \\ \text{the gauge link!} \end{array} \right] \text{Jefferson Lab}$

7

QCD high order corrections

□ NLO partonic diagram to structure functions:

□ Factorization, separation of short- from long-distance:

QCD leading power factorization

Logarithmic contributions into parton distributions:

To separate the collinear from non-collinear contribution

Recall: renormalization scale to separate local from non-local contribution

Picture of factorization for DIS

Unitarity – summing over all hard jets:

Interaction between the "past" and "now" are suppressed!

How to calculate the perturbative parts?

Use DIS structure function F_2 as an example:

$$F_{2h}(x_B, Q^2) = \sum_{q,f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/h}\left(x, \mu^2\right) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$

$$\Rightarrow \text{ Apply the factorized formula to parton states: } h \rightarrow q$$
Feynman diagrams
$$\longrightarrow F_{2q}(x_B, Q^2) = \sum_{q,f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/q}\left(x, \mu^2\right) \longleftarrow \text{Feynman diagrams}$$

 \diamond Express both SFs and PDFs in terms of powers of α_s :

$$\begin{array}{ll} \mathbf{0}^{\text{th}} \text{ order:} & F_{2q}^{(0)}(x_{B},Q^{2}) = C_{q}^{(0)}(x_{B}/x,Q^{2}/\mu^{2}) \otimes \varphi_{q/q}^{(0)}\left(x,\mu^{2}\right) \\ & & & \hline C_{q}^{(0)}(x) = F_{2q}^{(0)}(x) \\ \mathbf{1}^{\text{th}} \text{ order:} & F_{2q}^{(1)}(x_{B},Q^{2}) = C_{q}^{(1)}(x_{B}/x,Q^{2}/\mu^{2}) \otimes \varphi_{q/q}^{(0)}\left(x,\mu^{2}\right) \\ & & + C_{q}^{(0)}(x_{B}/x,Q^{2}/\mu^{2}) \otimes \varphi_{q/q}^{(1)}\left(x,\mu^{2}\right) \\ & & & \hline C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = F_{2q}^{(1)}(x,Q^{2}) - F_{2q}^{(0)}(x,Q^{2}) \otimes \varphi_{q/q}^{(1)}\left(x,\mu^{2}\right) \\ & & & & \end{bmatrix} \\ & & & & & \\ \end{array}$$

Change the state without changing the operator:

$$\begin{split} \phi_{q/h}(x,\mu^2) &= \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \overline{\psi}_q(0) \frac{\gamma^+}{2} U_{[0,y^-]}^n \psi_2(y^-) | h(p) \rangle \\ | h(p) \rangle \Rightarrow | \text{parton}(p) \rangle \qquad \qquad \phi_{f/q}(x,\mu^2) - \text{given by Feynman diagrams} \end{split}$$

Lowest order quark distribution:

 \diamond From the operator definition:

$$\phi_{q'/q}^{(0)}(x) = \delta_{qq'} \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left[\left(\frac{1}{2}\gamma \cdot p\right)\left(\frac{\gamma^+}{2p^+}\right)\right] \delta\left(x - \frac{k^+}{p^+}\right) (2\pi)^4 \delta^4(p-k)$$
$$= \delta_{qq'} \delta(1-x)$$

 \Box Leading order in α_s quark distribution:

 \Rightarrow Expand to $(g_s)^2$ – logarithmic divergent:

$$\phi_{q/q}^{(1)}(x) = C_F \frac{\alpha_s}{2\pi} \int \frac{dk_T^2}{k_T^2} \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \,\delta(1-x) \right] + \text{UVCT}$$
UV and CO divergence

 $p \qquad f p$

Projection operators for SFs:

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\right)F_{1}(x,Q^{2}) + \frac{1}{p \cdot q}\left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^{2}}\right)\left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^{2}}\right)F_{2}(x,Q^{2})$$

$$F_{1}(x,Q^{2}) = \frac{1}{2}\left(-g^{\mu\nu} + \frac{4x^{2}}{Q^{2}}p^{\mu}p^{\nu}\right)W_{\mu\nu}(x,Q^{2})$$

$$F_{2}(x,Q^{2}) = x\left(-g^{\mu\nu} + \frac{12x^{2}}{Q^{2}}p^{\mu}p^{\nu}\right)W_{\mu\nu}(x,Q^{2})$$

$$F_{2q}^{(0)}(x) = xg^{\mu\nu}W_{\mu\nu,q}^{(0)} = xg^{\mu\nu}\left[\frac{1}{4\pi}\int_{xp}^{q}\int_{xp}^{q}\int_{xp}^{q}\right]$$

$$= \left(xg^{\mu\nu}\right)\frac{e_{q}^{2}}{4\pi}\operatorname{Tr}\left[\frac{1}{2}\gamma \cdot p\gamma_{\mu}\gamma \cdot (p+q)\gamma_{\nu}\right]2\pi\delta\left((p+q)^{2}\right)$$

$$= e_{q}^{2}x\delta(1-x)$$

$$\boxed{C_{q}^{(0)}(x) = e_{q}^{2}x\delta(1-x)}$$

NLO coefficient function – complete example

$$C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)$$

Projection operators in n-dimension:

$$g_{\mu\nu}g^{\mu\nu} = n \equiv 4 - 2\varepsilon$$

$$\left| \left(1 - \varepsilon \right) F_2 = x \left(-g^{\mu\nu} + (3 - 2\varepsilon) \frac{4x^2}{Q^2} p^{\mu} p^{\nu} \right) W_{\mu\nu} \right|$$

Feynman diagrams:

Calculation:

 $-g^{\mu\nu}W^{(1)}_{\mu\nu,q}$ and $p^{\mu}p^{\nu}W^{(1)}_{\mu\nu,q}$

Lowest order in n-dimension:

$$-g^{\mu\nu}W^{(0)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)$$

NLO virtual contribution:

$$-g^{\mu\nu}W^{(1)\nu}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)$$

$$*\left(-\frac{\alpha_s}{\pi}\right)C_F\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)\Gamma^2(1-\varepsilon)}{\Gamma(1-2\varepsilon)}\left[\frac{1}{\varepsilon^2} + \frac{3}{2}\frac{1}{\varepsilon} + 4\right]$$

□ NLO real contribution:

$$-g^{\mu\nu}W^{(1)R}_{\mu\nu,q} = e_q^2(1-\varepsilon)C_F\left(-\frac{\alpha_s}{2\pi}\right)\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)} \\ *\left\{-\frac{1-\varepsilon}{\varepsilon}\left[1-x+\left(\frac{2x}{1-x}\right)\left(\frac{1}{1-2\varepsilon}\right)\right]+\frac{1-\varepsilon}{2(1-2\varepsilon)(1-x)}+\frac{2\varepsilon}{1-2\varepsilon}\right\}$$
Jefferson Lab

□ The "+" distribution:

$$\left(\frac{1}{1-x}\right)^{1+\varepsilon} = -\frac{1}{\varepsilon}\delta(1-x) + \frac{1}{(1-x)_{+}} + \varepsilon\left(\frac{\ell n(1-x)}{1-x}\right)_{+} + O(\varepsilon^{2})$$
$$\int_{z}^{1} dx \frac{f(x)}{(1-x)_{+}} = \int_{z}^{1} dx \frac{f(x) - f(1)}{1-x} + \ell n(1-z)f(1)$$

One loop contribution to the trace of W_{$\mu\nu$}:

$$-g^{\mu\nu}W^{(1)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\left(\frac{\alpha_s}{2\pi}\right)\left\{-\frac{1}{\varepsilon}P_{qq}(x) + P_{qq}(x)\ell n\left(\frac{Q^2}{\mu^2(4\pi e^{-\gamma_E})}\right) + C_F\left[\left(1+x^2\right)\left(\frac{\ell n(1-x)}{1-x}\right)_+ -\frac{3}{2}\left(\frac{1}{1-x}\right)_+ -\frac{1+x^2}{1-x}\ell n(x) + 3-x-\left(\frac{9}{2}+\frac{\pi^2}{3}\right)\delta(1-x)\right]\right\}$$

Splitting function:

$$P_{qq}(x) = C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right]$$

One loop contribution to p^{\mu}p^{\nu} W_{\mu\nu}:

$$p^{\mu}p^{\nu}W^{(1)\nu}_{\mu\nu,q} = 0 \qquad p^{\mu}p^{\nu}W^{(1)R}_{\mu\nu,q} = e_q^2 C_F \frac{\alpha_s}{2\pi} \frac{Q^2}{4x}$$

One loop contribution to F_2 of a quark:

$$F_{2q}^{(1)}(x,Q^{2}) = e_{q}^{2} x \frac{\alpha_{s}}{2\pi} \left\{ \left(-\frac{1}{\varepsilon} \right)_{CO} P_{qq}(x) \left(1 + \varepsilon \ell n (4\pi e^{-\gamma_{E}}) \right) + P_{qq}(x) \ell n \left(\frac{Q^{2}}{\mu^{2}} \right) + C_{F} \left[(1 + x^{2}) \left(\frac{\ell n (1 - x)}{1 - x} \right)_{+} - \frac{3}{2} \left(\frac{1}{1 - x} \right)_{+} - \frac{1 + x^{2}}{1 - x} \ell n(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^{2}}{3} \right) \delta(1 - x) \right] \right\}$$

$$\Rightarrow \quad \infty \quad \text{as} \quad \varepsilon \to 0$$

One loop contribution to quark PDF of a quark:

$$\varphi_{q/q}^{(1)}(x,\mu^2) = \left(\frac{\alpha_s}{2\pi}\right) P_{qq}(x) \left\{ \left(\frac{1}{\varepsilon}\right)_{\rm UV} + \left(-\frac{1}{\varepsilon}\right)_{\rm CO} \right\} + \rm UV-\rm CT$$

- in the dimensional regularization

Different UV-CT = different factorization scheme!

Common UV-CT terms:

$$\Rightarrow \text{ MS scheme:} \quad \text{UV-CT}\Big|_{\text{MS}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}}$$

$$\Rightarrow \overline{\text{MS scheme:}} \quad \text{UV-CT}\Big|_{\overline{\text{MS}}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}} \left(1 + \varepsilon \ell n (4\pi e^{-\gamma_E})\right)$$

 \Rightarrow DIS scheme: choose a UV-CT, such that $C_q^{(1)}(x,Q^2/\mu^2)|_{\text{DIS}} = 0$

□ One loop coefficient function:

$$\begin{aligned} C_q^{(1)}(x,Q^2/\mu^2) &= F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}\left(x,\mu^2\right) \\ C_q^{(1)}(x,Q^2/\mu^2) &= e_q^2 x \frac{\alpha_s}{2\pi} \left\{ P_{qq}(x) \ell n \left(\frac{Q^2}{\mu_{\overline{MS}}^2} \right) \\ &+ C_F \left[(1+x^2) \left(\frac{\ell n (1-x)}{1-x} \right)_+ - \frac{3}{2} \left(\frac{1}{1-x} \right)_+ - \frac{1+x^2}{1-x} \ell n(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^2}{3} \right) \delta(1-x) \right] \end{aligned}$$

Renormalization group improvement

D Physical cross sections should not depend on the factorization scale $\mu_F^2 \frac{d}{d\mu_F^2} F_2(x_B, Q^2) = 0$

$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, Q^2/\mu_F^2, \alpha_s) \phi_f(x, \mu_F^2)$$

Evolution (differential-integral) equation for PDFs

$$\sum_{f} \left[\mu_F^2 \frac{d}{d\mu_F^2} C_f \left(\frac{x_B}{x}, \frac{Q^2}{\mu_F^2}, \alpha_s \right) \right] \otimes \varphi_f \left(x, \mu_F^2 \right) + \sum_{f} C_f \left(\frac{x_B}{x}, \frac{Q^2}{\mu_F^2}, \alpha_s \right) \otimes \mu_F^2 \frac{d}{d\mu_F^2} \varphi_f \left(x, \mu_F^2 \right) = 0$$

PDFs and coefficient functions share the same logarithms

PDFs: Coefficient functions:

$$\log(\mu_F^2/\mu_0^2)$$
 or $\log(\mu_F^2/\Lambda_{
m QCD}^2)$
 $\log(Q^2/\mu_F^2)$ or $\log(Q^2/\mu^2)$

DGLAP evolution equation:

$$\mu_F^2 \frac{\partial}{\partial \mu_F^2} \varphi_i(x, \mu_F^2) = \sum_j P_{i/j}\left(\frac{x}{x'}, \alpha_s\right) \otimes \varphi_j(x', \mu_F^2)$$

Calculation of evolution kernels

Evolution kernels are process independent

- $\diamond~$ Parton distribution functions are universal
- Could be derived in many different ways

Extract from calculating parton PDFs' scale dependence

♦ Same is true for gluon evolution, and mixing flavor terms

One can also extract the kernels from the CO divergence of partonic cross sections

From one hadron to two hadrons

Drell-Yan mechanism:

S.D. Drell and T.-M. Yan Phys. Rev. Lett. 25, 316 (1970)

 $A(P_A) + B(P_B) \rightarrow \gamma^*(q) [\rightarrow l\bar{l}(q)] + X$ with $q^2 \equiv Q^2 \gg \Lambda_{\rm QCD}^2 \sim 1/{\rm fm}^2$

Lepton pair – from decay of a virtual photon, or in general, a massive boson, e.g., W, Z, H⁰, ... (called Drell-Yan like processes)

Original Drell-Yan formula:

22

Drell-Yan process in QCD – factorization

Beyond the lowest order:

Collins, Soper and Sterman, Review in QCD, edited by AH Mueller 1989

- ♦ Soft-gluon interaction takes place all the time
- Long-range gluon interaction before the hard collision

Break the Universality of PDFs
 Loss the predictive power

Factorization – power suppression of soft gluon interaction:

Drell-Yan process in QCD – factorization

Factorization – approximation:

Collins, Soper, Sterman, 1988

 \diamond Suppression of quantum interference between short-distance (1/Q) and long-distance (fm ~ $1/\Lambda_{ocd}$) physics

- \diamond Maintain the universality of PDFs: Long-range soft gluon interaction has to be power suppressed
- \diamond Infrared safe of partonic parts:

24

Cancelation of IR behavior Absorb all CO divergences into PDFs

$$\int d^4p_a\, \frac{1}{p_a^2+i\varepsilon}\, \frac{1}{p_a^2-i\varepsilon} \to \infty$$

Perturbatively pinched at

 $p_{a}^{2} = 0$

Active parton is effectively onshell for the hard collision

on-shell: p_a^2 , $p_b^2 \ll Q^2$; collinear: p_{aT}^2 , $p_{bT}^2 \ll Q^2$; higher-power: $p_a^- \ll q^-$; and $p_b^+ \ll q^+$ Jefferson Lab

lacksquare TMD factorization ($q_\perp \ll Q$):

 $\frac{d\sigma_{AB}}{d^4q} = \sigma_0 \int d^2 k_{a\perp} d^2 k_{b\perp} d^2 k_{s\perp} \delta^2 (q_\perp - k_{a\perp} - k_{b\perp} - k_{s\perp}) \mathcal{F}_{a/A}(x_A, k_{a\perp}) \mathcal{F}_{b/B}(x_B, k_{b\perp}) \mathcal{S}(k_{s\perp})$ $+ \mathcal{O}(q_\perp/Q) \qquad x_A = \frac{Q}{\sqrt{s}} e^y \qquad x_B = \frac{Q}{\sqrt{s}} e^{-y}$

The soft factor, $\ {\cal S} \$, is universal, could be absorbed into the definition of TMD parton distribution

lacksquare Collinear factorization ($q_\perp \sim Q$):

 $\frac{d\sigma_{AB}}{d^4q} = \int dx_a \, f_{a/A}(x_a,\mu) \int dx_b \, f_{b/B}(x_b,\mu) \, \frac{d\hat{\sigma}_{ab}}{d^4q}(x_a,x_b,\alpha_s(\mu),\mu) + \mathcal{O}(1/Q)$

Spin dependence:

The factorization arguments are independent of the spin states of the colliding hadrons

same formula with polarized PDFs for γ*,W/Z, H⁰...

Factorization for more than two hadrons

Probes for 3D hadron structure

❑ Single scale hard probe is too "localized":

- $\circ~$ It pins down the particle nature of quarks and gluons
- \circ But, not very sensitive to the detailed structure of hadron ~ fm
- Transverse confined motion: $k_{\tau} \sim 1/\text{fm} \ll Q$
- Transverse spatial position: $b_{\tau} \sim \text{fm} >> 1/Q$

□ Need new type of "Hard Probes" – Physical observables with TWO Scales:

$$Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$$

- Hard scale: Q_1 To localize the probe particle nature of quarks/gluons
- "Soft" scale: Q_2 could be more sensitive to the hadron structure ~ 1/fm

Hit the hadron "very hard" without breaking it, clean information on the structure!

Semi-inclusive DIS (SIDIS)

Process:

$$e(k) + N(p) \longrightarrow e'(k') + h(P_h) + X$$

□ Natural event structure:

In the photon-hadron frame: $P_{h_T} \approx 0$

Semi-Inclusive DIS is a natural observable with TWO very different scales $Q \gg P_{h_T} \gtrsim \Lambda_{
m QCD}$ Localized probe sensitive to parton's transverse motion

Collinear QCD factorization holds if P_{hT} integrated:

Semi-inclusive DIS (SIDIS)

Perturbative definition – in terms of TMD factorization:

Transverse momentum dependent PDFs (TMDs)

Quark TMDs with polarization:

 $P_{h\perp}$

Hadron plant

 P_h

Quark Polarization

Semi-Inclusive DIS (SIDIS):

30

$$A_{UT} = \frac{1}{P} \frac{\sigma_{lN(\uparrow)} - \sigma_{lN(\downarrow)}}{\sigma_{lN(\uparrow)} + \sigma_{lN(\downarrow)}}$$

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

 $e(l) + N(P, \uparrow) \rightarrow e(l') + h(P_h) + X$ Photon-hadron frame Two planes Leptonic plane Hadronic plane Jefferson Lab

What can we learn from TMDs?

□ Intrinsic & confined parton motion:

- ✤ Fundamental information sensitive to how partons are bound together
- Responsible for dynamical contribution to emergent hadron properties, such as spin, mass, ..

Quantum correlation between hadron spin and parton motion:

Quark

Polarization

Exclusive lepton-hadron – Spatial imaging

Elastic e-p scattering – Electric charge distribution:

No color nucleon elastic form factor!

No proton color charge radius!

Spatial quark/gluon density distributions – imaging:

Spatial imaging of nucleon

Observables with identified hadrons – Phenomenology

Need QCD global analyses of all data on factorizable cross sections!

Drell-Yan Factorization

Drell-Yan process in QCD – factorization

Factorization – approximation:

Collins, Soper, Sterman, 1988

 \diamond Suppression of quantum interference between short-distance (1/Q) and long-distance (fm ~ $1/\Lambda_{ocd}$) physics

- \diamond Maintain the universality of PDFs: Long-range soft gluon interaction has to be power suppressed
- \diamond Infrared safe of partonic parts:

36

Cancelation of IR behavior Absorb all CO divergences into PDFs

$$\int d^4p_a\, \frac{1}{p_a^2+i\varepsilon}\, \frac{1}{p_a^2-i\varepsilon} \to \infty$$

Perturbatively pinched at

 $p_{a}^{2} = 0$

Active parton is effectively onshell for the hard collision

on-shell: p_a^2 , $p_b^2 \ll Q^2$; collinear: p_{aT}^2 , $p_{bT}^2 \ll Q^2$; higher-power: $p_a^- \ll q^-$; and $p_b^+ \ll q^+$ Jefferson Lab

Drell-Yan process in QCD – factorization

Leading singular integration regions (pinch surface):

Collinear gluons:

- Collinear gluons have the polarization vector: $\epsilon^{\mu} \sim k^{\mu}$ The sum of the effect can be
 - represented by the eikonal lines,

which are needed to make the PDFs gauge invariant!

Hard: all lines off-shell by Q

Collinear:

- $\diamond~$ lines collinear to A and B
- One "physical parton" per hadron

Soft: all components are soft

Trouble with soft gluons:

 $(xp+k)^2 + i\epsilon \propto k^- + i\epsilon$ $((1-x)p-k)^2 + i\epsilon \propto k^- - i\epsilon$

- Soft gluon exchanged between a spectator quark of hadron B and the active quark of hadron A could rotate the quark's color and keep it from annihilating with the antiquark of hadron B
- ◇ The soft gluon approximations (with the eikonal lines) need k^{\pm} not too small. But, k^{\pm} could be trapped in "too small" region due to the pinch from spectator interaction: $k^{\pm} \sim M^2/Q \ll k_{\perp} \sim M$ Need to show that soft-gluon interactions are power suppressed Jefferson Lab

Drell-Yan process in QCD – factorization

□ Most difficult part of factorization:

- ♦ Sum over all final states to remove all poles in one-half plane
 - no more pinch poles
- \diamond Deform the k^{\pm} integration out of the trapped soft region
- ♦ Eikonal approximation → soft gluons to eikonal lines
 - gauge links
- ♦ Collinear factorization: Unitarity → soft factor = 1

All identified leading integration regions are factorizable!

