

A new approach to inclusive lepton-hadron scattering with both QED & QCD factorization

- Lepton-hadron scattering, QED and QCD radiation
- Radiative correction vs. Radiative contribution
- Factorization and approximation
- Impact on Semi-Inclusive DIS
- Summary and outlook

Jian-Wei Qiu Jefferson Lab, Theory Center

In collaboration with: Tianbo Liu, Wally Melnitchouk, Nobuo Sato

High-Energy Lepton-Hadron Scattering

□ The new generation of "Rutherford" experiments for probing hadron structure:

- \diamond A controlled "probe" virtual photon
- $\diamond\,$ Can either break or not break the hadron

High-energy lepton-hadron facilities have been built, or to be built, at SLAC, CERN, FNAL, DESY, JLab, BNL, ...

♦ <u>Inclusive events</u>: $e+p/A \rightarrow e'+X$

Detect only the scattered lepton in the detector (Modern Rutherford experiment!)

♦ <u>Semi-Inclusive events</u>: $e+p/A \rightarrow e'+h(p,K,p,jet)+X$

Detect the scattered lepton in coincidence with identified hadrons/jets

(Initial hadron is broken – confined motion! – cleaner than h-h collisions)

♦ **Exclusive events:** $e+p/A \rightarrow e'+p'/A'+h(p,K,p,jet)$

Detect every things including scattered proton/nucleus (or its fragments) (Initial hadron is NOT broken – tomography! – almost impossible for h-h collisions)

Approximation of one-photon exchange:

 $Q^{2} = - (k-k')^{2}$ y = P.(k-k')/P.k x_B = Q²/2P.(k-k')

 $Q^2 = S x_B y$

- \rightarrow Measure of the resolution
- \rightarrow Measure of inelasticity
- /2P.(k-k') → Measure of momentum fraction of the struck quark in a proton

$$E'\frac{d\sigma}{d^{3}k'} = \frac{2\alpha_{\rm EM}^{2}}{s}\frac{1}{Q^{4}}L^{\mu\nu}(k,k;q)W_{\mu\nu}(q,P)$$

$$L^{\mu\nu}(k,k;q) = 2(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} - k \cdot k'g^{\mu\nu}) + \text{spin...}$$

Deep inelastic scattering (DIS) structure functions:

A very successful story of QCD, QCD Factorization, and QCD evolution! **Extraction of Parton Distribution Functions (PDFs) – 1D hadron structure**

1

BCDMS

T NMC

3

Jet,
$$\pi$$
, J/ ψ , ...
 $f(x, k_T, Q)$ - TMDs
Parton's confined motion, ...

4

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right.\\ &+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\right.\\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right]\\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right]\\ &+|S_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right.\\ &+\varepsilon\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right]\\ &+|S_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right.\\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\end{aligned}$$

Quark TMDs with polarization:

Polarized SIDIS:

In photon-hadron frame:

 $\begin{aligned} A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$

Angular modulation provides the best way to separate TMDs Jefferson Lab

5

Collision Induced QED Radiation

Uncertainty in determining the photon-hadron frame:

Under the "one-photon" approximation:

$$E'\frac{d\sigma}{d^{3}k'} = \frac{2\alpha_{\rm EM}^{2}}{s}\frac{1}{Q^{4}}L^{\mu\nu}(k,k;q)W_{\mu\nu}(q,P) \qquad \blacksquare \qquad E'\frac{d\sigma}{d^{3}k'} = \frac{2\alpha_{\rm EM}^{2}}{s}\int d^{4}\hat{q}\left(\frac{1}{\hat{q}^{2}}\right)^{2}\tilde{L}^{\mu\nu}(k,k;\hat{q})W_{\mu\nu}(\hat{q},P)$$

$$\begin{split} \widetilde{L}^{\mu\nu}(k,k;\hat{q}) &= \sum_{X_L} \int \prod_{i\in X_L} \frac{d^3k_i}{(2\pi)^3 2E_i} \,\delta^{(4)} \Big(k-k'-\hat{q} - \sum_{i\in X_L} k_i\Big) \,\langle k|j^{\mu}(0)|k'X_L \rangle \langle k'X_L|j^{\nu}(0)|k \rangle \\ &= -\widetilde{g}^{\mu\nu}(\hat{q}) \,L_1 + \frac{\widetilde{k}^{\mu}\widetilde{k}^{\nu}}{k\cdot k'} L_2 + \frac{\widetilde{k'}^{\mu}\widetilde{k'}^{\nu}}{k\cdot k'} L_3 + \frac{\widetilde{k}^{\mu}\widetilde{k'}^{\nu} + \widetilde{k'}^{\mu}\widetilde{k}^{\nu}}{2k\cdot k'} L_4 & \widetilde{k}^{\mu} = \widetilde{g}^{\mu\nu}(\hat{q})k_{\nu} \\ &\to 2 \big(k^{\mu}k'^{\nu} + k'^{\mu}k^{\nu} - k\cdot k'g^{\mu\nu}\big) \,\delta^{(4)}(k-k'-\hat{q}) & \widetilde{k'}^{\mu} = \widetilde{g}^{\mu\nu}(\hat{q})k'_{\nu} \end{split}$$

Jefferson Lab

6 4 Lepton structure functions! Small α leads to $\hat{q}_T^2 \ll \hat{Q}^2$ in lepton back-to-back frame!

Collinear Factorization for QED Radiative Conntribution

Collinear Factorization for QED Radiative Conntribution

□ Without the "one-photon" approximation:

~ Inclusive single lepton production at high transverse momentum

b

$$E_{k'} \frac{d\sigma_{kP \to k'X}}{d^3 k'} = \frac{1}{2s} \sum_{i,j,a} \int_{\zeta_{\min}}^{1} \frac{d\zeta}{\zeta^2} \int_{\xi_{\min}}^{1} \frac{d\xi}{\xi} D_{e/j}(\zeta,\mu^2) f_{i/e}(\xi,\mu^2) \times \int_{x_{\min}}^{1} \frac{dx}{x} f_{a/N}(x,\mu^2) \widehat{H}_{ia \to jX}(\xi k, xP, k'/\zeta,\mu^2) + \cdots$$

No structure functions, but have PDFs, LDFs, LFFs, ...

Liu, Melnitchouk, Qiu, Sato

2008.02895, 2108.13371

 $\hfill\square$ Calculated hard parts in power of $\ \alpha^m\alpha_s^n$:

QED Radiative Corrections vs Radiative Contributions

+ nonperturbative contributions ...

□ Lepton evolution – e.g., valence:

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} f_{e/e}(\xi,\mu^2) = \int_{\xi}^1 \frac{\mathrm{d}\xi'}{\xi'} P_{ee}\left(\frac{\xi}{\xi'},\alpha\right) f_{e/e}(\xi',\mu^2)$$

Lepton fragmentation function:

$$D_{e/e}^{(1)}(\zeta,\mu) = \frac{\alpha}{2\pi} \left[\frac{1+\zeta^2}{1-\zeta} \ln \frac{\zeta^2 \mu^2}{(1-\zeta)^2 m_e^2} \right]_+$$

+ nonperturbative contributions ...

QED radiative corrections:

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

$$\sigma_{
m obs}(x_B,Q^2) \
otag \ R_{
m QED}(x_B,Q^2;x_{B,
m true},Q^2_{
m true}) imes \sigma_{
m Born}(x_{B,
m true},Q^2_{
m true}) + \sigma_X(x_B,Q^2)$$

- The correction factors R_{QED} and σ_x should not depend on the hadron structure that we wish to extract, and they can be systematically calculated in QED to high precision;
- The effective scale Q²_{true} for the Born cross section σ_{Born} should be large enough to keep the "true" scattering within the DIS regime.
- Extraction of σ_{Born} is an inverse problem

QED radiative contributions:

$$\sigma_{
m obs}(x_{\scriptscriptstyle B},Q^2) = \sigma_{
m lep}^{
m univ}(\mu^2;m_e^2)\otimes\sigma_{
m had}^{
m univ}(\mu^2;\Lambda_{
m QCD}^2)\otimes\widehat{\sigma}_{
m IR-safe}(\hat{x}_{\scriptscriptstyle B},\widehat{Q}^2,\mu^2) + \mathcal{O}\left(rac{\Lambda_{
m QCD}^2}{Q^2},rac{m_e^2}{Q^2}
ight)$$

- Infrared sensitive QED contributions divergent as $m_e/Q \rightarrow 0$, are absorbed to universal LDFs and LFFs
- Infrared safe QED contributions finite as $m_e/Q
 ightarrow 0$, are calculated order-by-order in power of lpha
- Power suppressed contributions as $m_e/Q \rightarrow 0$, are neglected

Predictive power: Universality of LDFs and LFFs, their evolution, calculable hard parts Neglect power corrections

□ Inclusive production of a lepton and a hadron:

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

 $e(\ell) + N(P) \rightarrow e(\ell') + h(P_h) + X$

Momentum imbalance between the lepton and the hadron could be sensitive to both parton TMDs and lepton TMDs

Typical parton transverse momentum: $k_T^2 \sim \Lambda_{\rm QCD}^2 + \langle k_T^2 \rangle_{\rm generated by QCD shower}$

G Estimate of lepton transverse momentum generated by QED shower:

QED broadening for lepton is so much smaller than typical parton kT!

Collinear factorization for high order QED contributions

QED factorization of collision induced radiation – collinear:

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

$$E_{\ell'}E_{P_h}\frac{\mathrm{d}^6\sigma_{\ell(\lambda_\ell)P(S)\to\ell'P_hX}}{\mathrm{d}^3\ell'\,\mathrm{d}^3P_h}\approx\sum_{ij\lambda_k}\int_{\zeta_{\min}}^1\frac{\mathrm{d}\zeta}{\zeta^2}\,D_{e/j}(\zeta)\int_{\xi_{\min}}^1\mathrm{d}\xi\,f_{i(\lambda_k)/e(\lambda_\ell)}(\xi)\left[E_{k'}E_{P_h}\frac{\mathrm{d}^6\hat{\sigma}_{k(\lambda_k)P(S)\to k'P_hX}}{\mathrm{d}^3k'\,\mathrm{d}^3P_h}\right]_{k=\xi\ell,k'=\ell'/\zeta}+\mathcal{O}(\frac{m_e^n}{Q^n})$$

- Leading power IR sensitive contribution is universal, as $m_e/Q \rightarrow 0$, factorized into LDFs and LFFs
- IR safe contributions are calculated order-by-order in powers of α
- Neglect m_e/Q power suppressed contributions
- Collinear QED factorization for both inclusive DIS and SIDIS, or e⁺e⁻, ... [global fits of LDFs, LFFs]
- **"** "One photon"-approximation:

 $\{\hat{q}, P, \hat{P}_h\}$

$$\begin{array}{c} \text{(b)} \qquad \qquad \begin{array}{c} \frac{d^6\sigma_{\ell(\lambda_\ell)P(S)\to\ell'P_hX}}{dx_Bdy\,d\psi\,dz_h\,d\phi_hdP_{hT}^2} = \sum_{ij\lambda_k} \int_{\zeta_{\min}}^1 \frac{d\zeta}{\zeta^2} \int_{\xi_{\min}}^1 \frac{d\xi}{\xi} f_{i(\lambda_k)/e(\lambda_\ell)}(\xi) \, D_{e/j}(\zeta) \\ \times \frac{\hat{x}_B}{x_B\xi\zeta} \left[\frac{\alpha^2}{\hat{x}_B\,\hat{y}\,\hat{Q}^2} \frac{\hat{y}^2}{2(1-\hat{\varepsilon})} \left(1 + \frac{\hat{\gamma}^2}{2\hat{x}_B}\right) \sum_n \hat{w}_n F_n^h(\hat{x}_B, \hat{Q}^2, \hat{z}_h, \hat{P}_{hT}^2) \right] \end{array}$$

Apply a (ξ, ζ) -dependent Lorentz transformation:

 $\{q, P, P_h\}$

Evaluated in a "virtual photon-hadron" frame

In a frame to compare with exp. measurements

Two-step approach to SIDIS:

 $\begin{array}{c} \ell & \stackrel{\text{lepton}}{\longrightarrow} & \stackrel{\ell'}{\longrightarrow} & P_h \\ & \hat{q} & & \\ & \hat{q} & & \\ & & \\ P & & \\ & & \\ & & \\ P & & \\ &$

1) In "virtual-photon" frame, defined by $\hat{q}(\xi,\zeta)-p$

- TMD factorization when $\ \widehat{P}_T^2 \ll \widehat{Q}^2$
- CO factorization when $\ \widehat{P}_T^2 \sim \widehat{Q}^2$
- Matching to get the \hat{P}_T -distribution
- 2) Lorentz transformation from the "virtual-photon" frame to any experimentally defined frame

 – lepton-hadron Lab frame, Breit frame (x_B,Q²), ...

QED contribution (not correction) can be systematically improved order-by-order in power α !

$$\Box \operatorname{Case study} \mathbf{F}_{\mathsf{UU}}:$$

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} =$$

$$\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \overline{F_{UUT}} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right]$$

$$+ \varepsilon \sin(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\sin 2\phi_h} \right]$$

$$+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right]$$

$$+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\sin(\phi_h-\phi_S)} \right]$$

$$+ \varepsilon \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h-\phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h-\phi_S)} \right)$$

$$+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h+\phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h-\phi_S)}$$

$$+ \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h-\phi_S)} \right]$$

$$+ |\mathbf{S}_{\perp}| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h-\phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos\phi_S} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos\phi_S} \right]$$

Case study F_{UU} :

$$\frac{d\sigma_{\text{SIDIS}}^{h}}{dx_{B}dy\,dz\,dP_{hT}^{2}} = \int_{\zeta_{\min}}^{1} d\zeta \int_{\xi_{\min}(\zeta)}^{1} d\xi \, D_{e/e}(\zeta) \, f_{e/e}(\xi) \times \left[\frac{\hat{x}_{B}}{x_{B}\xi\zeta}\right] \left[\frac{(2\pi)^{2}\,\alpha}{\hat{x}_{B}\hat{y}\,\hat{Q}^{2}} \frac{\hat{y}^{2}}{2(1-\hat{\varepsilon})} F_{UU}^{h}(\hat{x}_{B},\hat{Q}^{2},\hat{z},\hat{P}_{hT})\right]$$
Evaluated in a "virtual photon-hadron" frame

Unpolarized structure function:

$$F_{UU}^{h} = x_{B} \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \, \delta^{(2)} (\boldsymbol{p}_{T} - \boldsymbol{k}_{T} - \boldsymbol{q}_{T}) \times f_{q/N}(x_{B}, \boldsymbol{p}_{T}^{2}) \, D_{h/q}(z, \boldsymbol{k}_{T}^{2}) \qquad \boldsymbol{q}_{T} = \boldsymbol{P}_{hT}/z$$

 (ξ,ζ) - Dependent Lorentz transformation Effectively, a rotation in hadron-rest frame

> Solid – with rotation Dashed – without rotation

Case study – single transverse spin asymmetry:

 $\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$ $-\frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h}\right\}$ $+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h}$ $+S_{\parallel}\left|\sqrt{2\,arepsilon(1+arepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}}+arepsilon\sin(2\phi_{h})\,F_{UL}^{\sin2\phi_{h}}
ight|$ $+ S_{\parallel} \lambda_{e} \left| \sqrt{1 - \varepsilon^{2}} F_{LL} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_{h} F_{LL}^{\cos \phi_{h}} \right|$ $+ |m{S}_{\perp}| \left| \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)}
ight)
ight.$ $+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$ $+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\Big|$ $+ |m{S}_{\perp}|\lambda_{e} \left| \sqrt{1 - arepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2 \, arepsilon(1 - arepsilon)} \cos \phi_{S} \, F_{LT}^{\cos \phi_{S}}
ight.$ $+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}$

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

QED radiative corrections:

Radiative Effects in the Processes of Hadron Electroproduction

I.Akushevich, N.Shumeiko, A.Soroko

National Center of Particle and High Energy Physics, 220040 Minsk, Belarus

Received: date / Revised version: date

Abstract. An approach to calculate radiative corrections to unpolarized cross section of semi-inclusive electroproduction is developed. An explicit formulae for the lowest order QED radiative correction are presented. Detailed numerical analysis is performed for the kinematics of experiments at the fixed targets.

Summary and Outlook

- **Radiative corrections are very important for lepton-hadron scattering**
 - **O** Especially difficult for a consistent treatment beyond the inclusive DIS
 - No well-defined photon-hadron frame, if we cannot recover all QED radiation
 - Radiative corrections are more important for events with high momentum transfers and large phase space to shower such as those at the EIC

U We proposed a factorization based treatment of QED radiation, along with QCD factorization

- QED radiation is a part of production cross sections, treated in the same way as QCD radiation from quarks and gluons
- No artificial and/or process dependent scale(s) introduced for treating QED radiation, other than the standard factorization scale
- **O** All perturbatively calculable hard parts are IR safe for both QCD and QED
- All lepton mass or resolution sensitivity are included into "Universal" lepton distribution and fragmentation functions (or jet functions)

Thank you!

Special thanks to experimental colleagues for helpful discussions!

